
Searching with Extended Guard and Pivot Loop

Waltteri Pakalén1, Jorma Tarhio1, and Bruce W. Watson2

1 Department of Computer Science
Aalto University, Finland

2 Information Science, Centre for AI Research
School for Data-Science & Computational Thinking

Stellenbosch University, South Africa

Abstract We explore practical optimizations on comparison-based exact string match-
ing algorithms. We present a guard test that compares q-grams between the pattern
and the text before entering the match loop, and evaluate experimentally the benefit
of optimization of this kind. As a result, the Brute Force algorithm gained most from
the guard test, and it became faster than many other algorithms for short patterns.
In addition, we present variations of a recent algorithm that uses a special skip loop
where a pivot, a selected position of the pattern, is tested at each alignment of the
pattern and in case of failure; the pattern is shifted based on the last character of the
alignment. The variations include alternatives for the pivot and the shift function. We
show the competitiveness of the new algorithm variations by practical experiments.
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1 Introduction

Searching for occurrences of a string pattern in a text is a fundamental task in com-
puter science. It finds use in many domains such as text processing, bioinformatics,
computer vision, and intrusion detection. Depending on the problem definition, the
pattern occurrences can be exact, approximate, permuted, or any other variation.
Here, we consider the exact online string matching problem, where the occurrences
are exact and the pattern may be preprocessed but not the text. Formally, the prob-
lem is defined as follows: given a pattern P = p0 · · · pm−1 and a text T = t0 · · · tn−1

both in an alphabet Σ, find all the occurrences (including overlapping ones) of P in
T . String matching is an extensively studied problem with over a hundred published
algorithms in the literature, see e.g. Faro and Lecroq [15].

Guard test [20,26,27] is a widely used technique to speed-up comparison-based
string matching algorithms. The idea is to test certain pattern positions before enter-
ing a match loop. Guard test is a representative of a general optimization technique
called loop peeling, where a number of iterations are moved in front of the loop. As
a result, the computation becomes faster because of fewer loop tests. Original guard
tests deal with single characters — here we consider extended guards: q-grams that
are substrings of q characters.

Processor (CPU) development has gradually improved the speed of multicharacter
reads — especially the penalty for misaligned memory accesses has disappeared. In
our earlier paper [32], we applied q-gram guards to the Dead-Zone algorithm [33] and
we anticipated that the guard test with a q-gram might improve the performance of
some other algorithms as well. In this paper, we show that this is true. Especially, the
transformed Brute Force algorithm is faster than many other algorithms for patterns
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m ≤ 16. Testing of q-grams as entities has been used before by Faro and Külekci [13],
Sharfuddin and Feng [28] as well as Khan [22].

A few years ago, Al-Ssulami [1] introduced an interesting algorithm called SSM
(short for Simple String Matching) which utilizes a special skip loop where a pivot, a
selected position of the pattern, is tested at each alignment of the pattern and in case
of failure, the pattern is shifted based on the last character of the alignment. This
algorithm is not widely known, but it contains a unique shift heuristic that is worth
observing. In this paper, we introduce several variations of SSM including alternatives
for the pivot and the shift function.

Our emphasis is on the practical efficiency of algorithms and we show the com-
petitiveness of the new algorithm variations by practical experiments.

The rest of the paper is organized as follows: Section 2 reviews typical loop struc-
tures of exact string matching algorithms. Section 3 presents how guard test with
a q-gram is implemented, Section 4 presents the principles of the SSM algorithm,
and Section 5 introduces our variations of SSM. Section 6 shows the results of our
practical experiments, and the discussion of Section 7 concludes the article.

2 Loops in String Matching

Let us consider Algorithm 1, which is a general model of string matching of Boyer–
Moore type [5]. Two phases alternate during execution. The first phase is the while
loop in line 3 which goes through the alignments of the pattern. This loop is called
a skip loop [20], which is aimed at forwarding the pattern quickly rightwards. The
variable j is associated with the alignments: tj is the last character of an alignment.
When the skip loop finds an alignment which is a potential occurrence of the pattern,
that alignment is checked in second phase in line 4 and the skip loop is resumed after
moving the pattern in line 5. In the preprocessing phase executed before Algorithm 1,
the shift functions shift1 and shift2 are computed based on the pattern.

