
Approximate String Searching

with AVX2 and AVX-512

Tamanna Chhabra1, Sukhpal Singh Ghuman1, and Jorma Tarhio2

1 Faculty of Applied Science and Technology
Sheridan College, Ontario, Canada

firstname.lastname@sheridancollege.ca
2 Department of Computer Science

Aalto University, Finland
firstname.lastname@aalto.fi

Abstract We present new algorithms for the k mismatches version of approximate
string matching. Our algorithms utilize the SIMD (Single Instruction Multiple Data)
instruction set extensions, particularly AVX2 and AVX-512 instructions. Our approach
is an extension of an earlier algorithm for exact string matching with SSE2 and AVX2.
In addition, we modify this exact string matching algorithm to work with AVX-512.
We demonstrate the competitiveness of our solutions by practical experiments. Our
experimental results show that our algorithms outperform earlier algorithms for both
exact and approximate string matching on various benchmark data sets.

Keywords: Approximate string matching, Hamming distance, exact string matching,
SIMD computing, experimental comparison

1 Introduction

String matching [5] is a widely studied problem in Computer Science. The problem
of string matching consists of two strings, a text and a pattern, and the task is to
find all occurrences of the pattern in the text.

There have been numerous developments in this field in the recent past. Many vari-
ations of this problem have appeared, such as exact string matching [5], approximate
string matching [10], order preserving matching [2], jumbled pattern matching [7] and
many more.

Given a pattern P = p0 · · · pm−1 and a text T = t0 · · · tn−1 both in an alphabet Σ,
the problem of exact string matching is defined as follows: to find all the positions i
such that titi+1 · · · ti+m−1 = p0p1 · · · pm−1. In this paper we consider the k mismatches
variation of the problem where P ′, a substring of T , is an occurrence of P , if |P ′| = |P |
holds and P ′ has at most k mismatches with P , 0 ≤ k < m. The mismatch distance
of two strings of equal length is also called the Hamming distance. For example, if
x = ababb and y = abbab, then the Hamming distance between x and y is 2.

In our study, we propose algorithms that make use of SIMD (Single Instruction
Multiple Data) computing for approximate string matching. By harnessing the AVX2
and AVX-512 features found in modern processors, our algorithms can process mul-
tiple characters simultaneously. Especially AVX2 is widely available in new Intel and
AMD processors. To build upon existing work, we start with a simple algorithm [12]
that already utilizes SIMD for exact string matching. We extend and modify this
algorithm to handle mismatches, thereby allowing approximate string matching.

Our main focus is on demonstrating the practical efficiency of the new algorithms.
Our algorithms count the number of occurrences with up to five mismatches. To

Tamanna Chhabra, Sukhpal Singh Ghuman, Jorma Tarhio: Approximate String Searching with AVX2 and AVX-512, pp. 57–67.

Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

58 Proceedings of the Prague Stringology Conference 2023

show their competitiveness, we conduct practical experiments that validate their per-
formance. As a result, we not only achieve faster approximate string matching, but
also surpass the speed of earlier algorithms designed for exact string matching. The
improvement in approximate string matching is significant: In English data, when
permitting one mismatch, our algorithm is approximately six times faster than the
reference method.

The rest of the paper is organized as follows: Section 2 presents the background.
Section 3 introduces our algorithms for approximate string matching, Section 4 de-
scribes adaptation of the approach to AVX-512, and Section 5 depicts the results of
our practical experiments, and Section 6 concludes the article.

2 Background

For exact string matching Tarhio et al. [12] presented a naive algorithm (shown as
Algorithm 1) which uses the SIMD instruction architecture. The algorithm compares
α characters in parallel, where α is 16 or 32. In the following, the names N16 and N32
are used for these variations. N16 uses the SSE2 instruction set and N32 the AVX2
instruction set.

