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Abstract. We compare labeled ordered trees based on unit cost 1-degree edit distance
that uses operations vertex relabeling, leaf insertion, and leaf deletion. Given an input
tree T and a tree pattern P , we find all subtrees in T that match P with up to k errors.
We show that this problem can be solved by finite automaton when T and P are
represented in linear, prefix bar, notation. First, we solve this problem by a pushdown
automaton. Then, we show that it can be transformed into a nondeterministic finite
automaton due to its restricted use of the pushdown store. We also show a simulation
of the nondeterministic finite automaton by dynamic programming.
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1 Introduction

The problem of inexact (or approximate) tree pattern matching is for a given input
tree T and tree pattern P , find all subtrees in T that match P with up to k errors.
This type of tree pattern matching can be helpful if one of the trees (or both) can
be subjects of deformation or corruption; in such circumstances, the tree pattern
matching needs to be more tolerant when comparing two trees.

The problem of measuring similarities between two trees is called the tree edit
distance problem (or tree-to-tree correction problem). This problem is a generalization
of the well-known string edit distance problem, and it is defined as the minimum cost
sequence of vertex edit operations that transform one tree into the other [1].

In this paper, we consider labeled ordered trees in which each vertex is associated
with a label, and sibling order matters. For labeled ordered trees, Tai [10] introduced
the set of operations that included vertex relabeling, vertex insertion, and vertex
deletion. A different cost may accompany the operations. Given two labeled ordered
trees with m and n vertices, where n ≥ m, the tree edit distance between those trees
can be solved in cubic O(n3) time [3]. According to a recent result [2], it is unlikely
that a truly subcubic algorithm for the ordered tree edit distance problem exists.

For unordered trees, Zhang et al. proved that the tree edit distance problem is
NP-complete, even for binary trees having an alphabet containing just two labels [12].
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Several authors have also proposed restricted forms and variations of the tree edit
distance problem. For example, Selkow [8] restricted the vertex insertion and deletion
to leaves of a tree only. These operations may be used recursively to allow insertion or
deletion of a subtree of arbitrary size. This distance is in the literature often referred
to as 1-degree edit distance. Selkow also gave an algorithm running in O(nm) time
and space, where n andm are the numbers of vertices of the two labeled ordered input
trees. His algorithm uses a dynamic programming approach in which the input trees
are recursively decomposed into smaller subproblems. A similar approach is used in
most state-of-the-art algorithms for the tree edit distance problem.

The dynamic programming approach was also successfully used to solve the string
edit distance problem and the inexact (approximate) string pattern matching prob-
lem [7]. Besides dynamic programming, however, finite automata can also be used to
solve the inexact string pattern matching problem [6,7].

Inspired by techniques from string matching, we aim to show that the automata
approach can also be used to solve the inexact tree pattern matching problem. We
consider labeled ordered (unranked) trees and 1-degree edit distance. For simplicity,
we use unit cost, where each operation costs one. However, the extension of our
approach to non-unit cost distance is also discussed.

First, we solve the problem by a pushdown automaton. Then, we show that it
can be transformed into a finite automaton due to its restricted use of the pushdown
store. The deterministic version of the finite automaton finds all occurrences of the
tree pattern in time linear to the size of the input tree. We also present an algorithm
based on dynamic programming, which is a simulation of the nondeterministic finite
automaton. The space complexity of this approach is O(mk) and the time complexity
is O(kmn), where m is the number of vertices of the tree pattern, n is the number of
vertices of the input tree, and k ≤ m represents the number of errors allowed in the
pattern.

Our approach extends the previous result by Šestáková,Melichar, and Janoušek [9].
In their paper, they used a finite automaton to solve the inexact tree pattern match-
ing problem with a more restricted 1-degree edit distance; the distance uses the same
set of operations defined by Selkow, but these operations cannot be used recursively
to allow insertion or deletion of a subtree of arbitrary size. Therefore, it may not
always be possible to transform one tree into the other.

To be able to process trees using (string) automata, we represent trees using
a linear notation called the prefix bar notation [5]. This notation is similar to the
bracketed notation in which each subtree is enclosed in brackets. The prefix bar
notation uses just the closing bracket (denoted by bar “|” symbol) due to the simple
observation that the left bracket is redundant; there is always the root of a subtree
just behind the left bracket. We note that this notation corresponds, for example, to
the notation used in XML; each end-tag can be mapped to the bar symbol. Similarly
straightforward is the transformation of JSON.

