Faster Batched Range Minimum Queries

Szymon Grabowski, Tomasz Kowalski
${ }^{\dagger}$ Lodz University of Technology, Institute of Applied Computer Science, Al. Politechniki 11, 90-924 Łódź, Poland, \{sgrabow|tkowals\}@kis.p.lodz.pl

Abstract

Range Minimum Query (RMQ) is an important building brick of many compressed data structures and string matching algorithms. Although this problem is essentially solved in theory, with sophisticated data structures allowing for constant time queries, there are scenarios in which the number of queries, q, is rather small and given beforehand, which encourages to use a simpler approach. A recent work by Alzamel et al. starts with contracting the input array to a much shorter one, with its size proportional to q. In this work, we build upon their solution, speeding up handling small batches of queries by a factor of 3.8-7.8 (the gap grows with q). The key idea that helped us achieve this advantage is adapting the well-known Sparse Table technique to work on blocks, with speculative block minima comparisons. We also propose an even much faster (but possibly using more space) variant without the array contraction.

Keywords: string algorithms, range minimum query, bulk queries

1 Introduction

The Range Minimum Query (RMQ) problem is to preprocess an array so that the position of the minimum element for an arbitrary input interval (specified by a pair of indices) can be acquired efficiently. More formally, for an array $A[1 \ldots n]$ of objects from a totally ordered universe and two indices i and j such that $1 \leq i \leq j \leq n$, the range minimum query $\mathrm{RMQ}_{\mathrm{A}}(i, j)$ returns $\operatorname{argmin}_{i \leq k \leq j} A[k]$, which is the position of a minimum element in $A[i \ldots j]$. One may alternatively require the position of the leftmost minimum element, i.e., resolve ties in favour of the leftmost such element, but this version of the problem is not widely accepted. In the following considerations we will assume that A contains integers.

This innocent-looking little problem has quite a rich and vivid history and perhaps even more important applications, in compressed data structures in general, and in text processing in particul ich are efficient in both query time and preprocessing space a: as, e.g., suffix trees, two-c in string mining, docume references to these ap]

The RMQ problem lem defined for ordina lowest node being an a equivalent to the LCA transformed into each is relatively easy to no Euler tour over the tre v is equivalent to find visits to u and v during the Eule zs in such succinct data structures nal trees. They have applications ics, Lempel-Ziv parsing, etc. For I (lowest common ancestor) prob, return $L C A(u, v)$, which is the tally, the RMQ problem is linearly mean that both problems can be al to the size o
s of tree T vis
ling the LCA
A spanned bet
on 4$]$. Harel a

[^0]were the first rep swer LCA queries in constant tim uire A significantly simpler algorithr same time and space complexities solution, e.g. constant tim algorithm of into LCA qu uses $2 n+o(n$, e of the LCA/RMQ es can be handled in in this area was the can
 or constant ti several micr Grossi and is time, but an interesti es for RMQ even in linear time, but with m in constant time each, but again with a large cons A separate, but also important point is that if we can replace a heavy tool with a simpler substitute (even if of limited applicability), new ideas may percolate from academia to software industry. Of course, if the queries $\left[\ell_{i}, r_{i}\right]$ are annot answer them faster than in the trivial $O\left(r_{i}-\ell_{i}+1\right)=\quad$ t the problem becomes interesting if they are known beforel batched queries or bulk have applications in stri ; offline (we can also speak about inima (and batched LCA queries) ; and various non-standard pattern matching problems, for

As the ideas from A directly compete with t

We use a standard stated otherwise, the spa
ting point for our solution and we section to presenting them.
1 logarithms are of base 2. If not vords.