Algorithm 1: SIMD-naive-search
1 construct vector(c) for each c ∈ Σ

2 count ← 0; i← 0
3 while i ≤ n−m do
4 found ← 2α − 1
5 for j ← 0 to m− 1 do
6 found ← found and SIMDcompare(ti+j , vector(pj), α)
7 if found = 0 then goto out
8 count ← count + popcount(found)
9 out: i← i+ α

The key idea of Algorithm 1 is to test α consecutive potential occurrences of the
pattern in parallel. For that purpose, a comparison vector containing α copies of the
same character is constructed in line 1 for each character of the alphabet. In the case
of AVX2, α is 32, and the algorithm first compares the vector of p0 with t0 . . . t31, and
then it compares the vector of p1 with t1 . . . t32 and so on. The bitvector found of 32
bits keeps track of active match candidates. The intrinsic function mm popcnt u32 [9]
is used for counting matches in line 8.

The SIMDcompare function for the AVX2 architecture uses three intrinsic func-
tions [9] described below:

– mm256 loadu si256: The function loads 256 bits of integer data from memory
into the destination. The memory address does not need to be aligned on the
particular boundary.

– mm256 cmpeq epi8: The function compares a 32 8-bit integer elements in two
256-bit vectors and sets the corresponding bit in the output vector to 1 if the two
elements are equal, and to 0 otherwise. The result is a 256-bit vector where each
bit represents the result of a single comparison operation.

– mm256 movemask epi8: The function creates a 256-bit vector of 32 8-bit integer
elements and returns a 32-bit integer value where the ith bit is set to 1 if the
ith element of the vector has its most significant bit set, and to 0 otherwise. This

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 59

function creates a mask from the most significant bit of the comparison result as
a 32-bit integer.

With these intrinsic functions, SIMDcompare for AVX2 is implemented as follows:

SIMDcompare(x, y, 32)

x_ptr = _mm256_loadu_si256(x)

y_ptr = _mm256_loadu_si256(y)

return _mm256_movemask_epi8(_mm256_cmpeq_epi8(x_ptr, y_ptr))

For N16, the corresponding intrinsic functions for loading, comparing, and creating
a mask for comparison are used in the SSE2 instruction set architecture.

Tarhio et al. [12] used three different orders for comparing the characters of the
pattern: plain order, fixed order, and reverse English frequency order. In the case of
the 32 byte version, we use the following names for these variations: N32, N32F, and
N32E. The plain order advances from left to right in the pattern. The fixed order
applies the following heuristic order: p0, pm−1, p3, p6, . . . , p2, p5, . . . , p1, p4, . . . exclud-
ing space characters which are compared last. The reverse frequency order could be
applied to any type of data, but only English has been used in experiments. Algo-
rithm 1 uses the plain order. In the case of other orders, the call of the SIMDcompare
function in line 6 is in the form

SIMDcompare(ti+π(j), vector(pπ(j)), α)

where π is a permutation of pattern positions. The algorithm uses α · |Σ| bytes extra
space for the vectors.

In addition to the SIMD instructions, loop peeling has a key role in the efficiency
of Algorithm 1. In loop peeling, a number of iterations is moved in front of the loop.
As a result, the code becomes faster because of fewer loop tests. In loop unrolling,
the whole loop is peeled. In the following, we call the number of the moved iterations
the peeling factor r. Tarhio et al. [12] used r = 2 or 3 for English and r = 5 for DNA.

3 Algorithms for approximate matching

Our aim is to develop algorithms for approximate string matching. Algorithm 2 (as
shown below) is used to count all the occurrences of a given pattern string P in a
text string T , with at most k mismatches. To perform the comparisons efficiently,
the algorithm uses SIMD (Single Instruction Multiple Data) instructions, which can
compare multiple characters in parallel. The algorithm is a variation of N32 extended
with mismatch counting. It works by handling α consecutive starting positions of
an occurrence candidate of P in parallel. In the case of AVX2, α is 32. Bitvectors
found [0], . . . , found [k] of α bits are used to keep track of mismatches. Initially, every
bit of each found [i] is set. During computation, if the jth bit of found [i] becomes zero,
then more than i mismatches has been found while checking the jth candidate. If all
the bits of found [k] become zero, then none of the α candidates can be an occurrence
of the pattern. The comparison vectors for each position of the pattern are computed
before search in line 1. Each comparison vector contains α copies of the corresponding
character. The popcount function counts the number of set bits in a vector.