This paper is organized as follows. In Section 2, we give notational and mathe-
matical preliminaries together with the formal definition of the problem statement. In
Section 3, we present an algorithm for the computation of an auxiliary data structure,
the subtree jump table. In Section 4, we present our automata approach. In Section 5,
we show a dynamic programming algorithm that simulates the nondeterministic finite
automaton. In Section 6, we conclude the paper and discuss the future work.
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2 Preliminaries

An alphabet, denoted by Σ, is a finite nonempty set whose elements are called symbols.
A string over Σ is a finite sequence of elements of Σ. The empty sequence is called
the empty string and is denoted by ε. The set of all strings over Σ is denoted by
Σ∗. The length of string x is the length of the sequence associated with x and is
denoted by |x|. By x[i], where i ∈ {1, . . . , |x|}, we denote the symbol at index i of x.
The substring of x that starts at index i and ends at index j is denoted by x[i . . . j];
i.e., x[i . . . j] = x[i]x[i+ 1] . . .x[j]. A language over an alphabet Σ is a set of strings
over Σ.

2.1 Trees

A tree is a graph T = (V,E), where V represent the nonempty set of vertices and
E the set of edges, and where one of its vertices is called the root of the tree; the
remaining vertices are called descendants of the root and can be partitioned into s ≥ 0
disjoint sets T1, . . . , Ts, and each of these sets, in turn, is a tree. The trees T1, . . . , Ts

are called the subtrees of the root. There is an edge from the root to the root of each
subtree. An ordered tree is a tree where the relative order of the subtrees T1, . . . , Ts

is important.
If a tree is equipped with a vertex labeling function V → Σ, we call it a labeled

tree over Σ. The set of all labeled ordered trees over alphabet Σ is denoted by Tr(Σ).
All trees we consider in the paper are labeled ordered trees. Therefore, we will omit
the words “labeled ordered” when referencing labeled ordered trees.

By Tv, where v ∈ V , we denote the subtree of T rooted at vertex v; i.e., Tv is
a subgraph of tree T induced by vertex subset V ′ that contains vertex v (the root
of tree Tv), and all its descendants. If a vertex does not have any descendants, it is
called a leaf.

The prefix bar notation [5] of tree T , denoted by pref-bar(T ), is defined as
follows: If T contains only the root vertex with no subtrees, then pref-bar(T ) = a|,
where a is the label of the root vertex. Otherwise,

pref-bar(T ) = apref-bar(T1) pref-bar(T2) · · · pref-bar(Ts) |,

where a is the label of the root of T and T1, . . . , Ts are its subtrees. For a tree T

with n vertices, the prefix bar notation is always of length 2n. For every label a in
the prefix bar notation, there is the corresponding bar symbol “|” indicating the end
of the subtree Ta; we call such pair of a label and its corresponding bar symbol a
label-bar pair.

The subtree jump table for prefix bar notation is a linear auxiliary structure intro-
duced by Trávńıček [11] that contains the start and the end position of each subtree
for trees represented in the prefix bar notation. Formally, given a tree T with n

vertices and its prefix bar notation pref-bar(T ) with length 2n, the subtree jump
table ST for T is a mapping from a set of integers {1, . . . , 2n} into a set of integers
{0, . . . , 2n+1}. If the substring x[i . . . j], where 1 ≤ i < j is the prefix bar representa-
tion of a subtree of T , then ST [i] = j+1 and ST [j] = i−1. In the prefix bar notation,
it holds that every subtree of tree T is a substring of pref-bar(T ). It also holds that
every such substring ends with the bar symbol. When discussing the time complexity
of our algorithms, we will assume that the subtree jump table is implemented as an
array, and therefore each position i ∈ {1, . . . , 2n} can be accessed in O(1) time.
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Figure 1: Example ordered labeled trees.

Example 1 (Prefix bar notation and subtree jump table). Let P be a tree illustrated
in Figure 1a. Then, pref-bar(P ) = p = ab|b|ac|||. The subtree jump table SP for
P is as follows:

p a b | b | a c | | |
j 1 2 3 4 5 6 7 8 9 10

SP [j] 11 4 1 6 3 10 9 6 5 0

2.2 Pushdown and finite automaton

An (extended) pushdown automaton (PDA) is a 7-tupleMPDA = (Q,Σ,G, δ, q0, Z, F )
where Q is a finite set of states, Σ is an input alphabet, G is a pushdown store
alphabet, δ : Q×(Σ∪{ε})×G∗ → P(Q×G∗) is a transition function (not necessarily
total), where P(Q×G∗) contains only finite subsets of Q×G∗, q0 ∈ Q is the initial
state, Z ∈ G is the initial pushdown symbol, F ⊆ Q is the set of final states. By
L(MPDA) we denote the language accepted byMPDA by a final state.

A nondeterministic finite automaton (NFA) is a 5-tupleMNFA = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is an alphabet, δ : Q × (Σ ∪ {ε}) → P(Q) is a
state transition function (not necessarily total), q0 ∈ Q is the initial state, F ⊆ Q

is a set of final states. A finite automaton is deterministic (DFA) if ∀a ∈ Σ and
q ∈ Q : |δ(q, a)| ≤ 1. By L(MFA) we denote the language accepted byMFA.

