
A Worst Case Analysis of

the LZ2 Compression Algorithm

with Bounded Size Dictionaries

Sergio De Agostino

Computer Science Department
Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy
deagostino@di.uniroma1.it

Abstract. We make a worst case analysis of practical implementations of LZ2 com-
pression, where the work space remains constant with the increase of the data size and
the optimal solution must work with the same on-line decoder. The memory bound
implies an off-line standard polynomial time optimal solution with huge multiplicative
constants and we show that an on-line approach approximates with a large factor, leav-
ing the design of an effective and more efficient off-line coding as an open problem in
this context.

Keywords: factorization, dictionary, optimality, approximation.

1 Introduction

Sheinwald, Lempel and Ziv [17] proved that the power of off-line coding is not use-
ful if we want on-line decodable files, as far as asymptotical results are concerned.
Such result extends the asymptotical optimality results of Lempel and Ziv for er-
godic sources in a non-constructive way, where the on-line reading of the data from
left to right works with a sublinearly bounded buffer length. In the finite case, De
Agostino and Storer [8] introduced the notion of on-line decodable Ziv-Lempel (LZ2)
optimal coding and proved its NP-completeness. Moreover, a sublogarithmic factor
approximation algorithm cannot be realized on-line and the greedy LZ2 compression
algorithm is an O(n

1

4) approximation with binary worst case examples, where n is
the string length [7,8]. Therefore, for finite strings, one could afford the extra-cost of
off-line coding in exchange of some gain in compression of data stored on a read-only
memory. Considering this point, we make in this paper a worst case analysis of prac-
tical implementations of LZ2 compression, where the work space remains constant
with the increase of the data size. The memory bound implies a standard polynomial
time optimal solution with huge multiplicative constants and we show that the on-
line approach still approximates with a large factor, leaving the design of an effective
and more efficient off-line coding as an open problem in this context. In other words,
the trade off between effectiveness (good compression ratio) and efficiency (practical
running time) must be improved. This depends on the improvement of the LZ2 string
factorization process [20] while on-line greedy LZ1 factorization [15] is already struc-
turally optimal and the only possible improvements are at the coding level as we will
discuss in the next sections.

Such need for further theoretical analysis of the power of off-line encoding that
must produce on-line decodable files is motivated, as previously mentioned, by ap-
plications to read-only memories. Indeed, the design of an on-line decodable off-line

Sergio De Agostino: A Worst Case Analysis of the LZ2 Compression Algorithm with Bounded Size Dictionaries, pp. 107–113.

Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

108 Proceedings of the Prague Stringology Conference 2023

coding approximating the optimal solution does not need a real time or even slower
algorithm to be considered practical since compression must be performed only once.
Therefore, we can accept a time cost that could not be permitted when on-line com-
putation is required as for decoding or on-the fly coding. Typically, LZ2 compression
is more efficient but less effective than LZ1 but optimal or nearly optimal LZ2 com-
pression might be more effective than LZ1 on several specific types of data.

In Section 2, Lempel-Ziv compression is described in relation to the LZ1 and LZ2
string factorization methods in the unbounded and bounded memory cases. Then,
the on-line versus off-line computation and the greedy versus optimal solution issues
are discussed for the unbounded memory case. Such issues are discussed and analyzed
for the bounded memory case in Section 3 after giving the polynomial time optimal
algorithm. Conclusion and future work are given in Section 4.

2 LZ2 Compression with Bounded Size Dictionaries

Lempel-Ziv compression is a dictionary-based technique [14,15,20], using a string
factorization process where the factors of the string are substituted by pointers to
copies stored in a dictionary, which are called targets.

2.1 LZ Factorizations

Given an alphabet A and a string S in A∗, the LZ1 factorization of S is S =
f1f2 · · · fi · · · fk where fi is the shortest substring which does not occur previously
in the proper prefix f1f2 · · · fi for 1 ≤ i ≤ k [15]. LZ2 is easier to implement but
less effective. The standard LZ2 greedy factorization of a string S, on which practical
implementations of LZ2 compression are based, is S = f1f2 · · · fi · · · fm where each
factor fi is the longest match with the concatenation of a previous factor and the next
character [19,20]. fi is encoded by a pointer qi whose target is such concatenation.
Regardless of memory issues, LZ2 compression can be implemented in real time by
storing the dictionary of targets with a trie data structure. When the string length
goes to infinity, also the dictionary size does.

