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Abstract. Why is Algorithm A faster than Algorithm B in one comparison, and vice
versa in another? In this paper, we review some reasons for such differences in exper-
imental comparisons of exact string matching algorithms. We address issues related
to timing, memory management, compilers, tuning/tune-up, validation, and technol-
ogy development. In addition, we consider limitations of the widely used testing en-
vironments, Hume & Sunday and SMART. A part of our observations likely apply to
comparisons of other types of algorithms.
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1 Introduction

Developing new algorithms is a common research objective in Computer Science, and
new solutions are often experimentally compared with older ones. This is especially
the case for string matching algorithms. We will consider aspects which may lead to
incorrect conclusions while comparing string matching algorithms. We concentrate on
running times of exact matching of a single pattern, but many of our considerations
likely apply to other variations of string matching or even to other types of algorithms.

Formally, the exact string matching problem is defined as follows: given a pattern
P = p0 · · · pm−1 and a text T = t0 · · · tn−1 both in an alphabet Σ, find all the occur-
rences (including overlapping ones) of P in T . So far, dozens of algorithms have been
developed for this problem — see e.g. Faro and Lecroq [6].

Many experimental comparisons of string matching algorithms employ one of two
testing environments, Hume & Sunday [11] (HS for short) and SMART [7], for measur-
ing running times. The HS environment consists of a main program and shell scripts.
Each algorithm is compiled to a separate executable. Most comparisons applying the
HS environment actually use some variation of it, see e.g. Hirvola [9].

SMART [5] is an environment developed by Faro et al. [7], which includes imple-
mentations for more than a hundred algorithms for exact string matching. SMART
tries to make comparisons easy for a user by offering a user interface and tools for
various subtasks of a comparison. The SMART application controls all the runs of
algorithms. SMART offers options to present the results in various forms.

The rest of the paper is organized as follows: Section 2 presents general aspects
of algorithm comparison; Section 3 reviews issues related to the testing environments
HS and SMART; Section 4 studies how running time should be measured; Sections 5
and 6 analyze how cache and shared memory affect running times; Section 7 lists
miscellaneous observations; and the discussion of Section 8 concludes the article.
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2 General

Comparing the running times of algorithms may seem easy: store the clock time in
the beginning, run the algorithm, store the clock time in the end, and calculate the
difference. However, the results are valid only for the combination of implementation,
input, compiler and hardware used in the same workload.

Comparison of algorithms should be done according to good measurement practice.
In the case of exact string matching algorithms, it means several things. One should
verify that algorithms work properly: whether all the matches are found, and whether
the search always stops properly at the end of the text; additionally, it can happen
that a match in the beginning or in the end of the text is not correctly recognized.
When measuring is focused on performance, it is standard to use at least some level of
optimization in the compilation. The measurement should not disturb the work of al-
gorithms. For example, printing of matches during time measurement is questionable
because printing produces also additional overhead, which is partly unsynchronized.
More generally, one should investigate all possibly measurement disturbances and
rule them out, if possible. We think that the preprocessing of a pattern should not be
included in the search time because the speed of an algorithm may otherwise depend
on the length of the text.

Use of averages easily hides some details. Averages in general or calculations
on speed-ups may lead to biased conclusions. One should be especially careful with
arithmetic mean [8]. Median would be a better measure than arithmetic mean for
many purposes because the effect of outliers is smaller, but computing median requires
storing all the individual numbers.

The choice of an implementation language for algorithms usually limits available
features: the number of different data types and the exactness of requirements given
to them varies. The programming language Java is defined precisely, but it lacks the
unsigned integer data type, which is useful for implementing bit-vectors. String type
should not be used for serious string matching comparisons. On the other hand, the
Java virtual machine adds an additional layer on the top of hardware. The program-
ming language C is flexible, but its standard states quite loose requirements for the
precision of integers. With assembly language, it would be possible to produce the
most efficient machine code, while losing portability to different hardware. Neverthe-
less, the programming language C is currently the de facto language for implementing
efficient exact string matching algorithms.