Because n − m + 1 is not divisible by α in a general case, the last execution of
line 11 may add extra matches to count in some rare cases. For example, this may

60 Proceedings of the Prague Stringology Conference 2023

Algorithm 2: SIMD-approximate-search
1 for j ← 0 to m− 1 do construct vector(j) for pj
2 count ← 0; i← 0
3 while i ≤ n−m do
4 for j ← 0 to k do found [j]← 2α − 1
5 for j ← 0 to m− 1 do
6 c← SIMDcompare(ti+j , vector(j), α)
7 for s← k downto 1 do
8 found [s]← found [s] and (found [s− 1] or c)
9 found [0]← found [0] and c

10 if found [k] = 0 then goto out
11 count ← count + popcount(found [k])
12 out: i← i+ α

13 count ← count − popcount(found [k] >> (n−m− i+ α+ 1))

happen when searching for aaaaa with k ≥ 1 mismatches in a text ending with aaaa.
Line 13 eliminates such extra matches from count . Because found [k] is reversed at the
implementation level, the vector is shifted to the right in order to hide real matches.
Here we assume that it is allowed to access some text positions beyond tn−1. If that is
not the case, texts shorter than α+m− 1 and the end of a text should be processed
with another algorithm.

Algorithm 1 and Algorithm 2 use different approaches for constructing comparison
vectors. In Algorithm 1, vectors are constructed for each character of the alphabet,
while in Algorithm 2, vectors are constructed for each position of the pattern. Thus
Algorithm 2 needs α ·m bytes extra space for the vectors. This approach saves space
when m is less than |Σ|.

Algorithm 2 uses the plain order. If other orders are used (see Section 2), the call
of the SIMDcompare function in line 6 is in the form

SIMDcompare(ti+π(j), vector(π(j)), α)

where π is a permutation of pattern positions. Algorithm 2 solves the counting version
of approximate string matching with k mismatches. It can be transformed into the
reporting version by printing positions in line 11.

Proof of the counting method

Without losing generality, we can assume that positions of candidates are processed
in order from left to right. Let fi,k be the bit of found [k] corresponding a candidate
starting from tj after p0 · · · pi has been processed. According to the construction,
fi,k ≥ fi,k−1 holds.

Proposition: fi,k = 1 holds if tj · · · tj+i contains at most k character mismatches
with p0 · · · pi, and otherwise fi,k = 0 holds.

Proof by induction: If tj is p0, then we have f0,0 = f0,1 = · · · = f0,k = 1. If tj
is not p0, then we have f0,0 = 0 and f0,1 = · · · = f0,k = 1.

Let us assume that the proposition holds for fi−1,k−1. If tj+i is pi, then we have
fi,k = fi−1,k−1 and the proposition holds. If tj+i is not pi, we have two cases. If
fi−1,k−1 = 0 holds, then we have fi,k = fi−1,k−1 and the proposition holds. If fi−1,k−1 =
1 holds, then fi−1,k = 1 holds. So fi,k = 1 is satisfied. Because tj · · · tj+i−1 contains at
most k − 1 mismatches according to the induction assumption, tj · · · tj+i contains at
most k mismatches.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 61

Let us consider an example. The bolded entry in Table 1 shows the value of fi,3
after processing aabbab in the text for P = aaaaaa. Here vectors are shown in the
order of the text.