2.3 Problem statement

In the Introduction, we have defined the problem of inexact tree pattern matching as
finding the subtrees in an input tree that match a tree pattern with up to k errors.
We now give a more formal definition for which we consider the following primitive
operations applied to a tree T = (V,E):

vertex relabel change the label of a vertex v,
leaf insert insert a vertex v as a leaf of an existing vertex u in V , and
leaf delete delete a non-root leaf v from T .

The operations may be used recursively to allow insertion or deletion of a subtree of
arbitrary size. This set of operations was originally introduced by Selkow [8], and we
will refer to it as to the set of 1-degree edit operations.

The unit cost 1-degree edit distance is a function d : Tr(Σ) × Tr(Σ) → N0.
Given two trees T1 and T2, the number d(T1, T2) corresponds to the minimal number
of 1-degree edit operations that transform T1 into T2.
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Example 2 (1-degree edit distance). Let P be the tree illustrated in Figure 1a and S1

be the tree illustrated in Figure 1b. Then, d(P, S1) = 2 since we need to insert a leaf
labeled by a as a child of the vertex with identifier 3 into P . Then, we add the leaf
with label c as the child of the node a we inserted in the previous step.

Definition 3 (Inexact 1-degree tree pattern matching problem). Let Σ be an
alphabet. Let T = (VT , ET ) be an input tree with n vertices over Σ. Let P = (VP , EP )
be a comparatively smaller tree pattern over Σ with m vertices. Let k be a non-negative
integer representing the maximum number of errors allowed. Let d be the unit cost
1-degree edit distance function. Given T, P, k, and d, the inexact 1-degree tree pattern
matching problem is to return a set

{

v : v ∈ VT ∧ d(Tv, P ) ≤ k
}

.

In other words, the problem is to return the set of all vertices such that each
vertex v represents the root of a subtree of T which distance from the tree pattern P

is at most k.

Example 4 (Inexact 1-degree tree pattern matching problem). Let P be the tree pat-
tern illustrated in Figure 1a, T be the input tree shown in Figure 1b, and k = 2.
The solution of the 1-degree inexact tree pattern matching problem is {2, 5}; i.e.,
with respect to the maximal number of allowed errors, P occurs in T in the subtrees
rooted at nodes 2 and 5.

In the rest of the text, we will use the following naming conventions: T and P will
represent an input tree and a tree pattern, respectively. We use n,m, k to represent
the number of vertices in T , the number of vertices in P , and the maximum number
of errors allowed. For brevity, we will use t and p as a shorthand for pref-bar(T )
and pref-bar(P ), respectively.

3 Subtree jump table computation for prefix unranked bar
notation

A linear-time algorithm for computation of the subtree jump table was given by
Trávńıček [11, Section 5.2.2]. However, Trávńıček’s algorithm works for prefix ranked
bar notation, which combines the prefix notation and the bar notation. Therefore, we
give an alternative algorithm for computation of the subtree jump table that works
directly with prefix (unranked) bar notation of trees (see Algorithm 1).

The central idea of our algorithm is the use of a pushdown store for recording the
positions of the labels. When the bar symbol is found in the prefix bar notation, the
position of the corresponding label is popped from the pushdown store.

Theorem 5 (Correctness of the subtree jump table computation). Let p be a
string, such that p = pref-bar(P ) for some tree P . Algorithm 1 correctly computes
the subtree jump table for p.

Proof. In the first for-loop (line 3), we use the pushdown store to save all indexes
(line 7) that correspond to the positions of all vertex labels in the prefix bar notation.
When the bar symbol is encountered, the position of the corresponding subtree root
label is at the top of the pushdown store; we retrieve it and subtract one (line 5) since
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Algorithm 1 Computation of the subtree jump table.
Input String p, such that p = pref-bar(P ) for some tree P .
Output The subtree jump table SP for p.
1 Y : empty pushdown store
2 SP : empty array of size |p|
3 for each position j of p:
4 if p[j] = |
5 SP [j]← pop(Y )− 1
6 else

7 push(Y, j)
8 SP [j]← null

9 for each position j of p:
10 if SP [j] 6= null

11 SP [SP [j] + 1]← j + 1
12 return SP

the subtree jump table contains the index of the previous element, not the index of
the subtree root label itself. In the second for-loop (line 9), we define the remaining
positions in the subtree jump table. The SP [SP [j] + 1] expression (line 11) computes
the position of the subtree root label corresponding to the bar symbol at position
p[j] and saves there the position j + 1 that is the index of the element following the
current bar symbol at index j.

Theorem 6 (Time complexity of the subtree jump table computation). Let
p be a string, such that p = pref-bar(P ) for some tree P . The subtree jump table
for p can be computed in O(|p|) time using Algorithm 1.