The C language standard from 1999 introduced the header file stdint.h, which
is included via the header inttypes.h. The fastest minimum-width integer types
designate integer types that are usually fastest to operate with among all the types
that have at least the specified width. However, footnote 216 in the standard states
‘The designated type is not guaranteed to be fastest for all purposes, if the imple-
mentation has no clear grounds for choosing one type over another, it will simply pick
some integer type satisfying the signedness and width requirements’. For example,
the choice of certain data types may cause implicit type conversions that may ruin
the otherwise fast operation.

The exact-width integer types are ideal for use as bit-vectors. The typedef name
uintN t designates an unsigned integer type with a width of N bits. These types
are optional. However, if the implementation (of a C compiler) provides integer types
with widths 8, 16, 32, and 64 bits, it shall define the corresponding typedef names.
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Therefore, the exact-width integer types should be available in all the C compilers
conforming to the C99 standard.

The change of the running process from one core to another empties cache memo-
ries with various degree. Often caches are shared by several cores, slowing down reads
from memory and induce annoying variation to the timing of test runs. To avoid it
we recommend to use the Linux function sched setaffinity to bind the process to
only one processor or core. The use of this function reduced substantially variation
in time measurements in our experiments.

3 Aspects on Testing Environments

SMART includes a wide selection of corpora with 15 different types of texts. In addi-
tion, it contains implementations over 100 string matching algorithms. Both texts and
algorithm implementations serve as valuable reference material for any comparison
of exact string matching, regardless of the testing approach used.

Both HS and SMART allow comparison of algorithms compiled with different
parameters, like optimization level and buffer size, or with different compilers; unfor-
tunately, this is occasionally also a source of incorrect results.

An advantage of SMART is that it verifies the correctness of a new algorithm by
checking the output of the algorithm (the number of matches), but not that the imple-
mentation actually matches the target algorithm. In other words, the implementation
might be incorrect despite producing correct output. For example, the SMART imple-
mentation1 of the bndm algorithm [15] finds correct matches but it shifts incorrectly
to the last found factor of the pattern instead of the last found prefix.

Moreover, unit tests, like the verification aspect in SMART, often fail to capture
all erroneous cases. In cases where the verification fails, SMART does not directly
support debugging code, therefore one may need at least a separate main program
for debugging.

Another means of verifying correctness is to manually inspect the count of pattern
occurrences, which is employed in HS. SMART reports the occurrences as average
occurrences over a pattern set. These averages are based on integer division which
may hide edge problems common in developing string matching algorithms.

The generating of pattern files is delegated to the user in HS. SMART dynamically
generates patterns for each experiment, and this has some drawbacks. The pattern
sets vary from run to run, which causes unpredictable variation between otherwise
identical runs, as well as making debugging cumbersome.

Lastly, SMART cannot be used in the Unix-like subsystems of Microsoft Windows
because they do not support shared memory.

4 Measuring Running Time

Background. The C standard library offers only the clock function for watching the
CPU time usage of processes. To determine the time in seconds, the value returned
by the clock function should be divided by the value of the macro CLOCKS PER SEC.
Additionally the POSIX standard2 declares that CLOCKS PER SEC is defined to be one
million in <time.h>, and also that ‘the resolution on any particular system need not

1 Release 13.04
2 IEEE Std 1003.1-2008
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be to the microsecond accuracy’. Essentially, time is an internal counter in Linux
that is incremented periodically. A periodic interrupt invokes an interrupt handler
that increments the counter by one. At a common 100 Hz frequency, the counter has
a granularity of 10 ms as it is incremented every 10 ms.

The POSIX standard offers the times function for getting process (and waited-for
child process) times. The number of clock ticks per second can be obtained by a call
sysconf( SC CLK TCK).