Table 1. An example of computation of fi,3. P = aaaaaa, k = 3.

a a b b a b
fi,3 1 1 1 1 1 1

fi,2 1 1 1 1 1 0
fi,1 1 1 1 0 0 0
fi,0 1 1 0 0 0 0

Tuning up

The pseudocode of Algorithm 2 presents the principles that can be applied to any
scenario for k < m. Recognizing that the approach is primarily advantageous for
small values of k, we developed algorithms for fixed k = 1, 2, . . . , 5. By combining
these algorithms, we were able to craft a more efficient implementation. First we split
the for loop in line 5 of Algorithm 2 into two parts and reduce some unnecessary
assignments. The outcome is shown in Algorithm 3.

Algorithm 3 Loop (line 5) of Alg. 2 split.
1 for j ← 0 to k do
2 c← SIMDcompare(ti+j , vector(pj), α)
3 for s← j downto 1 do
4 found [s]← found [s] and (found [s− 1] or c)
5 found [0]← found [0] and c

6 for j ← k + 1 to m− 1 do
7 c← SIMDcompare(ti+j , vector(pj), α)
8 for s← k downto 1 do
9 found [s]← found [s] and (found [s− 1] or c)
10 found [0]← found [0] and c

11 if found [k] = 0 then goto out

When k is fixed, we can unroll the three loops in lines 1, 3, and 8 of Algorithm 3
and the initialization loop in line 4 of Algorithm 2. After these changes, the code still
contains computations that are not essential, but the compiler can fairly efficiently
eliminate them.

We call the tuned version N32A. Exactly in the same way as in the case of exact
string matching explained in Section 2, we get the variations N32FA and N32EA
for handling pattern positions in the fixed heuristic order and the reverse English
frequency order.

4 Adaptation to AVX-512

We decided to adapt Algorithm 2 to leverage AVX-512 extensions, which allow us to
compare 64 bytes in parallel. The set of AVX-512 intrinsic functions does not contain a
512-bit counterpart for the mm256 cmpeq epi8 intrinsic function which was applied in
SIMDcompare for AVX2. Therefore we selected another intrinsic function computing

62 Proceedings of the Prague Stringology Conference 2023

the mask as well, eliminating the need for an extra intrinsic function. Here is the
redesigned SIMDcompare function for AVX-512:

SIMDcompare(x, y, 64)

x_ptr = _mm512_loadu_si512(x)

y_ptr = _mm512_loadu_si512(y)

return _mm512_cmpeq_epi8_mask(x_ptr, y_ptr)

In addition, we use mm popcnt u64 for counting matches. We describe how these
512-bit intrinsic functions [9] work. The function mm512 loadu si512 works corre-
spondingly to mm512 loadu si512, which was explained in Section 2.

The intrinsic function mm512 cmpeq epi8 mask1 performs an element-wise com-
parison of two 512-bit registers containing 64 8-bit integer elements each. It returns
a 64-bit mask, where each bit represents the result of the comparison of the corre-
sponding 8-bit integer element in the input registers. If the two elements are equal,
the corresponding bit in the mask is set to 1, otherwise it is set to 0.

SIMDcompare for AVX-512 is lighter than SIMDcompare for SSE2 or AVX2,
because SIMDcompare for AVX-512 has one intrinsic function less than the others.

The same adaptation into the AVX-512 platform applies naturally also for Al-
gorithm 1 for exact matching. Therefore, we present experimental results of exact
string matching in the next section in addition to the results of approximate string
matching.

5 Experimental Results

We present experimental results in order to compare the behavior of our algorithms
against the best known solutions in the literature for approximate and exact string
searching.

5.1 Setting

All the algorithms were implemented2 using the C programming language and com-
piled with Apple Clang 14.0.0 and run in the testing framework of Hume and Sun-
day [8]. The processor used was Intel Core i5-1030NG7 with 6 MB cache and 8 GB
RAM. The operating system used was MacOS Ventura 13.0.1.