2.2 Bounded Size Dictionaries

In practical implementations the dictionary size is bounded by a constant and the
pointers have equal size [18]. Let d be the cardinality of the fixed size dictionary
(alphabet characters are always dictionary elements). With the most naive approach,
there is a first phase of the factorization process where the dictionary is filled up
and “frozen”. Afterwards, the factorization continues in a non-adaptive way using
the factors of the frozen dictionary. In other words, the factorization of a string S
is S = f1f2 · · · fi · · · fk where fi is the longest match with the concatenation of a
previous factor fj and the next character, where j ≤ d − α and α is the alphabet
size. The shortcoming of this heuristic is that after processing the string for a while
the dictionary often becomes obsolete. Therefore, after the dictionary is filled up, the
compression ratio is monitored. When the ratio deteriorates, a better heuristic deletes
all the elements from the dictionary but the alphabet characters and restarts new
adaptive and non-adaptive phases. Let S = f1f2 · · · fj · · · fi · · · fk be the factorization
of the input string S computed by the LZ2 compression algorithm using such heuristic
to bound the dictionary. Let j be the highest index less than i where a restarting

Sergio De Agostino: A Worst Case Analysis 109

operation happens. Then, fj is an alphabet character and fi is the longest match with
the concatenation of a previous factor fh, with h ≥ j, and the next character (1 and
m+1 are considered restarting positions by default). This LZ2 compression heuristic
with constant work space is called LZC [3] (a variation of LZW compression where
the dictionary is restarted with no monitoring) and it is used by the Unix command
Compress since it has a good compression effectiveness and it is easy to implement.

2.3 Optimal Factorizations

In the unbounded case, the pointer encoding the factor fi has a size increasing with
the index i. This means that the lower is the number of factors for a string of a given
length, the better is the compression. The factorizations described in the previous
subsections are produced by greedy algorithms. The question is whether the greedy
approach is always optimal, that is, if we relax the assumption that each factor is
the longest match, can we do better than greedy? The answer is negative with suffix
dictionaries (every suffix of a dictionary element is a dictionary element) as for LZ1
compression. On the other hand, the greedy approach is not always optimal for LZ2
compression. We define S = f1 · · · fk a feasible LZ2 factorization if each factor fi is
equal to the concatenation of fj and the next character, for some j < i. A feasible
LZ2 factorization with the smallest number of factors is an optimal LZ2 factorization.
Obviously, the coding of every feasible LZ2 factorization works with the same decoder
of the standard greedy LZ2 coding.

As mentioned in the introduction, the optimal approach is NP-complete [8] and

the greedy algorithm approximates with an O(n
1

4) multiplicative factor the optimal
solution [7]. Moreover, a sublogarithmic factor approximation algorithm cannot be
realized on-line [8]. Although these results can be viewed to be in some sense negative,
they serve to motivate the need for further theoretical analysis of the power of off-
line encoding that must produce on-line decodable files, as pointed out in [8]. The
design of a practical on-line decodable off-line approximation algorithm has important
applications to read-only memories. So, we produce further theoretical analysis for
the bounded case in the next section.

3 Bounded Memory Greedy versus Optimal Analysis

The memory bound implies a standard polynomial time optimal solution with huge
multiplicative constants and we show that an on-line approach still approximates
with a large factor. We show the polynomial time algorithm in the first subsection.
The second subsection discusses the on-line versus off-line computation issue, while
the greedy versus optimal analysis is given in the third subsection.

3.1 The Polynomial Time Algorithm

A feasible d-LZC factorization S = f1 · · · fk is such that the number of different con-
catenations of a factor with the next character between fh and ft (ft is not counted)
is less or equal than d decreased by the alphabet size, with h and t two consecutive
positions where the restarting operation happens (no restarting between h and t), and
each factor fi with h < i < t is equal to fjc, where c is the first character of fj+1 and
h ≤ j < i (1 and k + 1 are considered restarting positions by default, meaning that

110 Proceedings of the Prague Stringology Conference 2023

frozen dictionaries relate to special cases of feasible factorizations). We define opti-

mal the feasible d-LZC factorization with the smallest number of factors. The greedy

d-LZC factorization is the one described in the previous section (the Unix command
Compress works with d = 216). We assume, as it happens in practical implementa-
tions as well, that the coding inserts a special character when the restarting operation
happens. This avoids monitoring of the compression ratio in the standard applications
and makes the coding of every feasible factorization decodable (the decrement by one
unit of the dictionary size caused by the special character is obviously irrelevant for
the compression effectiveness).