Algorithm 1

1 j ← m− 1
2 while j < n do
3 while condition do j ← j+ shift1
4 if tj−m+1 · · · tj = P then report occurrence
5 j ← j+ shift2

In line 1, the pattern is placed at the first position of the text. Line 3 can be
missing as it is the case in the original Boyer–Moore algorithm [5] or it can be in a
reduced form

if condition then

where the then-branch contains lines 4 and 5 as in Horspool’s algorithm [18]. In order
to reduce tests in the skip loop, a copy of the pattern may be concatenated to the end
of the text as a stopper. The condition of line 3 examines a suffix of the alignment
window. In certain algorithms (Cantone and Faro [8], Peltola and Tarhio [25]), even
some characters following the alignment are considered. The displacement shift1 of
the pattern is typically a constant [25], but it can be function based on a character
or a q-gram at a constant distance (Faro and Lecroq [14]).

The test in line 4 can be implemented as a match loop in various orders: back-
ward, forward, reversed frequency etc. (Hume and Sunday [20]) or with the memcmp
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library function. In the algorithms of BNDM type (Ďurian et al. [11]) the match
loop does not compare characters but updates a bit vector. Some algorithms (Hume
and Sunday [20], Raita [26,27]) contain guard tests which are located between lines
3 and 4.

The displacement shift2 of the pattern in line 5 can be a constant (Ďurian et
al. [11]) or a function (Boyer and Moore [5]). In some algorithms, there is a separate
shift in case of a match in line 4 (Ďurian et al. [11]).

The skip loop of Alg. 1 in line 3 has a unique form in the SSM algorithm [1]:

while pc 6= tj−m+1+c do j ← j + h[tj]

where pc is a pivot character pc in P , 0 ≤ c < m− 1. SSM uses Horspool’s [18] shift
table h which carries out the bad character heuristic for pm−1. If a character x does
not occur in p0 · · · pm−2, h[x] is m. Otherwise, h[x] is m − 1 − i, where pi = x is the
rightmost occurrence of x in p0 · · · pm−2. In the following, we call a skip loop of this
kind a pivot loop. In other algorithms than SSM, the test character of the skip loop
is either the last character of the pattern or a character close to the last character.
In SSM, the pivot position is selected so that the shift is long after the pivot loop.

3 Extended Guard Test

The match loop is subject to various optimizations that add or move logic from the
match loop into a filter. For instance, the Fast-Search algorithm [7] shifts whenever
the right-most character of an alignment mismatches. Verifying this mismatch does
not require an explicit comparison between the characters. Instead, the mismatch
is encoded in a shift table during preprocessing. Thus, the logic is moved from the
match loop into a filter that determines if a match loop is necessary to perform based
on the results of the shift table lookup.

Similarly, a guard test is a line of optimizations that compares particular charac-
ter(s) between the pattern and the alignment window to determine whether a match
loop is necessary. Hume and Sunday [20] presented a guard test that compares the
least frequent character of the pattern (over the alphabet Σ) with the corresponding
text character.

More recently, Khan [22] presented a transformation of the match loop on compar-
ison-based algorithms that involves testing q-grams. A similar approach was earlier
developed by Sharfuddin and Feng [28] for Horspool’s algorithm [18].

On 64-bit processors, reading a q-gram can be performed in one instruction for
q = 2i for i = 0, 1, 2, 3. We implemented the extended guard test as follows. The first
q-gram of the pattern is stored in a variable during preprocessing. The first q-gram
of an alignment window is stored in another variable. If the values of these variables
differ, an occurrence is impossible and the match loop is skipped. If they match, the
match loop is executed to check for an occurrence. The match loop can now skip the
first q characters because the characters already matched in the guard test.

The processor word size limits q to be less than or equal to that size in bytes.
Additionally, the pattern cannot be shorter than the q-gram or otherwise the guard
test matches characters outside the right ends of the pattern and the alignment win-
dow. An implementation can be adapted to run for any pattern length by branching
to a non-guard version of the algorithm in the beginning. Lastly, the guard test is
not applicable to every comparison-based algorithm. A skip loop or a similar fast
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loop [20] may ruin the benefit of a guard test. And some algorithms, such as the orig-
inal Boyer–Moore algorithm [5] and the Fast-Search algorithm [7], require knowing
the position of the first mismatching character in order to shift correctly.