We used three texts: English (the KJV Bible, 12 MB), DNA (the genome of E.
Coli, 10 MB), and random binary (|Σ| = 2, 12 MB) for testing. We chose the length
of the text to be at least 1.5 times the cache size (by concatenating the multiples of
the text) in order to avoid cache interference with running times [11]. Sets of patterns
of lengths 5, 8, 10, 16, and 32 were randomly taken from the texts. Each set contains
200 patterns. The tests were made with 99 repeated runs. Speedup is reported as a
ratio of the running times of the reference algorithm and a new algorithm.

5.2 Approximate matching

We compared our algorithms (N32A and N64A for the plain order, N32FA and N64FA
for the fixed order, N32EA and N64EA for the reverse English frequency order)

1 Note that mm256 cmpeq epi8 mask is not available in AVX2 but only in AVX-512. Therefore it
was not used in Algorithm 1.

2 The codes are available at https://users.aalto.fi/tarhio/hamming/.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 63

against ANS2B, BYPSB, and BYPSC [6] for 5 ≤ m ≤ 32. Fiori et al. [6] tested
twelve algorithms for the k mismatches problem, and ANS2B, BYPSB, and BYPSC
were clearly the best among them. Because all these algorithms apply SIMD, we also
present test results of TWSA [3], which is one of the best non-SIMD algorithms for
the k mismatches problem.

We carried out the experiments for k = 1, 3, and 5 as shown in Tables 2, 3, and
4. The best time for each pattern set has been boxed and the used peeling factor for
each run has been super-scripted in the tables. From the results, it is clear that the
new algorithms outperform earlier algorithms with a wide margin. For the English
dataset, the speedup of N64FA over ANS2B is about six for k = 1, indicating a
significant improvement in performance. The speedup AVX-512 offers over AVX2 is
typically 1.5 or more, i.e. speedup of the variations of N64A over the corresponding
versions of N32A.

When k increases, our algorithms become slower. As an example, Figure 1 shows
the search times of ANS2B for k = 1 and N64FA for k = 1, 3, and 5 in the English
dataset. The 64-byte algorithms stay competitive at least until k = 5.

5 8 10 16 32
0

0.5

1

1.5

2

2.5

m

S
ea
rc
h
ti
m
e

ANS2B (k = 1)

N64FA (k = 5)

N64FA (k = 3)

N64FA (k = 1)

Figure 1. Search times of ANS2B for k = 1 and N64FA for k = 1, 3, and 5 in the English dataset.

In most of the cases N64EA and N64FA are almost equally fast for English data
as well as N64A and N64FA for binary and DNA data.

There is no upper limit for the pattern size our algorithms can handle, but the
speed does not change much when the pattern gets longer.

One noteworthy finding is that the advantage of N64A over N32A increases when
patterns do not appear in the text. This observation is useful for scenarios checking
for pattern absence.

5.3 Effect of peeling factor

We analyzed the performance of the N64FA algorithm with various peeling factors for
k = 1. The results are presented in Table 5. The optimal choice of the peeling factor r
depends on the nature of the dataset. For English data, lower r values produce better
speed, while for DNA and binary data, higher r values yield improved performance.

64 Proceedings of the Prague Stringology Conference 2023

Table 2. Approximate search times, k = 1.

m = 5 8 10 16 32
English ANS2B 1.18 1.27 1.30 1.31 2.62

BYPSC —– 3.14 3.19 0.807 0.43
TWSA 4.53 3.25 2.77 1.83 0.886
N32FA 0.336{5} 0.295{4} 0.283{4} 0.265{4} 0.222{4}

N32EA 0.357{5} 0.325{4} 0.305{4} 0.245{3} 0.209{3}

N64FA 0.208 {5} 0.226{4} 0.206{5} 0.188 {4} 0.167{4}

N64EA 0.219{5} 0.217 {4} 0.200 {4} 0.188 {4} 0.154 {4}

DNA ANS2B 1.02 1.09 1.12 1.12 2.15
BYPSB —– 3.58 3.22 0.81 0.35
TWSA 5.71 3.72 3.20 1.90 0.909
N32A 0.273{5} 0.448{8} 0.443{8} 0.452{8} 0.428{8}