4 Automata approach

To be able to solve the inexact 1-degree tree pattern matching problem defined in
Section 2.3 using (string) automata, we represent trees as strings using the prefix
bar notation. Therefore, given a string x = x1x2 · · · xr of length r ≥ 2 over alphabet
Σ ∪ {|} that represents the prefix bar notation of a tree, the 1-degree (tree) edit
operations corresponds to the following string operations:

– the operation relabeling R(i, b) that for i ∈ {1, . . . , r − 1}, b ∈ Σ, and x[i] ∈
(Σ \ {b}), change the symbol x[i] into symbol b;

– the operation insertion I(i, a) that for i ∈ {2, . . . , r − 1} and a ∈ Σ inserts the
substring (leaf) “a|” at position i; and

– the operation deletion D(i) that for i ∈ {2, . . . r − 2}, x[i] ∈ Σ, and x[i + 1] = |,
deletes the substring (leaf) x[i]x[i+ 1].

Example 7 (Application of 1-degree edit operations to strings). Let P be the tree illus-
trated in Figure 1a and S1, S2 be the trees illustrated in Figure 1b; pref-bar(P ) =
ab|b|ac|||, pref-bar(S1) = ab|bac|||ac|||, and pref-bar(S2) = bac|||. Then, the
distance d(P, S1) = 2 and d(P, S2) = 3 since

ab|b|ac|||
I(5,a)
−−−→ ab|ba||ac|||

I(6,c)
−−−→ ab|bac|||ac||| and

ab|b|ac|||
R(1,b)
−−−→ bb|b|ac|||

D(2)
−−→ bb|ac|||

D(2)
−−→ bac|||.
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Given two strings t1 and t2 that both correspond to the prefix bar notation of
trees, using the 1-degree (string) edit operations, we can define the unit cost 1-degree
(string) edit distance as a function ds : (Σ ∪ {|})∗ × (Σ ∪ {|})∗ → N0 such that
ds(t1, t2) = d(T1, T2), where t1 = pref-bar(T1) and t2 = pref-bar(T2). Since the
functions d and ds differ only in argument types, we will use the notation d for both
trees and string arguments.

Using the prefix bar representation of trees, we can specify the problem of inexact
1-degree tree pattern matching as finding all positions i ∈ {1, . . . , 2n} in t such that
t[i] = | and d(p, t[ST [i]+1 . . . i]) ≤ k. Recall that ST represent the subtree jump table
for input tree T and ST [i]+ 1 returns the position in t that contains the subtree root
label corresponding to the bar symbol at position t[i]. In other words, our methods
output end positions of the occurrences. The position of the corresponding root label
can be computed in O(1) time for each end position using the subtree jump table
for T .

Proposition 8. LetM be either a pushdown or finite automaton accepting the lan-
guage

{

sp′ : s ∈ (Σ ∪ {|})∗ ∧ d(p,p′) ≤ k
}

. (1)

The automatonM is called 1-degree automaton and it solves the inexact 1-degree tree
pattern matching problem.

The 1-degree automatonM accepts infinite language. It can read (not necessarily
accept) any prefix bar notation of a tree (over alphabet Σ), i.e., it does not fail due
to non-existing transition. Algorithm 2 illustrates how M can be used to solve the
inexact 1-degree tree pattern matching problem. In the following sections, we will
discuss the construction of the 1-degree automaton in detail.

Algorithm 2 Automata approach to inexact 1-degree tree pattern matching.
Input A string p of length 2m such that p = pref-bar(P ) for tree pattern P over alphabet Σ, a
string t of length 2n such that t = pref-bar(T ) for input tree T over alphabet Σ, a non-negative
integer k ≤ m, a 1-degree automatonM for P and k.
Output All positions i ∈ {1, . . . , 2n} in t such that t[i] = | and d(p, t[ST [i] + 1 . . . i]) ≤ k.
1 read t usingM symbol-by-symbol (t[i] is the currently read symbol):
2 if a final state is reached:
3 output i

4.1 1-degree pushdown automaton

In this section, we show that the 1-degree automaton can be constructed as a push-
down automaton. Our method is similar to the construction of approximate string
pattern matching automaton [6]. Algorithm 3 describes the construction of the 1-
degree PDA in detail. An example ofMPDA is illustrated in Figure 2.

Each state of the automaton has a label jl, where 0 ≤ j ≤ 2m is a depth of
the state (position in the pattern) and l ∈ {0, . . . , k} is a level of the state (actual
number of errors). The pushdown store is used to match label-bar pairs and, therefore,
to simulate leaf insertion operation.