The POSIX function clock gettime returns the current value tp for the specified
clock, clock id. The struct tp is given as a parameter. If POSIX CPUTIME is defined,
implementations shall support the special clock id value CLOCK PROCESS CPUTIME ID,
which represents the CPU-time clock of the calling process. The resolution of the given
clock at the clock gettime function is provided with the clock getres function.

The POSIX function gettimeofday returns the current time, expressed as seconds
and microseconds since the Epoch. Applications should use the clock gettime()

function instead of the obsolescent gettimeofday() function.

Algorithm timings in HS and SMART. The algorithm timings are affected in
at least two ways. First, the functions to read time directly determine the timings.
Second, the testing environments alter the internal state of the computer system
which introduces interference on the algorithm execution and timing.

HS and SMART use two different functions, times and clock gettime respec-
tively, to read time. Their implementations are platform specific, but on x86/Linux
they work somewhat similarly. The running times of algorithms in HS are given as user
time (tms utime) fetched with the times function. So the system time is excluded.
Occasionally we have checked that in HS there is not any hidden use of the system
time, but have never noticed such use. The function used in SMART, clock gettime

additionally improves the granularity to nanoseconds through other means such as
interpolating a time stamp counter (TSC) that counts core cycles [2]. Furthermore,
SMART includes time spent in user space and kernel space, whereas HS includes only
user space time.

The rest of this section deals with time measuring in HS.

Precision of individual search. When the digital clock moves evenly, it is safe to
assume that its value is incremented at regular fixed intervals. These time intervals
are called clock ticks, and they are typically so long that during individual tick several
instructions are executed. It this section, the term clock tick refers to the precision of
time measurements, and it is assumed that the processor time increases one tick at a
time. When the measuring of a time interval starts, we fetch the last updated value
of the clock, but a part of the current clock tick may be already spent. This time
follows the continuous uniform distribution [0, 1]. So its mean is 0.5 and variance
1/12. Respectively when the measuring of a time interval ends, possibly a part of
the current clock tick may be unspent. This slice follows the continuous uniform
distribution [−1, 0].

Thus the time measurement with clock ticks has an inaccuracy which is the sum
of two error terms following the above mentioned distributions. When the length of
the measured interval is at least one clock tick, the probability density function of
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the sum is

f(x) =











1 + x if −1 ≤ x ≤ 0,
1− x if 0 ≤ x ≤ 1,
0 otherwise.

The mean of the inaccuracy caused by clock ticks is 0 and the variance 1/6.
The variance of the inaccuracy caused by clock ticks becomes relatively smaller,

when the count of clock ticks increases. An easy way to achieve this is to use a longer
text, which is at the same time more representative (statistically). However, it is not
advisable to use concatenated multiples of a short text of a few kilobytes, because it
is probable that the shifts of patterns start to follow similar sequences in such a case.
This happens surely, if the pattern matches the text, assuming that the pattern is
moved from left to right, and the shifting logic does not have any random behavior.
Therefore the text produced with concatenation will with a high probability show the
same statistical peculiarities as the original text element.

There are also other causes for inaccuracy. Generally, all context switches of a
process produce some delay, which is very difficult to minimize on a single CPU sys-
tem. We have noticed that on modern multicore processors it is possible to get a more
accurate measurement of used CPU time than with singlecore processors spending
similar number of clock ticks. The variance caused by other processes becomes rel-
atively smaller, when the measured time intervals get longer. Then the results are
more accurate.

Precision of search with a pattern set. The search with a pattern set brings
yet another source of variance to the time measurements. Search for some patterns
is more laborious, while others are highly efficient with algorithms tuned for them.
This joint impact of the patterns and the algorithms can be seen as samples of the all
possible cases between the worst and the best cases of a given algorithm. This kind
of variance is minimal with the well known shift-or algorithm [1] where, in practice, a
large number of occurrences cause small variation. One may also argue that if certain
algorithms have a similar search time, the algorithm with smallest variance can be
regarded the best.