N32FA 0.277{5} 0.370{7} 0.373{7} 0.398{7} 0.368{7}

N64A 0.189 {5} 0.271{8} 0.271{8} 0.269 {8} 0.266{8}

N64FA 0.205{5} 0.249 {8} 0.262 {8} 0.277{8} 0.252 {8}

Binary ANS2B 1.26 1.34 1.35 1.38 2.75
BYPSB —– 11.91 8.20 5.01 0.699
TWSA —– —– —– 3.85 1.91
N32A 0.323{5} 0.520{8} 0.654{10} 0.965{8} 0.930{11}

N32FA 0.334{5} 0.539{8} 0.704{11} 0.988{13} 0.915{13}

N64A 0.213 {5} 0.304{8} 0.385 {10} 0.536 {15} 0.549{15}

N64FA 0.221{5} 0.299 {8} 0.392{10} 0.539{14} 0.530 {14}

Table 3. Approximate search times, k = 3.

m = 5 8 10 16 32
English ANS2B 1.25 1.325 1.23 1.27 2.70

BYPSC —– —– —– 4.24 1.17
TWSA 6.23 5.18 4.65 2.83 —–
N32FA 0.322{5} 0.706{6} 0.693{6} 0.589{6} 0.832{6}

N32EA 0.335{5} 0.771{6} 0.652{6} 0.526{6} 0.427{6}

N64FA 0.215{5} 0.458{8} 0.447{7} 0.390{6} 0.330{6}

N64EA 0.213 {5} 0.415 {8} 0.445 {7} 0.349 {6} 0.260 {6}

DNA ANS2B 1.09 1.08 1.22 1.12 2.18
BYPSB —– —– —– 4.37 1.09
TWSA 3.87 5.32 4.62 2.92 —–
N32A 0.245{5} 0.656{8} 0.945{10} 1.06{10} 1.07{10}

N32FA 0.267{5} 0.663{8} 1.07{10} 1.12{10} 1.04{10}

N64A 0.170 {5} 0.343 {8} 0.531 {10} 0.615 {10} 0.615{10}

N64FA 0.189{5} 0.343 {8} 0.542{10} 0.629{10} 0.600 {10}

Binary ANS2B 1.38 1.30 1.32 1.38 3.62
BYPSB —– —– —– 17.19 6.86
TWSA 4.91 5.16 5.25 5.81 —–
N32A 0.316{5} 0.744{8} 1.16{10} 2.67{8} 3.09{8}

N32FA 0.321{5} 0.823{8} 1.26{10} 2.93{12} 3.60{12}

N64A 0.202 {5} 0.419 {8} 0.581 {10} 1.22 {12} 1.57 {12}

N64FA 0.202{5} 0.429{8} 0.598{10} 1.38{12} 1.70{12}

In general, adjusting the r value may lead to significant savings in search times—by
doubling the search speed in many cases.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 65

Table 4. Approximate search times, k = 5.

m = 8 10 16 32
English ANS2B 1.35 1.37 1.29 2.72

BYPSC —– —– —– 3.86
TWSA 6.07 5.36 3.50 —–
N32FA 1.14{8} 1.44{10} 1.15{9} 0.955{9}

N32EA 1.02{8} 1.40{10} 0.983{9} 0.983{9}

N64FA 0.419{8} 0.686{10} 0.949{7} 0.807{7}

N64EA 0.381 {8} 0.653 {10} 0.833 {7} 0.664 {7}

DNA ANS2B 1.33 1.10 1.13 2.23
BYPSB —– —– —– 4.144
TWSA 3.85 4.67 3.60 —–
N32A 0.587{8} 1.74{10} 2.52{8} 2.57{8}

N32FA 0.611{8} 1.12{10} 2.45{8} 2.70{8}

N64A 0.301 {8} 0.493 {10} 1.28 {9} 1.28 {9}

N64FA 0.332{8} 0.548{10} 1.28 {9} 1.37{9}

Binary ANS2B 1.27 1.21 1.26 6.62
BYPSB —– —– —– 18.78
TWSA 4.74 4.84 5.31 —–
N32A 0.747{8} 1.30{10} 2.93{4} 4.66{3}