Vertex relabeling operation can be applied if there is a different vertex label in
p and t at the current position. Each relabel operation increases the distance by 1.
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Algorithm 3 Construction of 1-degree pushdown automaton.
Input A string p of length 2m such that p = pref-bar(P ) for a tree pattern P over alphabet Σ,
a non-negative integer k ≤ m, the subtree jump table SP for P .
Output 1-degree pushdown automatonMPDA for P and k.
1 define states Q = {00} ∪ {jl : 1 ≤ j ≤ 2m ∧ 0 ≤ l ≤ k}
2 define final states F = {2ml : 0 ≤ l ≤ k}
3 define pushdown alphabet G = {Z, c}
4 add initial loop for the bar symbol: δ(00, |, Z) = {(00, Z)}

5 add initial state transitions for labels: δ(00, a, Z) =

{

{

(00, Z), (10, Z)
}

: a = p[1]
{

(00, Z), (11, Z)
}

: a ∈
(

Σ \ {p[1]}
)

6 for every pattern position j : 2 ≤ j ≤ 2m:
7 for every allowed number of errors l : 0 ≤ l ≤ k:
8 δ

(

(j − 1)l,p[j], Z
)

=
{

(jl, Z)
}

(label or bar match)
9 δ

(

(j − 1)l, a, Z
)

=
{

(jl+1, Z) : l < k
}

: a ∈ Σ \ {p[j]} (relabel)
10 δ

(

(j − 1)l, a, ε
)

= δ((j − 1)l, a, ε) ∪
{

((j − 1)l+1, c) : l < k
}

: a ∈ Σ \ {|
}

(label insert)
11 δ

(

(j − 1)l, |, c
)

=
{

((j − 1)l, ε) : l > 0
}

(bar insert)

12 δ
(

(j − 1)l, ε, Z
)

=
{

((SP [j]− 1)l+(SP [j]−j)/2, Z) : l + SP [j]−j
2 ≤ k

}

: SP [j] > j (delete)
13 returnMPDA = (Q,Σ ∪ {|}, G, δ, 00, Z, F )

These operations are represented by “diagonal” transitions labeled by the symbols of
the alphabet Σ for which no “direct” transition to the next state exists.

Leaf deletion operations correspond to a situation in which a vertex label followed
by the bar symbol is skipped in p while nothing is read in t. The automaton performs
such an operation by following one of its ε-transitions. Since 1-degree edit distance
allows to delete a subtree of arbitrary size by picking its leaves one by one, the
automaton needs to reflect this. That is why the target state of the ε-transitions is
provided by the subtree jump table. The number of errors of such an operation is
equal to the number of skipped vertex labels. Since a subtree of tree pattern P is a
substring of p where label-bar pairs are balanced, the number of errors is equal to
the substring length divided by 2.

Leaf insertion operations correspond to a situation in which a vertex label followed
by the bar symbol is read in t while there is no advance in p. To allow insertion of a
subtree of arbitrary size into the tree pattern leaf by leaf, we use a special pushdown
symbol c. By pushing it when a label is read and popping it whenever the bar symbol
is encountered, we ensure that the substring represents the correct prefix bar notation
of a tree. The insertion operation is complete once the pushdown store contains only
the initial pushdown store symbol; this is the only case in which the automaton can
again start to advance in p.

Note 9. Algorithm 3 can be modified to construct PDA that works with non-unit
cost 1-degree edit distance. With unit cost operations, each transition in the PDA
(corresponding to some edit operation) goes from a state with level l to a state with
level l+ 1. With non-unit cost operations, transitions would go to states with a level
that is increased accordingly by the cost of the operation.

4.2 1-degree finite automaton

Due to its restricted use of the pushdown store, we can transform the 1-degree PDA
into an equivalent finite automaton. The PDA constructed by Algorithm 3 uses only
symbol c for pushdown store operations (the initial pushdown symbol Z is never
pushed). Moreover, pushdown store operations are only used for insertion operations.
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Figure 2: Transition diagram of the 1-degree pushdown automaton for tree pattern P

from Figure 1a and k = 2. The double-circled nodes correspond to final states. The
edge labeled x, y, z from state q1 to state q2 corresponds to transition δ(q1, x, y) =
{(q2, z)}. The complement a means Σ \ {a}.

Since the number of editing operations is limited by k ≤ m, the length of the push-
down store is also bounded by k. In other words, the pushdown store serves as a
bounded counter. Therefore, we can represent each possible content of the pushdown
store by a state. The construction of the 1-degree nondeterministic finite automaton
is described by Algorithm 4. It reuses the MPDA structure and construction steps.
The only difference is the use of states jlc (c > 0) representing a situation where the
pushdown store contained c symbols.

An example of MNFA is depicted in Figure 3. The set of active states of this
automaton while reading the input tree T illustrated in Figure 1b is shown in Table 1.

Algorithm 4 Construction of 1-degree nondeterministic finite automaton.
Input A string p of length 2m such that p = pref-bar(P ) for the tree pattern P over alphabet
Σ, a non-negative integer k ≤ m, the subtree jump table SP for p.
Output 1-degree nondeterministic finite automatonMNFA for P and k.
1 define states Q = {000} ∪ {j

l
c : 1 ≤ j ≤ |p| ∧ 0 ≤ l ≤ k ∧ 0 ≤ c ≤ k}

2 define final states F = {|p|l0 : 0 ≤ l ≤ k}
3 add an initial loop for the bar symbol: δ(000, |) = {0

0
0}

4 add initial state transitions for labels: δ(000, a) =

{

{000, 1
0
0} : a = p[1]