4 Original SSM

4.1 Algorithm

The main idea of the SSM algorithm [1] is to select a pivot character pc that will
allow a long shift in case of found pc. As far we know, the shift heuristic of SSM is
different from earlier algorithms. The pseudocode of SSM is presented as Algorithm 2.
Let the pattern P be aligned with the text T so that pm−1 is at tj. As in the model
algorithm Algorithm 1, two phases alternate during execution. The first phase is
the pivot loop where the pivot pc is compared with a text character tj−(m−1)+c and
Horspool’s [18] shift h[tj] is taken in case of mismatch (line 4). In case of a match, a
potential occurrence of P has been found and it is checked in the second phase in a
match loop (lines 6–9). After the match loop, P is shifted according to a proprietary
shift table s (line 10) and the pivot loop is resumed. In order to be able to stop the
pivot loop, a copy of P is placed at tn as a stopper (line 1).

Algorithm 2: SSM
1 place a copy of P at tn
2 j ← m− 1
3 while j < n do
4 while pc 6= tj−m+1+c do j ← j + h[tj ]
5 i← m− 1
6 while i ≥ 0 and pi = tj−m+1+i do i← i− 1
7 if i < 0 then
8 if j < n then report match at k
9 i← i+ 1
10 j ← j + s[i]

4.2 Pivot Character and Shift Tables

The pivot character pc, 0 ≤ c ≤ m − 2, is selected to enable a long safe shift in case
of a character match at pc. Note that pm−1 is not allowed to be the pivot in SSM.
When the pivot loop stops it is known that pc was found, and the shift table s utilizes
this fact. In order to determine pc, a distance array1 d[i] is computed where d[i] is
the distance of pi to its next occurrence to the left or i + 1 if no such an occurrence
exists. Formally,

d[i] =

{

min(i+ 1,min{k > 0 | pi = pi−k}) if i < m− 1

0 if i = m− 1

Let i with the largest d[i] be c. If there are more than one such indices, the smallest
one is selected. In other words, c is min{i | d[i] ≥ d[j] for j = 0, . . . ,m− 2}.

The shift table s applies two heuristics which consider runs, i.e. sequences of equal
characters. If pj · · · pk is a run and pj−1 6= pj or j = 0 holds, then s1[i] is i − j + 1

1 Sunday [30] used a similar construction in his MS algorithm.
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for i = j, . . . , k. Informaly, s1[i] is a shift to get a different character in P at the text
position that caused a mismatch. If pj−1 6= pj and pk 6= pk+1 or k = m−1 holds, then
s2[j − 1] is k − j + 2. Otherwise, s2[j] is 1. Informaly, s2[i] shifts the pattern over a
complete run. Finally2, s[i] is max(s1[i], s2[i], d[c]). See an example in Table 1, where
P is abbbbf and pc = p1.

j k

i 0 1 2 3 4 5
pi a b b b b f
d 1 2 1 1 1 0
s1 1 1 2 3 4 1
s2 5 1 1 1 2 1
s 5 2 2 3 4 2

Table 1. Data structures of SSM for P = abbbbf.

4.3 Remarks

Al-Ssulami’s experiments [1] show that SSM is faster than Horspool’s algorithm
(Hor) [18]. The comparison is a bit unfair because SSM has a skip loop and Hor
does not contain one. The time complexity of SSM is O(mn) in the worst case for
P = am and T = an. However, SSM works in linear time for several cases that are in
O(mn) for many algorithms of Boyer-Moore type, for example P = am/2−1bam/2 and
T = an.

The example of Table 1 suggests that the s2 heuristic could be improved. For
example, the value of s2[2] could be 3 with a relaxed definition. However, we will keep
the original s in the following.