N32FA 0.704{8} 1.26{10} 3.07{4} 5.07{3}

N64A 0.375 {8} 0.649 {10} 1.57 {7} 2.71 {7}

N64FA 0.379{8} 0.651{10} 1.62{7} 2.95{7}

Table 5. Search times of N64FA with varied peeling factor, k = 1.

r m = 5 8 10 16 r m = 5 8 10 16
English 2 0.388 0.385 0.407 0.363 Binary 4 0.233 0.422 0.760 1.10

3 0.376 0.363 0.373 0.339 5 0.208 0.412 0.732 1.05

4 0.248 0.226 0.219 0.188 6 —– 0.400 0.704 1.054

5 0.208 0.220 0.206 0.196 7 —– 0.376 0.637 0.995

6 —– 0.242 0.246 0.252 8 —– 0.319 0.647 0.997
DNA 2 0.371 0.624 0.639 0.648 9 —– —– 0.625 0.988

3 0.376 0.684 0.703 0.738 10 —– —– 0.384 1.03
4 0.346 0.639 0.653 0.663 11 —– —– —– 0.785

5 0.205 0.539 0.559 0.559 12 —– —– —– 0.657
6 —– 0.379 0.384 0.385 13 —– —– —– 0.594

7 —– 0.280 0.278 0.283 14 —– —– —– 0.539

8 —– 0.249 0.262 0.277 15 —– —– —– 0.543
9 —– —– 0.279 0.290 16 —– —– —– 0.581

5.4 Choice of comparison vectors

Algorithm 1 constructs comparison vectors for each character of the alphabet, whereas
Algorithm 2 constructs vectors for each position of the pattern. The latter approach
offers computational advantage during the search process, potentially resulting in
faster running times. To verify this, we tested N64FA and N32FA on our main test
processor equipped with AVX-512. Surprisingly, both approaches performed equally
well for both algorithms on this processor.

To further investigate the performance on different processors, we tested N32FA
with both approaches on three other processors without AVX-512 but with AVX2. In

66 Proceedings of the Prague Stringology Conference 2023

this scenario, the latter approach (used in Algorithm 2) exhibited a speed improve-
ment of approximately 5–10 percent compared to the former approach.

5.5 Exact matching

We compared the 64 byte variations of Algorithm 1 (N64 for the plain order, N64F for
the fixed order, and N64E for the reverse English frequency order) against EPSM [4],
EPSMA [1], and the corresponding variations of N32 [12]. EPSM and EPSMA were
clearly the best for m ≤ 16 in the extensive experimental comparison of [1].

Table 6 demonstrates that the N64 variations are clearly faster than the N32 and
EPSM variations for 5 ≤ m ≤ 16. The speedup becomes particularly noticeable in
the case of binary data. However, the gain of the AVX-512 technology is smaller than
in the case of approximate matching. For example, the speedup of N64F over N32F
is 1.17 but the speedup of N64FA over N32FA is 1.41 for k = 1 both in the case of
English data for m = 16.

Table 6. Exact search times.

m = 5 8 10 16
English EPSM 0.429 0.409 0.451 0.386

EPSMA 0.280 0.306 0.330 0.239
N32F 0.180{3} 0.163{3} 0.170{3} 0.164{3}

N64F 0.164{4} 0.148{3} 0.148 {3} 0.141 {3}

N64E 0.154 {4} 0.145 {4} 0.150{4} 0.143{4}

DNA EPSM 0.469 0.476 0.495 0.314
EPSMA 0.234 0.456 0.463 0.265
N32 0.168{5} 0.205{5} 0.205{5} 0.212{5}

N32F 0.168{5} 0.196{5} 0.203{5} 0.204{5}

N64 0.152 {5} 0.165 {6} 0.165 {6} 0.159 {6}

N64F 0.153{5} 0.167{6} 0.169{6} 0.173{6}

Binary EPSM 4.92 4.85 5.15 0.550
EPSMA 0.280 4.87 4.91 1.35
N32 0.177{5} 0.237{8} 0.323{10} 0.344{11}