When several successive time measurements are done within a relatively short
period, it is possible that the unused time slice (before the next clock tick) is utilized
in the next time measurement. Thus the time measurements may not be completely
independent. In HS and SMART, preprocessing and search are alternating. If the
measured time intervals are at least a few clock ticks, there is always sufficient variance
that it is unlike that these surplus times cumulate more to either preprocessing or
search.

Let us consider the variance of the mean. If the measurements are (statistically)
independent, then the variance of the sum of times is the sum of the variances of
individual time measurement. If the measurements have the same variance, and if
they are independent of each other, the variance V of the mean of r measurements is

V
(

X1 +X2 + · · ·+Xr

r

)

=
1

r2
V (X1 +X2 + · · ·+Xr) =

r · V (X1)

r2
=

V (X1)

r

If the measured time is zero within the given accuracy of measurements, this could
cause a bias in other measurements.
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5 Cache Effects

CPU Cache memory is typically divided into three levels: L1, L2, and L3, which are
accessed in this order. Caches that distinguish instruction data from other data are
identified with suffixes i and d, respectively (e.g. L1i and L1d).

The relationship between subsequent runs and their memory accesses is clear in
HS: all the runs of an algorithm are performed in a relatively tight loop. There is
little other execution, beside proceeding from one loop iteration to another, between
-p runs of prep, -e runs of exec3, and each pattern in the patterns.

In the case of SMART, the relationship between subsequent runs and their mem-
ory accesses is more muddied. All the runs of alg4 are executed in their own process.
Quantifying execution in between the runs is not straightforward; a lot of it is per-
formed by the operating system when creating and running processes. Moreover,
SMART performs its own bookkeeping, such as reading the search times and stor-
ing them, in between the runs. It is quite possible that some of the residual data is
replaced in the cache.

Faro et al. [7] claim that SMART is free of such residual data altogether. However,
SMART takes no measures to prevent it and there is no reason why the data could
not be accessed in the cache between different runs. In principle, this could be solved
if the caches were logically addressed, but caches are often physically addressed. The
physical addresses of the shared memory segments remain unchanged throughout the
runs. That is, all the runs of a given algorithm reference the same physical addresses
over and over.

One case where alg is less likely to access residual data in the cache is if all the
caches are private, as SMART lets its processes run on any core without pinning
them. As a result, if a run and a subsequent run are executed on different cores, the
runs fail to look-up the data from their respective caches. That said, shared last level
caches are common.

The lack of thread pinning in SMART comes with additional nondeterminism. Any
of the processes might be migrated from one core to another during execution, which
disrupts multiple aspects of the execution including the caches, branch prediction,
and prefetching. Moreover, cache line states may affect cache latencies. A cache line
in a shared state may have a different access latency than the cache line in a different
state [14], and cache line states are currently unpredictable in SMART.

Lastly, caches also cache instructions. Similar reasoning (as above) applies to read-
ing instructions from the cache between runs. However, string matching algorithms
often compile to only a few hundred instructions. Thus, the space they occupy is
small. Whether they load from the cache or main memory on the first accesses likely
has little overall effect. The same few hundred instructions are referenced continu-
ously, which should always hit the cache after the first accesses. The first accesses are
few compared to the overall accesses during string matching.

Experiments. We performed extensive experiments with HS and SMART in order
to find out how cache memory affects running times of algorithms. The tests were
run in two core Intel Core i7-6500U CPU (Skylake microarchitecture) with 16 GiB

3 prep is the subprogram for preprocessing and exec is the subprogram for searching. Their repeats
are given with options -p and -e.

4 alg is the subprogram inside which a particular algorithm is embedded.
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DDR3-1600 SDRAMmemory. Each core has 32 KiB L1d cache, and 256 KiB exclusive
L2 cache, the 4 MiB inclusive L3 cache is shared. The operation system was Ubuntu
16.04 LTS. We used a widely used interface, PAPI [3], for accessing the hardware
performance counters and to interpret phenomena during runs. All the running times
shown were obtained without PAPI, although the overhead of PAPI was minimal.