{000, 1
1
0} : a ∈ Σ \ {p[1]}

5 for every pattern position j : 2 ≤ j ≤ |p|:
6 for every allowed number of errors l : 0 ≤ l ≤ k:
7 δ((j − 1)l0,p[j]) = {j

l
0} (label or bar match)

8 δ((j − 1)l0, a) = {j
l+1
0 : l < k} : a ∈ Σ \ {p[j]} (relabel)

9 for each counter value c : 0 ≤ c < k:

10 δ((j − 1)lc, a) = δ((j − 1)lc, a) ∪ {(j − 1)l+1
c+1 : l < k} : a ∈ Σ \ {|} (label insert)

11 δ((j − 1)lc+1, |) = {(j − 1)lc} (bar insert)

12 δ((j − 1)l0, ε) = {(SP [j]− 1)
l+(SP [j]−j)/2
0 : l + SP [j]−j

2 ≤ k} : SP [j] > j (delete)
13 returnMNFA = (Q,Σ ∪ {|}, δ, 000, F )

Because any NFA can be algorithmically transformed into a DFA, a determin-
istic finite automaton can be used for inexact 1-degree tree pattern matching. In
such case, the set of all positions i ∈ {1, . . . , 2n} in t such that t[i] = | and
d(p, t[ST [i] + 1 . . . i]) ≤ k can be computed in O(n) time. However, the issue can
be the size of the deterministic automaton, which can be exponential in the number
of vertices of the tree pattern [4]. Therefore, in the next section, we also present how
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Figure 3: Transition diagram of the 1-degree NFA for tree pattern P illustrated in
Figure 1a and k = 2. The double-circled nodes correspond to final states. The com-
plement a means Σ \ {a}.

t a a a c | | | a b | b a c | | | a c | | | |

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
100 100 100 110 110 120 1020 100 110 110 110 100 110 320 420 520 100 110 320 920 1020

111 111 111 310 320 111 300 210 220 321 520 620 321 310
210 210 210 520 920 200 510 420 121 420 310 210 110
420 420 420 121 410 320 121 221 210 110 111 820
620 620 122 220 321 400 411 111 421 720
321 321 221 820 521 422

221 720 320 620
122 321

Table 1: Active states of MNFA from Figure 3 for the input tree illustrated in Fig-
ure 1b.

dynamic programming can be used to simulate the nondeterministic finite automaton
to achieve better space complexity.

5 Dynamic programming

An alternative approach to the use ofMDFA for inexact 1-degree tree pattern match-
ing is a run simulation ofMNFA constructed by Algorithm 4. For such a simulation,
an approach based on dynamic programming is presented in this section.

Algorithm 2 that uses MNFA can be simulated by a three-dimensional array D.
Each field of D represents possibly active states ofMNFA. More precisely, the first di-
mension Di stands for the number of read symbols from t; the second dimension Di,j

represents the portion of successfully matched pattern (i.e., when state jlc is active,
Di,j corresponds to j); finally, the third dimension Di,j,c represents the (possibly) un-
balanced symbol-bar pair (i.e., when state jlc is active, Di,j,c corresponds to c). The
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value in Di,j,c represents the distance—when state jlc is active, the value corresponds
to l; the value ∞ represents the situation when no corresponding state of MNFA is
active. Each field value is computed from other fields value based on the transition
function δ ofMNFA.

The part of D recording computation before reading any symbol (i.e., D0,j,c)
corresponds to the set of active states ofMNFA: the initial state 000 only. Due to the
self-loop in state 000, the initial state remains active after reading any symbol from
the input. This corresponds to value 0 in Di,0,0. The initialization of D is formally
given in (2).

∀c, i : 0 ≤ c ≤, 0 ≤ i ≤ 2n : Di,0,c =

{

0 : c = 0,

∞ : c > 0

∀c, j : 0 ≤ c ≤ k, 1 ≤ j ≤ 2m : D0,j,c =∞

(2)

When matching a symbol without an edit operation, i.e., reading the same symbol
from both p and t, the transition inMNFA goes from state (j−1)l0 to state j

l
0. Reading

from both p and t means increasing both i and j dimensions in D. Matching symbols
without an edit operation in D is formally given in (3).

Di,j,0 = Di−1,j−1,0 : t[i] = p[j] ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m (3)

Representation of vertex relabeling operation in MNFA is similar to matching
symbols without an edit operation. Relabeling vertices in D is formally given in (4).