N32F 0.191{5} 0.277{8} 0.327{10} 0.460{11}

N64 0.162{5} 0.198 {8} 0.230 {10} 0.259 {16}

N64F 0.160 {5} 0.202{8} 0.236{10} 0.282{11}

6 Conclusions

We have introduced new algorithms for the k mismatches problem. N32A and its
variations utilize SIMD instructions based on the AVX2 technology. We adapted
N32A into N64A which applies the AVX-512 technology. As a side result, we got
N64, an adaptation of an earlier algorithm, for exact string matching with AVX-512.

We have presented an experimental analysis of variations of N32A, N64A, and
N64. Through comparisons with earlier algorithms, we have demonstrated their ex-
cellent performance for short patterns. Notably, we have observed a substantial speed
improvement by executing instructions that process 64 bytes simultaneously. Addi-
tionally, our experiment underscores the critical role of loop peeling in enhancing the
performance of these new algorithms.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 67

References

1. M. A. Aydogmus and M. O. Külekci: Optimizing packed string matching on AVX2 plat-
form, in High Performance Computing for Computational Science — VECPAR 2018 — 13th
International Conference, São Pedro, Brazil, September 17-19, 2018, Revised Selected Papers,
H. Senger, O. Marques, R. E. Garcia, T. P. de Brito, R. Iope, S. L. Stanzani, and V. Gil-Costa,
eds., vol. 11333 of Lecture Notes in Computer Science, Springer, 2018, pp. 45–61.

2. T. Chhabra, S. Faro, M. O. Külekci, and J. Tarhio: Engineering order-preserving pattern
matching with SIMD parallelism. Software: Practice and Experience, 47(5) 2017, pp. 731–739.

3. B. Durian, T. Chhabra, S. S. Ghuman, T. Hirvola, H. Peltola, and J. Tarhio:
Improved two-way bit-parallel search, in Proceedings of the Prague Stringology Conference 2014,
Prague, Czech Republic, September 1-3, 2014, J. Holub and J. Zdárek, eds., Department of
Theoretical Computer Science, Faculty of Information Technology, Czech Technical University
in Prague, 2014, pp. 71–83.

4. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, New Orleans,
Louisiana, USA, January 7, 2013, 2013, pp. 113–121.

5. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

6. F. J. Fiori, W. Pakalén, and J. Tarhio: Approximate string matching with SIMD. Comput.
J., 65(6) 2022, pp. 1472–1488.

7. S. S. Ghuman, J. Tarhio, and T. Chhabra: Improved online algorithms for jumbled match-
ing. Discret. Appl. Math., 274 2020, pp. 54–66.

8. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience, 21(11)
1991, pp. 1221–1248.

9. Intel: Intel intrinsics guide, https://www.intel.com/content/www/us/en/docs/intrinsics-
guide, Accessed: 2023-05-20.

10. G. Navarro: A guided tour to approximate string matching. ACM Comput. Surv., 33(1) 2001,
pp. 31–88.

11. W. Pakalén, H. Peltola, J. Tarhio, and B. W. Watson: Pitfalls of algorithm comparison,
in Prague Stringology Conference 2021, Prague, Czech Republic, August 30-31, 2021, J. Holub
and J. Zdárek, eds., Czech Technical University in Prague, Faculty of Information Technology,
Department of Theoretical Computer Science, 2021, pp. 16–29.

12. J. Tarhio, J. Holub, and E. Giaquinta: Technology beats algorithms (in exact string match-
ing). Software: Practice and Experience, 47(12) 2017, pp. 1877–1885.