To interpret the resulting cache metrics during string matching, the values must
be compared to some reference value. String matching algorithms behave very pre-
dictably in that the pattern is continuously shifted from left to right over the text
without ever backtracking. At each alignment window, i.e. an alignment of the pat-
tern in the text, at least one text character is inspected before possibly shifting the
pattern again. Accessing the text character unavoidably fills the corresponding cache
line in the highest level cache (L1d). Now, under the assumption that the text does
not reside in the cache, the access results in a cache miss across the whole cache
hierarchy all the way to main memory. Thus, given maximal shifts of m, the lower
bound for cache misses is

⌊n/max(m, cache line size)⌋ (1)

where n is the text size. Clearly, multiple accesses to the same cache line in short
succession are not going to fill the cache line into the cache over and over again.
Hence, a pattern incapable of shifting past whole cache lines only fills a cache line
once despite possibly referencing it on multiple alignment windows.

In general, with any shift length, it is fair to assume that a cache line is never
filled into the cache more than once. A text character remains in alignment windows
spanning at most 2m − 1 characters. After the alignment windows have passed the
text character, it is never referenced again. Modern caches are several times the size of
even the larger patterns. Only a bad cache line replacement policy or a bad hardware
prefetcher would evict the corresponding cache line during processing the 2m − 1
window.

The above lower bound ignores memory accesses to the pattern and its prepro-
cessed data structures. However, these realistically cause very few cache misses. As
stated above, patterns are relatively small compared to cache sizes. A very rarely
occurring pattern might drop cache lines towards its one end but the dropped data
is refilled as rarely as the pattern occurs. All in all, the lower bound is the expected
number of cache misses during string matching.

The following cache metrics results and other measurements have been collected
over a static set of 500 random patterns. All of the experiments used concatenated
multiples of 1 MiB prefix of King James Version (KJV) as the text to keep searches
over different text sizes as comparable as possible.

In the experiment with HS, each pattern is searched -e times such that the ef-
fective text size is roughly 100 MiB. A pattern search is repeated until roughly 100
MiB of text has been covered. E.g., -e is 100 for 1 MiB text, 50 for 2 MiB text, etc.
Such a sliding scale is necessary because short running times involve a large margin
of error from the low granularity of the times function, while constant -e repetitions
suitable for small texts cause too long an experiment for larger texts. Ideally, the
effective text size would be always 100 MiB but 100 is not divisible by all text sizes
(e.g. 6 MiB). So the point is to minimize error introduced by times, which we deemed
to be minimal at around 100 MiB of text. In the case of SMART, a static pattern
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set of 500 patterns was multiplied5 to effectively search 100 MiB of text. For HS, we
ported the SMART implementations of algorithms. The algorithms were compiled
with -O3 optimization level. The reported results excluded preprocessing and they
are arithmetic means over all of the executions.

Table 1 shows results from running the brute force algorithm (m = 16) against
KJV on both testing environments. The table also includes the expected cache misses
explained above. If the cache misses fall below the expected value on any of the caches,
the cache contained residual data.

Table 1. Measured average cache metrics during string matching with the brute force algorithm
(m = 16).

Text size (MiB) 1 2 4 8 16 32
Expected misses 16 384 32 768 65 536 131 072 262 144 524 288

HS L3 requests 34 303 68 695 139 158 280 662 564 696 1 131 615
L3 misses 452 3 922 28 459 164 434 389 601 809 080
L2 requests 37 713 75 630 151 011 301 570 603 800 1 206 983
L2 misses 21 718 43 453 86 954 174 312 348 535 696 914
L1d misses 16 434 32 829 65 622 131 502 262 926 525 782

SMART L3 requests 36 085 72 196 143 657 287 142 574 129 1 146 851
L3 misses 26 542 53 456 106 510 213 023 426 182 852 296
L2 requests 37 735 75 478 150 871 301 502 602 771 1 204 804
L2 misses 21 728 43 616 87 153 174 071 347 920 695 519
L1d misses 16 559 32 933 65 828 131 599 263 075 525 832

The L1d misses are approximately 16k for every 1 MiB increase in text size, which
matches the expected value. That is, the L1d contains no residual data between
multiple runs. Additionally, the cache misses strongly suggest that a cache line is
only ever loaded into the cache once throughout string matching, as reasoned above.
Hypothetically, the L2 prefetchers could thrash L2 and L3, but this seems unrealistic6.