A practical algorithm to compute the optimal solution is not known. In order to
have a polynomial time optimal algorithm, the bound to the dictionary size should
be sublogarithmic. However, the number of all the possible dictionaries induced by a
feasible d-LZC factorization of any input string is constant since d and the alphabet
cardinality are constant. Given an input string, pair each of these dictionaries with
each position of such string. Link the pair (p,D), where p is a position of the string
and D is one of the dictionaries, to the pair (p + ℓ + 1, D′) if ℓ is the length of a
dictionary element matching the string in p andD′ is the updating ofD corresponding
to the choice of such dictionary element as factor of a feasible d-LZC factorization.
If the match ends the string, the pair links to a special node v. Also, link the pair
(p,D) to (p,A) where A is the dictionary comprising only the alphabet characters, in
order to have the possibility of picking p as restarting position. The optimal d-LZC
factorization and the sequence of pointers is given by the shortest path from (1, A)
to v. Such polynomial time algorithm is, obviously, unpractical since the number of
nodes (pairs) is linear in the string length but the number of dictionaries is a huge
multiplicative constant.

3.2 On-line versus Off-line Computation

A trivial upper bound to the approximation multiplicative factor of a feasible factor-
ization with respect to the optimal one is the maximum factor length of the optimal
solution, that is, the height of the trie storing the dictionary. Such upper bound is
Θ(d) in the worst case, where d is the dictionary size (O(d) follows from the fea-
sibility of the factorization and Ω(d) from the factorization of the unary string). In
practice, a dictionary comprises thousands of elements and even a logarithmic approx-
imation multiplicative factor is too large. In [8], it is shown in the unbounded case
that a sublogarithmic approximation of the optimal LZ2 coding cannot be realized by
means of an example binary string X = pref(n)suff(n), where the prefix pref(n)
of length Ω(n) is such that, for any on-line algorithm applied on it, an appropriate
suffix suff(n) of length Ω(n) can be concatenated in order to fool the on-line strat-
egy. From the definition of feasible d-LZC factorization, we know that a dictionary
between two restarting positions might comprise less than d elements.

Definition 1. We call ∆ the highest number of elements a dictionary is composed of

between two restarting positions in an optimal d-LZC factorization.

We can adapt the example string X in [8] to the bounded case by considering
d the number of different factors selected by the on-line strategy on X, so that it
will be at least a logarithmic approximation of ∆. Moreover, we can append to X
a sequence of characters where the dictionary performs very badly in order to have
a string Y such that |Y | is Θ(|X|) and LZC compression applied to an arbitrarily

Sergio De Agostino: A Worst Case Analysis 111

long string Y Y Y · · ·Y has restarting positions on the first character of Y . Then, any
on-line approach produces an Ω(log(∆)) approximation of the optimal LZC coding
of Y t for any positive integer t.

3.3 The Greedy versus Optimal Analysis

The proof of the following theorem employs techniques similar to the ones for the un-
bounded dictionary case of [7]. A preliminay version of this theorem was shown in [6]
without giving worst case examples. Such examples are described in this subsection
after the proof of the theorem (we suggest to study first the proofs of theorem 3.1
and theorem 3.2 in [7] for the unbounded cases).

Theorem 2. The greedy d-LZC factorization is an O(
√
∆) approximation of the op-

timal one.

Proof. Let S be the input string and let R be a substring of S given by the con-
catenation of the factors of the greedy d-LZC factorization between two consecutive
positions where the restarting operation happens. Let T be the trie storing the set I
of strings corresponding to factors of the optimal d-LZC factorization of S contained
in R. Let Φ be the number of occurrences of all these factors in R. We call an element
of the dictionary built by the greedy d-LZC factorization of S an internal occurrence

if it corresponds to a substring of a factor of I in R. We denote with MT the num-
ber of internal occurrences. The number of non-internal occurrences is less than |I|.
Therefore, we can consider only the internal ones. For each factor f ∈ I, an internal
occurrence corresponding to f is represented by a subpath of the path representing f
in T . Let u be the endpoint at the lower level in T of this subpath (which, obviously,
represents a prefix of f). Let d(u) be the number of subpaths representing internal
occurences with endpoint u and let c(u) be the total sum of their lengths. Since
the occurrences (internal or not) are different from each other between two consecu-
tive positions where the restarting operation happens and two equal length subpaths
with the same endpoint represent the same factor, we have c(u) ≥ d(u)(d(u) + 1)/2.
Therefore

1/2
∑

u∈T

d(u)(d(u) + 1) ≤
∑

u∈T

c(u) ≤ 2|S| ≤ 2HTΦ

where HT is the height of T and the multiplicative factor 2 is due to the fact that
occurrences of dictionary elements may overlap. Since MT =

∑

u∈T d(u), we have

M2

T ≤ |I|
∑

u∈T

d(u)2 ≤ |I|
∑

u∈T

d(u)(d(u) + 1) ≤ 4|T |HTΦ

where the first inequality follows from the fact that the arithmetic mean is less than
the quadratic mean. Then

MT ≤
√

4|I|HTΦ = Φ

√

4|I|HT

Φ
≤ 2Φ

√

HT

Since the trie height is O(∆), the theorem statement follows. ⊓⊔

We need to adapt the worst case example for the unbounded dictionary case [7]
in order to have one for the bounded case. To reformulate such result in our context,