et al. algorithm

oroof of Lemma 2), the Alzamel et al. approach starts from 4 into $O(q)$ entries. The key observation is that if no query index i and $i+1$, then, if $A[i] \neq A[i+1], \max (A[i], A[i+1])$ to any of the queries from the batch. This can be generalized of A. Alzamel et al. mark the elements of A which are either a left or a right endpoint of any query and create a new array A_{Q} : for each marked position in A its original value is copied into A_{Q}, while each maximal block in A that does not contain a marked position is replaced by a single entry, its minimum. The relative order of the elements copied from A is preserved in A_{Q}, that is, in A_{Q} the marked elements are interweaved with representatives of non-marked regions between them. As each of q queries is a pair of endpoints, A_{Q} contains up to $4 q+1$ elements (repeating endpoint positions imply a smaller size of A_{Q}, but for relative small batches

[^1]of random queries this effect is rather negligible). In an auxiliary array the function mapping from the indices of A_{Q} into the original positions in A is

For the contracted data, three procedures are proposed. Two of and one online, are based on existing RMQ/LCA algorithms with ing costs and constant time queries. Their practical performance is though. The more interesting variant, ST-RMQ ${ }_{\text {CoN }}$, achieves $O(n+q$ required space (for is claimed to be O code) reveals that entries of A are us nique, from a prad thus in theory the

We come back ple observation: arbitrary ranges the input array A and the
look into the algorithm (a of the contractin s nothing wrong i top bits may no covered, for an array A of size n it is enough to precomp
 ssed as $O(q)$ word orithm. Bender at mnge R is the min \quad of the only requirer is $O(n \log n)$ ranges to handle any RMQ. More precisely, fory) compute the minima for all valid $A\left[i \ldots i+2^{k}-1\right](k=0,1, \ldots)$ ranges, and then for any $A[i \ldots j]$ it is enough to compute the minimum of two already computed minima: for $A\left[i \ldots i+2^{k^{\prime}}-1\right]$ and $A\left[j-2^{k^{\prime}}+1 \ldots j\right]$, where $k^{\prime}=\lfloor\log (j-i)\rfloor$. Applying this technique for the contracted array would yield $O(q \log q)$ time and space for this step. Finally, all the queries can be answered with the described technique, in $O(q)$ time. In the cited work, however, the last two steps are performed together, with re-use of the array storing the minima. Due to this clever trick, the size of the helper array is only $O(q)$.

3 Our algorithms

3.1 Block-based Sparse Table with the input array contraction

On a high level, our first algorithm consists of the following four steps:

1. Sort the queries and remap them with respect to the contracted array's indices (to be obtained in step 2).
2. Contract A to obtain A_{Q} of size $O(q)$ (integers).
3. Divide A_{Q} into equal blocks of size k and for each block B_{j} (where $j=1,2, \ldots$) find and store the positions of $O(\log q)$ minima, where i th value $(i=1,2, \ldots)$ is the minimum of $A_{Q}\left[1+(j-1) k \ldots(j-1) k+\left(2^{i-1}-k\right) k\right]$, i.e., the minimum over a span of 2^{i-1} blocks, where the leftmost block is B_{j}.
4. For each query $\left[\ell_{i}, r_{i}\right]$, find the minimum m_{i}^{\prime} over the largest span of blocks fully included in the query and not containing the query endpoints. Then, read the minimum of the block to which ℓ_{i} belongs and the minimum of the block to which r_{i} belongs; only if any of them is less than m_{i}^{\prime}, then scan (at most) $O(k)$ cells of A. 0 find the true minimum and return its position.
as $n+O(q \log q)$ in the cited work, to stress that the constant associated ginal array A is low.
of the current work also practiced it in a variant of the SamSAMi full-text