The most important metric, L3 misses, clearly indicates the existence of residual
data in HS for short texts. The L3 misses are too few for the smaller text sizes. That
is, many requests to L3 hit instead of miss. The trend is also such that the misses
grow at a changing rate. The expectation is a constant increase of the L3 misses
since the caches should behave similarly from one text size to another. At minimum,
a doubling of the text size causes a doubling of the L3 misses. This only happens
towards the largest text sizes, but not the smaller ones.

Figure 1 shows relative increases in running times for the brute force algorithm
(bf), Horspool’s algorithm [10] (hor), and the sbndmq2 algorithm [4] in HS as a
function of text size. The y values are relative changes to the respective running
times for the text of 1 MiB (thus y is zero at x = 1). In other words, the inverses of
search speeds (s/MiB) are compared.

For HS in Figure 1 there is a modest increase between −1% and 14% in the relative
running times as the text size grows until it is roughly 1.5 times the size of the last level
cache L3. Longer patterns exhibit larger increase because the same amount of cache
misses divide over shorter running times. Moreover, the hardware prefetchers have
less time to perform their function, which possibly leads to a bigger overlap between
demand and prefetch request. Similarly, bf exhibits very little increase because the

5 This required small changes to the code of SMART.
6 Note that prefetching to cache may go to a different cache level in some other processors.
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Figure 1. Relative increases in running times during string matching in HS when adjusting text
size for three algorithms and four pattern lengths.

running times are already large from its many memory accesses and instructions
executed with little variation between pattern sizes.

As Figure 1 shows, the increase of running time depends on the length of the text
and the algorithm for a fixed pattern size. So the text should be long enough, 1.5
times the size of L3, that the experiment would be close to a steady state.

We ran a similar experiment to Figure 1 in SMART and repeated it on another
computer. The results were incoherent — there was no consistent decrease of speed
when the text grows. More investigation would be necessary to understand how cache
affects running times of algorithms in SMART.

6 Effects of Shared Memory

The SMART environment [7] uses shared memory for storing the text. The obvious
reason for that is to make it easier to execute multiple tests in one run. We noticed
inconsistent differences in timing results of certain algorithms in HS and SMART (see
Table 3). When we investigated those findings carefully, we found out that the use of
shared memory was the reason.

While running the data cache experiments, SMART exhibited unexplained be-
havior. Invalidating cache lines with clflush resulted in significantly faster running
times of algorithms. A similar effect was observable whenever the shared memory was
touched in any way in alg before string matching. The reason turns out to be minor
page faults that occur on every first page access which is explored next.

To inspect this, let us count the minor page faults that occur during a string
matching. On our test computer, PAPI includes a native event perf::MINOR-FAULT
to count minor page faults. Figure 2 plots the counts over multiple text sizes for
both HS and SMART. The difference between the two is very apparent. HS incurs
no page faults during string matching whereas the number of SMART grows linearly
at roughly the rate of 250 page faults per 1 MiB of text. With a 4 KiB page size,
250 page faults equate 4 KiB * 250 = 1000 KiB ≈ 1 MiB of memory, which matches
the text size. Basically, every page backing the shared memory faults once. These
minor page faults are irrespective of any other parameter such as the algorithm used,
pattern size, the test computer, etc.



W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 25

0

500

1000

1500

2000

2500

0 2 4 6 8 10

M
in
or

p
ag
e
fa
u
lt
s

Text size (MiB)

SMART
HS

Figure 2. Minor page faults during each string matching.