112 Proceedings of the Prague Stringology Conference 2023

if we let d be the number of factors of the LZ2 factorization of a string of length n in
the unbounded case, there exists a binary string X of lenght n on which the optimal
factorization working with the same decoder has a number of factors and produces a
number of dictionary elements, which are both Θ(d2/3). As in the previous subsection,
we can append toX a sequence of characters where the dictionary performs very badly
in order to have a string Y such that |Y | is Θ(|X|) and LZC compression applied to
an arbitrarily long string as Y Y Y · · ·Y has restarting positions on the first character
of Y . So, the optimal solution employs two thirds of the dictionary space on the input
blocks up to a multiplicative contant. On the other hand, the greedy solution cost
approximates the optimal solution cost with a multiplicative approximation factor
which is, up to a multiplicative constant, greater than the square root of the actual
dictionary size needed by the optimal approach. So, it follows from the proof of
Theorem 1 that the square root of the actual dictionary size needed by the optimal
approach is a tight bound to the approximation factor of the greedy approach, up to
multiplicative constants.

4 Conclusion

The gap between on-line and off-line computation, shown in this paper, has its stringo-
logical reason in the structure of the dictionary which might not contain all the suf-
fixes of its elements. Differently, with LZ1 coding dictionaries have this property and
greedy factorizations are optimal. However, the coding is more expensive and on-line
improved variants exist employing either fixed-length codewords [4,16] or variable-
length ones [5,9,10,11,12,13]. Moreover, there are off-line approaches to improve LZ1
coding working with on-line decoders [1,2]. As previously pointed out, with LZ2 cod-
ing practical off-line string factorizations approximating on-line decodable optimal
solutions could be more effective than LZ1 compression on several specific types of
data.

References

1. A. Apostolico and S. Lonardi: Compression of biological sequences by greedy off-line textual

substitution, in Proceedings IEEE Data Compression Conference, 2000, pp. 143–152.
2. A. Apostolico and S. Lonardi: Off-line compression by greedy textual substitution, in IEEE

Proceedings, vol. 88, 2000, pp. 1733–1744.
3. T. C. Bell and I. H. Witten: Text Compression, Prentice Hall, 1990.
4. M. Crochemore, A. Langiu, and F. Mignosii: Note on the greedy parsing optimality for

dictionary-based text compression. Theoretical Computer Science, 525 2014, pp. 55–59.
5. M. Crochemore, G. M., A. Langiu, F. Mignosi, and A. Restivo: Dictionary symbolwise

flexible parsing. Journal of Discrete Algorithms, 14 2012, pp. 74–90.
6. S. DeAgostino: Greedy versus optimal analysis of bounded size dictionary compression and

on-the-fly distributed computing, in Proceedings Prague Stringology Conference, 2020, pp. 74–83.
7. S. DeAgostino and R. Silvestri: A worst case analysis of the lz2 compression algorithm.

Information and Computation, 139 1997, pp. 258–268.
8. S. DeAgostino and J. A. Storer: On-line versus off-line computation in dynamic text

compression. Information Processing Letters, 59 1996, pp. 169–174.
9. A. Farrugia, P. Ferragina, A. Frangioni, and R. Venturini: Bicriteria data com-

pression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 14), 2014,
pp. 1582–1585.

10. P. Ferragina, I. Nitto, and R. Venturini: On optimally partitioning a text to improve its

compression. Algorithmica, 61 2011, pp. 51–74.

Sergio De Agostino: A Worst Case Analysis 113

11. P. Ferragina, I. Nitto, and R. Venturini: On the bit-complexity of lempel-ziv compression.
SIAM Journal on Computing, 42 2013, pp. 1521–1541.

12. D. Kosolobov: Relations between greedy and bit-optimal lz77 encodings, in Proceedings Sym-
posium on Theoretical Aspect of Computer Science, 2018, pp. 46:1–46:14.

13. A. Langiu: On parsing optimality for dictionary-based text compression - the zip case. Journal
of Discrete Algorithms, 20 2013, pp. 65–70.

14. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-
tion Theory, 22 1976, pp. 75–81.

15. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23 1977, pp. 337–343.

16. Y. Matias and C. S. Sahinalp: On the optimality of parsing in dynamic dictionary-based

data compression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 99),
1999, pp. 943–944.

17. D. Sheinwald, A. Lempel, and J. Ziv: On encoding and decoding with two - way head

machines. Information and Computation, 116 1995, pp. 128–133.
18. J. A. Storer: Data Compression: Methods and Theory, Computer Science Press, 1988.
19. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.
20. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