In the following paragraphs we are going to describe those steps in more detail, also pointing out the differences
(1) Sorting/remapping queries pair of 32 -bit integers: its value (p former 4 -byte part is the key for In the serial implementation, we In the parallel implementation, implemented in GNU libstdc++ sorted endpoint list $E[1 \ldots 2 q]$, w do not sort the queries, which is 1
 d Alzamel et al.'s one. ndpoints is represented as a query list Q. The re satellite data. dix sort variant. ct Exact variant ult, we obtain a ${ }^{r}$. Alzamel et al. its in A.
ima of all areas ontains thus (up $A\left[E_{i}^{x} \ldots E_{i+1}^{x}\right]$, in order of growing i. A_{Q} in to) $2 q-1$ entries, twice less than in Alzamel et al.'s solution. Like in the preceding solution, we also keep a helper array mapping from the indices of A_{Q} into the original positions in A.
(3) Sparse Table on blocks. Here we basically follow Alzamel et al. in their ST$R M Q_{\text {con }}$ variant, with the only difference that we work on blocks rather than individual elements of A_{Q}. For this reason, this step takes $O(q+(q / k) \log (q / k))=$ $O(q(1+\log (q / k) / k))$ time and $O((q / k) \log (q / k))$ space. The default value of k, used in the experiments, is 512 .
(4) Answering queries. Clearly, the smaller of two accessed minima in the Sparse Table technique is the minimum over the largest span of blocks fully included in the query and not containing the query endpoints. To find the minimum over the whole query we perform speculative reads of the two minima of the extreme blocks of our query. Only if at least one of those values is smaller than the current minimum, we need to scan a block (or both blocks) in $O(k)$ time. This case is however rare for an appropriate value of k. This simple idea is crucial for the overall performance of our scheme. In the worst case, we spend $O(k)$ per query here, yet on average, assuming uniformly random queries over A, the time is $O((k / q) \times k+(1-k / q) \times 1)=O\left(1+k^{2} / q\right)$, which is $O(1)$ for $k=O(\sqrt{q})$.

Let us sum up the time (for a serial implementation) and space costs. A scan over array A is performed once, in $O(n)$ time. The radix sort applied to our data of $2 q$ integers from $\{1, \ldots, n\}$ takes (in theory) $O(q \max (\log n / \log q, 1))$ time. Alternatively, introsort from $\mathrm{C}++$ standard library (i.e., the std::sort function) would yield $O(q \log q)$ time. To simplify notation, the $\operatorname{Sort}(q)$ term will further be used to denote the time to sort the queries and we also introduce $q^{\prime}=q / k . A_{Q}$ is created in $O(q)$ time. Building the Sparse Table on blocks adds $O\left(q+q^{\prime} \log q^{\prime}\right)$ time. Finally, answering queries requires $O(q k)$ time in the worst case and $O\left(q+k^{2}\right)$ time on average. In total, we have $O\left(n+\operatorname{Sort}(q)+q^{\prime} \log q^{\prime}+q k\right)$ time in the worst case. The extra space is $O\left(q^{\prime} \log q^{\prime}\right)$.

Let us now consider a generalization of the doubling technique in Sparse Table (a variant that we have not implemented). Instead of using powers of 2 in the formula $A_{Q}\left[1+(j-1) k \ldots(j-1) k+\left(2^{i-1}-k\right) k\right]$, we use powers of an arbitrary integer $\ell \geq 2$ (in
which is minimized for $\ell=\max \left(\log q^{\prime} /\left(k \log \log q^{\prime}\right), 2\right)$. With k small enough to have $\ell=\log q^{\prime} /\left(k \log \log q^{\prime}\right)$, we obtain $O\left(n+\operatorname{Sort}(q)+q^{\prime} \log q^{\prime} / \log \log q^{\prime}+q k\right)$ overall time and the required extra space is $O\left(q^{\prime} \log q^{\prime} / \log \log q^{\prime}\right)$.

If we focus on the average case, where the last additive term of the worst-case time turns into k^{2} / q, it is best to take $k=\sqrt{q}$, which implies $\ell=2$. In other words, this idea has its niche only considering the worst-case time, where for a small enough k both the time and the space of the standard block-based Sparse Table solution are improved.

3.2 Block-based Sparse Table with no input array contraction

This algorithm greatly simplifies the one from the previous subsection: we do not contract the array A and thus also have no need to sort the queries. Basically, we reduce the previous variant to the last two stages. Naturally, this comes at a price: the extra space usage becomes $O((n / k) \log (n / k))$ (yet the optimal choice of k may be different, closer to \sqrt{n}). Experiments will show that such a simple idea offers very competitive RMQ times.