The reason for the minor page faults is not entirely apparent, but it most likely
traces back to the memory management techniques of Linux. Rusling [17] briefly de-
scribes System V shared memory in the book The Linux Kernel. According to him,
attaching a process to shared memory merely modifies the virtual address space of
the process, but does not back it up with physical memory. Thus, the first mem-
ory access of a process to any page of shared memory generates a page fault which
supports the above observation. The actual reason is not further explored and other
resources on the topic seem to be scarce. However, Linux generally employs lazy allo-
cation of main memory with techniques such as demand paging, copy-on-write, and
memory overcommitment. Perhaps the page faults to shared memory line up with
this philosophy.

Whatever the cause, the underlying implications are problematic for running
times. First, the continuous interrupts disrupt normal execution of algorithms. The
interrupt handler requires context switching, modifying page tables, etc. Second,
SMART uses wall-clock time to measure running times. The timings comprise both
user space and kernel space execution, which includes time spent on resolving the
page faults. These add up given the little time spent on one page.

Figure 3 illustrates these effects. It shows the difference in running times when
pages are prefaulted compared to faulting during string matching. The figure shows
the differences for multiple pattern lengths for all the implemented algorithms in
SMART. Prefaulting can be achieved by explicitly accessing each page or by locking
the memory (e.g. with mlockall7). The former is effectively what invalidating the
cache lines did. The latter locks the virtual address space of a process into main mem-
ory to ensure it never faults. We used memory locking to measure the prefaulted run-
ning times, which additionally required reconfiguring system-wide maximum locked
memory size. The change to alg is a simple addition given in Figure 4.

Figure 3 reveals insights on the effects of page faults. For m > 4, the page faults
result in a fairly steady ∼1.2 ms average increase in running times. The increase has
little variation across all the algorithms, but there still exists a dozen outliers consis-
tently over the different pattern sizes. For m ≤ 4, the differences seem more erratic

7 Defined in POSIX Realtime Extensions 1003.1b-1993 and 1003.1i-1995
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Figure 3. Change in running times (new running time − old running time) for each algorithm in
SMART when prefaulting pages on the Skylake computer given 4 MiB KJV.

#include <sys/mman.h>

...

if (mlockall(MCL_CURRENT) == -1) {

perror("mlockall");

return 1;

}

int count = search(p,m,t,n);

...

Figure 4. An addition to alg to lock memory.

and, admittedly, a few algorithms deviate from the average increase that otherwise
do not. However, less algorithms work for these pattern sizes which contributes to
the impression of more deviation.

Figure 3 also gives a view to the accuracy of the time measurement method of
SMART. The cause of the farthest outliers needs further study.

Overall, the changes in running times skew algorithm comparisons. Increasing the
running time of (almost) every algorithm dilutes relative differences. For example, a
closer inspection on the fastest algorithms according to the original running times
is presented in Table 2. The largest increase at m = 512 is almost 90%. Comparing
the original time 1.47 ms to another algorithm with an original time 1.57 ms yields a
difference of only ∼7%. Comparing the prefaulted time 0.16 ms to the prefaulted time
0.26 ms of the other algorithm yields a difference of ∼63%, which is almost an order
of magnitude different. This effect is more pronounced on large patterns as they tend
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to be faster. Moreover, the outliers are evaluated unfairly as they might overtake or
fall behind other algorithms after prefaulting.

Table 2. Original and prefaulted running times (ms) of the fastest algorithms according to the
original running times.

m 2 4 8 16 32 64 128 256 512
Original 1.73 1.86 2.04 1.84 1.57 1.56 1.57 1.52 1.47
Prefaulted 0.54 0.66 0.83 0.62 0.37 0.36 0.25 0.19 0.16

Lastly, the diluted relative differences can be further demonstrated by comparing
running times in HS, SMART, and SMART with prefaulting. Table 3 shows such
running times for bf, hor, and sbndmq2 introduced in Section 5. The HS and the
prefaulted SMART running times are quite close to one another, while the running
times of actual SMART are larger. For instance, sbndmq2 is 15% and 16% of the
running time of bf in HS and prefaulted SMART, respectively, while it is 27% in
SMART.