The HSSMq algorithm by Al-Ssulami et al. [3] uses a q-gram as a pivot. However,
the loop structure of HSSMq is different from SSM because the value of the tested q-
gram is used for shifting whereas the shift of the pivot loop in SSM is based on another
place of the alignment. Thus HSSMq does not contain a similar pivot loop. Moreover,
HSSMq has been designed for long patterns in a small alphabet. Al-Ssulami’s third
algorithm FHASHq [2] applying q-grams has also a different loop structure. We chose
FHASH2 to be one of the reference methods in our experimental comparison.

5 Variations of SSM

As far as we know, the pivot loop of SSM is of a new type of skip loop which has
not been presented earlier. The pivot loop opens possibilities for variations in the
following features:

– the pivot character
– the shift function of the pivot loop
– the shift function of the match loop

In this section, we will present several variations of SSM. Our aim is to improve
the performance of SSM on short English patterns. Each alternative of a feature is
given a unique letter, which will be concatenated to the name of a variation. For
example, the variation SSM-UBC contains the alternatives U, B, and C.

2 In the original article [1], s is defined as an outcome of an algorithm without s1 and s2.
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5.1 Variations of Pivot

In SSM the pivot is chosen so that the shift after the match loop could be long.
Another principle would be to minimize the number of exits from the pivot loop.
Then the least frequent character of P is a good choice. Let F denote this alternative.
The least frequent character is utilized in many algorithms [18,20,23,30], mostly in
the match loop. Instead of a single character, the least frequent q-gram could be used,
but the size of the required frequency table is impractical for large alphabets. Külekci
[23] considers even the use of discontinuous q-grams.

The cost of reading a q-gram from the memory for q = 2, 4, and 8 is almost equal
to the cost of reading a single character in modern processors. Also implementing a
match loop as a single call of the library function memcmp is faster in some processors
than a character by character loop. We tried the following q-gram pivots.

– pm−4 . . . pm−1 (alternative U)
– pm−8 . . . pm−1 (alternative V)
– p0 . . . p3 and pm−4 . . . pm−1 using a short circuit (alternative W)
– P with memcmp (alternative M)

The alternatives U and W work for m ≥ 4 and V for m ≥ 8. In the alternatives
U, V, and W, the match loop checks the remaining characters of P . In the alternative
M there is no match loop at all, and the shift in case of a match is m− o where o is
the length of the overlap of P with itself.

5.2 Variations of Shift of the Pivot Loop

If the pivot does not match, we know that the current alignment of P does not hold
an occurrence. Therefore the shift need not necessarily be based on tj but Sunday’s
shift [30] based on tj+1 and Berry and Ravindran’s shift [4] based on a 2-gram tj+1tj+2

can be applied as well. Let S denote Sunday’s shift and let B denote Berry and
Ravindran’s shift with 16-bit reads, i.e. a 2-gram is read in a single operation. Kalsi
et al. [21] show that the shift based on tjtj+1 is better than Berry and Ravindran’s
shift on DNA data. Let X denote this shift with 16-bit reads.

The restriction that pm−1 cannot be a pivot is unnecessary. The algorithm becomes
slightly faster without this restriction for large alphabets. Especially patterns like
am−1b can be found faster. Let A denote the variation where pm−1 is allowed to be a
pivot.

5.3 Variations of Shift of the Match Loop

The shift of SSM for patterns like (ab)m/2 is shorter than in the Boyer-Moore algo-
rithm [5] because SSM does not apply the good suffix shift. The good suffix shift is
easy to preprocess in linear time and to combine it with the original shift table s. Let
C denote the combined shift which includes the good suffix shift.

5.4 Special Variations

A guard test of a single character before the match loop is denoted by G.
Horspool [18] presented the SLFC algorithm which searches for occurrences of the

least frequent character of P and checks the alignments of P associated with each
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found occurrence. We made a variation L, where the shift of the pivot loop is replaced
by the strchr library instruction which searches for the next occurrence of the least
frequent character of P . From SSM-WB we made a hybrid algorithm SSM-WBZ for
English data, where SSM-L is used when the frequency of the least frequent character
of P is below a threshold and SSM-WB is used otherwise.

Let us assume that there is a run of k characters in the pattern and the last
character of the run has been chosen as the pivot. In this situation, the shift of the
pivot loop is “j = j + k − 1 + h[tj+k−1]” in the case of Horspool’s shift. Sunday’s
shift and Berry and Ravindran’s shift are treated correspondingly. This modification is
faster for patterns containing a run of four or more characters, but it is, unfortunately,
slower in the average case.