Di,j,0 = Di−1,j−1,0 + 1 : t[i],p[j] ∈ Σ ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m (4)

InMNFA, leaf deletion operation is represented by an ε-transition: skipping part
of p (the length of the skip is given by the subtree jump table SP ) while reading
nothing from t. These ε-transitions can be (using standard algorithm) replaced by
symbol transitions. More precisely, the ε-transition from state ql10 to state rl20 can
be interpreted as transition from state ql10 using symbol p[q + 1] to state (r + 1)l20 .
Also, considering the sequence of operations delete and relabel, the ε-transition can
be interpreted as transitions from state ql10 using symbols Σ \ {p[q + 1]} to state
(r+1)l2+1

0 . By contrast, the sequence of transitions for operations delete and insert is
not considered in the simulation, as it cannot find more matches than single operation
relabel. While MNFA skips a leaf “forward”, during the computation of a value in
D, we look “backward”. Note that in MNFA, there can be chains of ε-transitions
that correspond to deleting multiple leaves (siblings). This is done in D by multiple
evaluation of SP . Deleting from the pattern in D is formally given in (5) and (6).

Di,j,0 =Di−1,SP [h],0 +
j − SP [h] + 1

2
: t[i] = p[j] ∧ p[j − 1] = | ∧

∧ 1 ≤ i ≤ 2n ∧ 2 ≤ j ≤ 2m ∧ 1 ≤ h ≤ 2m ∧ SP [h] < j (5)

Di,j,0 =Di−1,SP [h],0 +
j − SP [h] + 2

2
: t[i],p[j] ∈ Σ ∧ t[i] 6= p[j]∧

∧ p[j − 1] = | ∧ 1 ≤ i ≤ 2n ∧ 2 ≤ j ≤ 2m ∧ 1 ≤ h ≤ 2m ∧ SP [h] < j (6)

InMNFA, leaf insertion operation is represented by a pair of transitions and states:
from state jlc to state jl+1

c+1 (read a vertex label from t and record an unbalanced
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symbol) and from state jlc to state jlc−1 (read the bar from t and record a balanced
symbol-bar pair). It is not possible to use any transition besides insert until the
inserted labels and bars are balanced. To track the balance between inserted labels
and bars, the third dimension of D is used. Inserting into the pattern in D is formally
given in (7) and (8).

Di,j,c = Di−1,j,c−1 + 1 : t[i] ∈ Σ ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m ∧ 1 ≤ c ≤ k (7)

Di,j,c = Di−1,j,c+1 : t[i] = | ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m ∧ 0 ≤ c < k (8)

The previous expressions do not limit the values stored in the cells in D. How-
ever, only values between 0 and k are useful. This is summarized in the following
proposition.

Proposition 10 (Distance value representation in D-table). In MNFA, there
exists no state jlc with l > k. Therefore, the field values in the D-table greater than k

can be represented by ∞.

Among the active states in MNFA, there can be those of the same depth but
different level; for example, states 500 and 520. (See Example 11 that shows such a
situation.) However, to solve the inexact 1-degree tree pattern matching problem, we
do not need multiple integers to represent multiple possibly active states jl0 and jl

′

0

in Di,j,0. This is summarized in Lemma 12.

Example 11. LetMNFA be the NFA depicted in Figure 3. After reading string ab|b|,
the set of active states ofMNFA is {000, 1

2
0, 3

1
0, 5

0
0, 5

2
0}.

Lemma 12. Storing only single integer in every field Di,j,c is sufficient for correct
solution of the problem from Definition 3.

Proof. Although MNFA can have multiple active states for the same c and j, only
states with the smallest l are interesting for solving the problem from Definition 3. If
the state jl

′

c where l′ > l is not considered active, no occurrence of the pattern can be
missed, as due to regular structure of MNFA, there is no additional path from such
state jl

′

c to a final state compared to state jlc. Storing only the minimum integer in
D corresponds to considering only the state with the minimum l active.

The simulation ofMNFA for inexact 1-degree tree pattern matching is summarized
in Algorithm 5. See an example of the computation in Table 2.

1 2 3 4 5 6 7 8 9 10 11

a a a c | | | a b | b . . .

0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞
a ∞,∞,∞ 0,∞,∞ 0, 1,∞ 0, 1, 2 1, 1, 2 1, 2,∞ 2,∞,∞ ∞,∞,∞ 0,∞,∞ 1, 1,∞ 1,∞,∞ 1, 2,∞
b ∞,∞,∞ ∞,∞,∞ 1,∞,∞ 1, 2,∞ 1, 2,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 0,∞,∞ ∞,∞,∞ 1,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 1,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 0,∞,∞ ∞,∞,∞
b ∞,∞,∞ ∞,∞,∞ 2,∞,∞ 2,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 1,∞,∞ ∞,∞,∞ 0,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 1,∞,∞ ∞,∞,∞
a ∞,∞,∞ ∞,∞,∞ 2,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞
c ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞

Table 2: Example of dynamic programming computation for k = 2, the tree pattern
from Figure 1a, and a part of the input tree from Figure 1b. An occurrence is found
at position i = 7.
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Algorithm 5 Simulation of 1-degree nondeterministic finite automaton.
Input A string p of length 2m such that p = pref-bar(P ) for tree pattern P over alphabet Σ, a
string t of length 2n such that t = pref-bar(T ) for tree T over alphabet Σ, a non-negative integer
k such that k ≤ m.
Output All positions i ∈ {1, . . . , 2n} in t such that t[i] = | and d(p, t[ST [i] + 1 . . . i]) ≤ k.
1 compute the subtree jump table SP for P using Algorithm 1
2 initialize D according to (2)
3 for each position index i of t:
4 for each position index j of p:
5 compute cell (i, j, c) of D as the minimum from (applicable only)
6 match according to (3) (c = 0 only)
7 relabel according to (4) (c = 0 only)
8 for each counter value c : 0 ≤ c ≤ k:
9 insert into the pattern (the bar is pending) according to (7)
10 insert into the pattern (match the bar) according to (8)
11 delete subtree(s) from the pattern (c = 0 only):
12 h = j − 1
13 while SP [h] < j:
14 consider value according to (5) and (6)
15 h← SP [h]
16 if Di,|p|,0 ≤ k:
17 output i

Theorem 13 (Space complexity). The problem from Definition 3 can be solved
using O(km) space by Algorithm 5.

Proof. During the computation of the value of Di,j,c, only two columns (i-th and
(i− 1)-th) of D are needed in the memory. Each column contains 2m+1 rows (each
for one position in t plus the 0-th row). Each row stores k + 1 integers (each for one
distinct c value), while their possible and useful values are between 0 and k (plus
one additional for all the values greater than k, according to Proposition 10), thus
each of these integers may be represented by ⌊log2(k + 1)⌋ + 1 bits. Therefore, the
entire D-table requires 2(2m + 1)(k + 1)(⌊log2(k + 1)⌋ + 1) bits. Also, SP and p

need to be stored. Array SP contains 2m integers of values between 0 and 2m + 1,
thus requires 2m(⌊log2(2m + 1)⌋ + 1) bits. String p contains 2m characters that are
either the bar or from Σ, thus requires 2m(⌊log2(|Σ| + 1)⌋ + 1) bits. In total, it is
2(2km+2m+k+1)(⌊log2(k+1)⌋+1)+4m(⌊log2(2m+1)⌋+⌊log2(|Σ|+1)⌋+2) bits, i.e.,
O(km log k + log |Σ|). When considering integer and symbol encoding independent
of the tree size and the alphabet, we get O(km).

Theorem 14 (Time complexity). The problem from Definition 3 can be solved in
O(kmn) time by Algorithm 5.

Proof. The subtree jump table is computed in O(m) time. There are O(mn) match
and relabel computations, each needs O(1) time. There are O(kmn) insert computa-
tions, each in O(1) time. The number of delete computations depends, besides mn,
on number of subtree skips, which is O(m). Effectively, the number of subtree skips
is limited by k, as there is no point to skip subtree(s) with more than k vertices.
Therefore, there are O(kmn) delete computations, each takes O(1) time.

Recall that the bar position i in t returned by Algorithm 5 corresponds to the
vertex v in T where v is the root of the found subtree (therefore, it is a correct solution
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of the problem from Definition 3). Additionally, it is possible to obtain v from i in
O(1) time while still having the O(kmn) time complexity of Algorithm 5, e.g., by
adding pointers to vertices of T into pref-bar(T ). This could be done at the cost of
adding 2n to space complexity.

Note 15. Algorithm 5 can be extended for non-unit cost operations in a straightfor-
ward way. When computing the value of a field of D, instead of adding one (for an
edit operation), we add the value corresponding to the cost of the used edit operation.

6 Conclusions

Inspired by techniques from string matching, we showed that the automata approach
can also be used to solve the inexact tree pattern matching problem. To process trees
using (string) automata, we represented trees as strings using the prefix bar notation.
We considered labeled ordered (unranked) trees and 1-degree edit distance where
tree operations are restricted to vertex relabeling, leaf insertion, and leaf deletion.
For simplicity, we used the unit cost for all operations. However, the extension of our
approach to non-unit cost distance was also discussed.

Given a tree pattern P withm vertices, an input tree T with n vertices, and k ≤ m

representing the maximal number of errors, we first proposed a pushdown automaton
that can find all subtrees in T that match P with up to k errors. Then, we discussed
that the pushdown automaton can be transformed into a finite automaton due to its
restricted use of the pushdown store. The deterministic version of the finite automaton
finds all occurrences of the tree pattern in time linear to the size of the input tree.

We also presented an algorithm based on dynamic programming, which was a
simulation of the nondeterministic finite automaton. The space complexity of this
approach is O(mk) and the time complexity is O(kmn), where m is the number of
vertices of the tree pattern, n is the number of vertices of the input tree, and k ≤ m

represents the number of errors allowed in the pattern. In the paper, we also presented
the algorithm for subtree jump table construction for a tree in prefix bar notation
where the arity (rank) of each vertex is not known in advance.

In future work, we aim to study the space complexity of the DFA and the time
complexity of its direct construction in detail. We also want to experimentally evaluate
our algorithms. Bit parallelism can also be explored as way of simulating the NFA
for tree pattern matching.
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