Table 3. Average per pattern running times (ms) for 8 MiB KJV and m = 16.

bf hor sbndmq2
HS 16.31 5.09 2.44

SMART 18.75 7.75 5.04
prefaulted SMART 16.28 5.31 2.61

It is unfortunate that the use of shared memory disturbs running times, though
the original aim was obviously to achieve more dependable results. Our correction
eliminates the disturbance. However, the correction is rude and it is not yet suitable
for production use.

7 Other Issues

The space character is typically the most frequent character in a text of natural
language. Therefore, the result of an experimental comparison may depend on whether
the patterns contain spaces or not [11,4]. Especially, the space as the last character
of a pattern slows down many algorithms of the Boyer–Moore type if the pattern
contains another space.

One problem in comparing algorithms is the tuning/tune-up level. Should one
compare original versions or versions at the same tune-up level? Skip loop, sentinel,
guard, and multicharacter read are all tune-ups which may greatly affect the running
time. Even the implementations in the SMART repository are not fully comparable
in this respect. For example, in the past it was a well-known fact that the memcmp
function is slower than an ordinary match loop. So the SMART implementation8 of
Horspool’s algorithm uses a match loop instead of memcmp applied in the original
algorithm [10]. However, memcmp is now faster than a match loop on many new
processors.

The results of a comparison may depend on the technology used. Thus, results of
old comparisons may not hold any more. We demonstrate this by an example. We ran
an experiment of two algorithms sbndm4 [4] with 16-bit reads and ufast-rev-md2 [11]

8 Release 13.04
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on two processors of different age. These processors (Intel Pentium and Intel Core
i7-4578U) were introduced in 1993 and 2014, respectively. The text was KJV and m
was 10. Sbndm4 was considerably faster on i7 — its running time was only 23% of
the running time of ufast-rev-md2, but the situation was the opposite on Pentium:
the running time of ufast-rev-md2 was 32% of the running time of sbndm4. Potential
sources for the great difference are changes in relative memory speed, cache size, and
penalty for misaligned memory accesses.

Likewise, two compilers may produce dissimilar results — see, for example, the
running time of NSN in [12]. Sometimes, an old algorithm using much memory can
become relatively faster in a newer computer — the algorithm by Kim and Shawe-
Taylor [13] is such an example. This reflects another downside of technology devel-
opment: you may find an old “inefficient” and rejected algorithm idea of yours has
recently become viable, and is then published by someone else.

Which then could be a more universal measure than execution time to compare
algorithms? Some researchers count character comparisons. When the first string
matching algorithms were introduced, the number of comparisons was an important
measure to reflect the work load of an algorithm. Because many of newer algorithms,
like bndm [15], do not use comparisons, researchers started to use the number of
read text characters. When the technology advances, even the number of read text
characters is no longer a good estimate for speed, as the brute force algorithm with
a q-gram guard [16] shows.

One problem of the area of string matching is that the developers are enthusiastic
about too small improvements. Differences less than 5% are not significant in practice.
Small changes in the code, like reordering of variables and arrays, or switching the
computer may contribute a similar difference. We think that 20% is a fair threshold
for a significant improvement.

8 Conclusions

Mostly we reviewed good testing practices but there are issues which may lead in-
correct conclusions in algorithm comparisons. Experimental algorithm rankings are
never absolute because evolving technology affects them. The ranking order of algo-
rithms may even change when the comparison is repeated on another processor of the
same age or generation. Therefore, conclusions based on a difference of less than 5%
in running times are not acceptable. When selecting data for experiments, the length
of text should be at least 1.5 times the cache size in order to avoid cache interference
with running times. The most remarkable finding of this paper is how the use of
shared memory may disturb running times.
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