6 Experimental Results

6.1 Guard Test

We added the guard test to several comparison-based string matching algorithms
in order to experimentally evaluate its effectiveness. Table 2 lists the selected algo-
rithms. Each algorithm was transformed with possible values of q. That is, on a 64-bit
processor, four values 1, 2, 4, and 8 were possible for q.

ASKIP [9]
Brute Force (BF)
BR [4]
GRASPm [10]
HOR [18]
NSN [17]
RAITA [26]
SMITH [29]
TS [6]
TSW [19]

Table 2. Transformed algorithms.

The experiments were run in the SMART framework [16,12], with default config-
urations (e.g. the text size was 1 MiB). The processor used was Intel Core i7-6500U
with 4 MB L3 cache and 16 GB RAM; this CPU has a Skylake microarchitecture
and has none of the misaligned access performance penalties found on some other
microarchitectures. The operating system was Ubuntu 16.04 LTS.

The base implementations were taken from the repository of SMART [12]. The
results are reported as speed-ups: the ratio of running times of the transformed algo-
rithm and the original one.

Tables 3–6 show the speed-ups on English text, genome sequence, rand2, and
rand250, respectively, for q = 8 when m > 4 and for q = 4 when m = 4. The other
q values have been left out because they were either on par with q = 8 or slower.
However, there were exceptions for q = 1 and q = 4 (not shown in the tables): q = 1
interestingly displayed up to 1.14 speed-up on both BF and TS, and q = 4 was almost
always neck and neck with q = 8, except on rand2, where q = 8 was substantially
faster.

The larger the alphabet is, the smaller the speed-ups are. This is evident when
comparing rand2 and genome to English and rand250. Table 5 for rand2 exhibits
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m 4 8 16 32 64 128 256 512 1024
ASKIP 0.99 1.02 1.02 0.97 1.01 1.01 1.00 1.00 0.99
BF 3.20 3.11 3.25 3.38 3.27 3.21 3.22 3.22 3.23
BR 1.19 1.12 1.10 1.07 1.02 1.00 1.02 1.02 1.00
GRASPM 1.01 1.03 1.01 1.04 1.00 0.96 1.02 1.02 1.04
HOR 1.34 1.26 1.16 1.16 1.13 1.09 1.13 1.10 1.02
NSN 1.25 1.29 1.34 1.37 1.35 1.32 1.32 1.31 1.32
RAITA 1.15 1.14 1.10 1.06 1.05 1.03 1.00 1.06 1.06
SMITH 1.35 1.31 1.23 1.19 1.17 1.07 1.02 1.08 1.06
TS 1.20 1.15 1.13 1.07 1.01 1.01 1.00 1.00 1.04
TSW 1.32 1.25 1.18 1.09 1.08 1.00 1.02 1.00 1.00

Table 3. Speed-ups on English text.

m 4 8 16 32 64 128 256 512 1024
ASKIP 1.17 1.14 1.06 1.03 1.04 1.01 1.00 1.00 1.00
BF 6.71 7.10 7.10 7.32 7.22 7.08 7.03 7.32 7.38
BR 1.72 1.61 1.43 1.30 1.26 1.31 1.27 1.27 1.29
GRASPM 1.12 1.15 1.18 1.28 1.41 1.55 1.56 1.50 1.52
HOR 1.88 1.73 1.64 1.63 1.64 1.63 1.64 1.64 1.63
NSN 1.56 1.65 1.71 1.74 1.72 1.66 1.65 1.65 1.65
RAITA 1.65 1.61 1.53 1.54 1.54 1.53 1.54 1.53 1.54
SMITH 1.73 1.61 1.51 1.57 1.56 1.52 1.52 1.52 1.51
TS 1.50 1.52 1.47 1.43 1.42 1.42 1.36 1.34 1.31
TSW 2.17 1.96 1.72 1.56 1.49 1.50 1.51 1.49 1.49

Table 4. Speed-ups on genome sequence.

m 4 8 16 32 64 128 256 512 1024
ASKIP 1.33 1.63 1.47 1.35 1.26 1.14 1.12 1.03 1.01
BF 4.37 9.81 9.38 9.38 9.16 9.14 9.37 9.37 9.26
BR 1.47 2.01 2.05 2.05 2.06 2.05 2.06 2.06 2.06
GRASPM 1.25 1.97 2.53 3.12 3.51 3.50 3.53 3.45 3.39
HOR 1.64 2.29 2.38 2.39 2.40 2.39 2.40 2.40 2.40
NSN 1.54 1.63 1.69 1.72 1.70 1.62 1.62 1.61 1.61
RAITA 1.76 2.19 2.42 2.55 2.55 2.57 2.56 2.57 2.58
SMITH 1.49 1.96 2.02 2.11 2.09 2.06 2.05 2.04 2.05
TS 1.41 1.81 1.83 1.90 1.92 1.92 1.91 1.86 1.85
TSW 1.77 2.66 2.71 2.67 2.70 2.67 2.69 2.70 2.66

Table 5. Speed-ups on rand2.

significant speed-ups, even for some algorithms that normally enter the match loop
relatively rarely (e.g. ASKIP). Almost all the transformed algorithms exhibit sub-
stantial speed-ups for rand2. Slightly similar observations apply to genome sequence
but to a much lesser extent. In this case, for many algorithms the speed-ups are in
range of 1.4 to 1.7. On the other hand, rand250 shows almost no speed-up in any case
other than BF. RAITA and SMITH exceed a speedup of 1.1 for a few pattern lengths
but otherwise a mere few cases reach 1.05. The English text is somewhere between
the other texts. It reaches speed-ups of up to 1.3. In many cases, the speed-ups hover
around 1.0 to 1.15. For English, the speed-ups additionally seem to decrease for the
longest patterns.

The reason that smaller alphabets work better can be found in the probabilities
to match a pair of characters between the pattern and the text. Such a pairwise
comparison on average is more probable to match as the alphabet size goes down.
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m 4 8 16 32 64 128 256 512 1024
ASKIP 1.02 1.01 1.06 1.03 1.04 1.02 1.01 1.01 1.00
BF 2.03 2.03 1.92 1.97 2.03 2.04 2.06 2.04 1.97
BR 0.98 0.98 0.98 1.00 1.00 1.02 1.02 1.00 1.00
GRASPM 1.00 0.99 0.96 1.02 1.00 1.00 1.00 1.04 0.98
HOR 1.06 1.04 1.01 1.04 1.02 1.00 1.00 1.06 1.00
NSN 0.99 1.00 1.04 1.03 1.04 1.01 1.03 1.03 1.03
RAITA 0.99 1.00 1.00 1.00 0.98 1.02 1.15 1.13 1.06
SMITH 1.13 1.11 1.07 1.07 0.98 1.00 1.02 1.00 0.98
TS 1.04 1.01 1.01 1.03 1.02 1.01 0.99 1.03 1.04
TSW 1.02 0.99 1.01 1.00 0.99 1.01 1.00 0.98 1.00

Table 6. Speed-ups on rand250.

Thus, the original algorithms must carry out multiple pairwise comparisons before
coming across a mismatch. Meanwhile, the guard test does not care whether one, two,
three, or more pairs match between the q-grams. As long as one of them mismatches,
the guard test fails altogether. Hence, there are more savings in execution for smaller
alphabets. Similar reasoning applies as to why q = 4 and q = 8 perform neck and
neck. A comparison between a pair of four characters mismatches often enough that
the difference is nearly negligible between q = 4 and q = 8.

While we have included BF in the tables, its speed-ups are somewhat incomparable
to the other speed-ups because of its nature. BF is evidently going to be the one
benefitting the most from such an optimization. However, note that it became quite
competent with the guard test. The transformed BF was the fastest algorithm in the
test set on English text, genome sequence and rand2 for m ≤ 16. This is a remarkable
result because short patterns are most important in practice. This is also an example
of how technology can beat complicated algorithms (see another example [31] of that).

m=4 8 16 32
BF4 0.74 BF8 0.75 BF8 0.72 SMITH8 0.67
TSW4 1.18 TSW8 0.92 TSW8 0.77 GRASPM8 0.69
TSW 1.56 SMITH8 1.07 SMITH8 0.80 RAITA8 0.69
TS4 1.57 RAITA8 1.11 RAITA8 0.84 TSW8 0.69
SMITH4 1.61 HOR8 1.13 HOR8 0.86 HOR8 0.69
BR4 1.64 TSW 1.15 GRASPM8 0.87 BF8 0.71
RAITA4 1.67 GRASPM8 1.18 GRASPM 0.88 GRASPM 0.72
NSN4 1.71 GRASPM 1.21 TSW 0.91 BR8 0.72
HOR4 1.71 BR8 1.22 BR8 0.91 RAITA 0.73
GRASPM4 1.81 TS8 1.23 RAITA 0.92 ASKIP 0.74
GRASPM 1.82 RAITA 1.26 SMITH 0.98 TSW 0.75
TS 1.88 BR 1.37 HOR 1.00 ASKIP8 0.76
RAITA 1.92 SMITH 1.40 BR 1.00 BR 0.77
BR 1.95 HOR 1.42 ASKIP8 1.02 SMITH 0.80
NSN 2.13 TS 1.42 TS8 1.04 HOR 0.80
SMITH 2.18 NSN8 1.67 ASKIP 1.04 TS8 0.91
HOR 2.29 ASKIP8 1.70 TS 1.17 TS 0.97
BF 2.37 ASKIP 1.73 NSN8 1.70 NSN8 1.70
ASKIP 2.46 NSN 2.15 NSN 2.28 NSN 2.33
ASKIP4 2.49 BF 2.33 BF 2.34 BF 2.40

Table 7. Ranks of algorithms according to average running times of 500 English patterns in mil-
liseconds for m = 4, 8, 16, 32.
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Besides BF, we did not notice any drastic changes in the algorithm rankings.
Table 7 shows algorithm rankings for English for m = 4, 8, 16, 32. The suffix 4 or 8
refer to the transformed algorithm with q = 4 or q = 8, respectively.

In addition, we tried the guard test with the HASH3, HASH5, and HASH8 al-
gorithms [24]. The results did not show any improvement except with rand2. This
was expected, because those algorithms contain an already-efficient skip loop. For in-
stance, HASH3 enters the match loop only when the hash value of the last 3-gram of
an alignment window is equal to the hash value of the last 3-gram of the pattern. This
means that only a very small number of alignments are checked. As for other tested
algorithms, the transformed BF was faster than the HASH3, HASH5, and HASH8
algorithms for m ≤ 16.

Finally, we ran BF8 against all the 195 algorithms in the SMART repository. BF8
was faster than all the others for m = 8 on rand2. Its rank was #16 for m = 8 on
English.

We also ran experiments with BF8b, a variation of BF8, for 8 ≤ m ≤ 16. BF8b
tests two 8-grams, the first and last 8-gram of an alignment, with a short-circuit and
instead of a match loop. BF8b was about 25% faster than BF8 on rand2.

In order to test the reliability of our results, we repeated the experiments of HOR
in the testing environment of Hume & Sunday (HS) [20]. Table 8 shows speed-ups
on genome sequence in both HS and SMART. The table shows concretely that q = 2
is inferior and that q = 4 and q = 8 are very similar. Moreover, the differences
between HS and SMART are notable with up to a 12 percentage point difference in
the speed-ups.

m 4 8 16 32 64 128 256
HS HOR2 1.40 1.46 1.43 1.43 1.44 1.42 1.43

HOR4 1.97 1.80 1.71 1.69 1.71 1.68 1.68
HOR8 - 1.85 1.72 1.71 1.71 1.70 1.70

SMART HOR2 1.38 1.39 1.39 1.37 1.38 1.39 1.38
HOR4 1.88 1.70 1.62 1.63 1.62 1.61 1.63
HOR8 - 1.73 1.64 1.63 1.64 1.63 1.64

Table 8. Speed-ups on genome sequence in HS and SMART for HOR with q ∈ {2, 4, 8}.

Khan [22] applied q-gram reading inside the match loop. Speed-ups he achieved
were much smaller than ours.

6.2 Variations of SSM

The experiments with SSM were run on Intel Core i7-4578U. Algorithms were written
in the C programming language and compiled with gcc 5.4.0 using the O3 optimization
level. Testing was done in the framework of Hume and Sunday [20]. We used two
texts: English (the KJV Bible, 4.0 MB) and DNA (the genome of E. Coli, 4.6 MB)
for testing. The texts were taken from the SMART repository. Sets of patterns of
lengths 5, 10, and 20 were randomly taken from both texts. Each set contains 200
patterns.

Table 9 lists the alternatives introduced in Section 4. Table 10 shows the run-
ning times of the original SSM together with twelve variations. We tested even more
alternatives (e.g. SSM-L) but we do not show their times because they were not
competitive. Besides SSM we ran experiments with two other reference methods:
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id Alternative
A pm−1 allowed as a pivot
B shift based on tj+1tj+2

C SSM shift combined with the good suffix shift
F the least frequent character of P as a pivot
G a guard test
L strchr on a pivot
M P as a pivot
S shift based on tj+1

U pm−4 . . . pm−1 as a pivot
V pm−8 . . . pm−1 as a pivot
W p0 . . . p3 and pm−4 . . . pm−1 as a pivot
X shift based on tjtj+1

Z strchr in case of an infrequent character in P

Table 9. Summary of alternative features of SSM.

English DNA
m 5 10 20 5 10 20

SSM 89 51 31 206 133 103
SSM-ASC 79 48 30 199 135 105
SSM-AFSC 68 42 28 208 160 144
SSM-ASGC 67 40 26 206 158 142
SSM-USC 59 40 29 105 91 88
SSM-UBC 49 30 18 79 52 38
SSM-UXC 53 30 17 71 45 32
SSM-VBC – 29 17 – 51 38
SSM-VXC – 30 17 – 43 32
SSM-MB 63 37 22 166 105 71
SSM-WB 49 29 18 79 51 38
SSM-WX 51 29 16 68 43 31
SSM-WBZ 39 27 23 – – –
SBNDM4 31 11 7 38 16 11
FHASH2 36 29 24 149 94 61

Table 10. Running times (in units of 10 ms) of algorithms for sets of 200 patterns.

SBNDM4 [11] with 16-bit reads, and FHASH2 [2]. SBNDM4 is an example of a sim-
ple and efficient algorithm, and FHASH2 is an advanced algorithm co-authored by
the developer of SSM.

From Table 10 one can see that SSM-WBZ and SSM-WX are the best variations
of SSM. SSM-WBZ is the fastest on English data for m = 5 and 10. The character ‘m’
was used as a threshold for SSM-WBZ. If one selects a more frequent threshold, this
algorithm becomes slightly faster for m = 5 and slightly slower for m = 20. SSM-WX
is the fastest on English data for m = 20 and on DNA data. SSM-WBZ and SSM-
WX are 47–70% faster than the original SSM. However, these variations are much
slower than SBNDM4 which in turn is slower than recent SIMD-based algorithms like
EPSM [13] (the times of EPSM are not shown here).

Table 10 confirms that the alternative X is faster than B on DNA data. Note that
no SSM variation was faster than FHASH2 for English patterns of five characters.
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7 Conclusions

We applied a guard test on comparison-based string matching algorithms. The test
compares multiple characters between the pattern and an alignment window before
the match loop. The guard test led to notable speed-ups as shown with experiments.
The Brute Force algorithm benefits most from the guard test, and it was faster than
other comparison-based algorithms of the test set for short patterns m ≤ 16. In
addition, the variation BF8 was faster than any of the algorithms in the SMART
repository for m = 8 on binary text.

Our experiments show that most of the new variations of SSM are faster than the
original SSM. Although the pivot loop is an inspiring tool, we learned that it hardly
can lead to the level of SBNDM4 in efficiency. The obvious reason is that the pivot
loop makes two separate accesses to the text in a round: the pivot and the base of
shift. A typical skip loop accesses only the base of shift which consists of a single
character or a q-gram. However, the positive results with variations testing q-grams
(the alternatives U, V, and W) support the usefulness of q-gram guards.
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