Let us focus on the space and time complexities for this variant, for both the worst and the average case. The analysis resembles the one from the previous subsection. We have two parameters, n and k, and two stages of the algorithm. The former stage takes $O(n+(n / k) \log (n / k))$ time, the latter takes $O(q k)$ time in the worst case and $O\left(q\left(1+k^{2} / n\right)\right)$ on average (which is $O(q)$ if $k=O(\sqrt{n})$). In total we have $O(n+(n / k) \log (n / k)+q k)$ time in the worst case and $O(n+(n / k) \log (n / k)+q)$ time on average, provided in the latter case that $k=O(\sqrt{n})$. The space is $O((n / k) \log (n / k))$. To minimize both the time and the space for the average case we set $k=\Theta(\sqrt{n})$. Then the average time becomes $O(n+\sqrt{n} \log \sqrt{n}+q)=O(n+q)$ and the space is $O(\sqrt{n} \log n)$.

3.3 Multi-leve

The variant from from the simplest

The idea is to then apply the do assume that k_{1} di

Cable

eralized to multiple block levels. We start of blocks with two levels.
k_{1} non-overlapping blocks of size k_{1} and arse Table on larger blocks, of size k_{2}. We

The first stage, finding the minima for blocks of size k_{1}, takes $O(n)$ time. The second stage, working on blocks of size k_{2}, takes $O\left(n / k_{1}+\left(n / k_{2}\right) \log \left(n / k_{2}\right)\right)$ time. The third stage answers the queries; if we are unlucky and one or two blocks of size k_{2} have to be scanned, the procedure is sped up with aid of the precomputed minima for the blocks of size k_{1}. The query answering takes thus $O\left(q\left(k_{2} / k_{1}+k_{1}\right)\right)$ time in the worst case and $O(q)$ time on average if $\left(k_{2} / n\right) \times\left(k_{2} / k_{1}+k_{1}\right)=O(1)$. The condition on the average case becomes clear when we notice that the probability of the unlucky case is $\Theta\left(k_{2} / n\right)$ and checking (up to) two blocks takes $O\left(k_{2} / k_{1}+k_{1}\right)$ time. Fulfilling the given condition implies that $k_{1} k_{2}=O(n)$ and $k_{2} / k_{1}=O\left(n / k_{2}\right)$.

Our goal is to find such k_{1} and k_{2} that the extra space is minimized but the average time of $O(n+q)$ preserved. To this end, we set $k_{1}=\sqrt{n} / \log ^{1 / 3} n, k_{2}=\sqrt{n} \log ^{2 / 3} n$, and for these values the average time becomes $O\left(n+n / k_{1}+\left(n / k_{2}\right) \log \left(n / k_{2}\right)+q\right)=$ $O(n+q)$. The space is $O\left(n / k_{1}+\left(n / k_{2}\right) \log \left(n / k_{2}\right)\right)=O\left(\sqrt{n} \log ^{1 / 3} n\right)$.

Figure 1. Running times for $\mathrm{ST}_{-} \mathrm{RMQ}_{\mathrm{CoN}}$ and $\mathrm{BbST}_{\mathrm{CoN}}$ with varying number to $32 \sqrt{n}$ (left figures) and from $64 \sqrt{n}$ to $1024 \sqrt{n}$ (right figures), where n is 10 or 1 billion (bottom figures)

Note that we preserved the average time of the variant from reduced the extra space by a factor of $\log ^{2 / 3} n$. Note also that the cannot be reduced for any other pair of k_{1} and k_{2} such that $k_{1} k_{2}$

We can generalize the presented scheme to have $h \geq 2$ level choose h parameters, $k_{1}<\ldots<k_{h}$, such that each k_{i} divides k_{i+1} non-overlapping blocks of size $k_{i}, 1 \leq i<h$, are first computed, and then also the minima for blocks of size k_{h}, their doubles, quadruples, and so on. The $O(q)$ average time for query answering now requires that $\left(k_{h} / n\right) \times\left(k_{h} / k_{h-1}+k_{h-1} / k_{h-2}+\ldots+k_{2} / k_{1}+\right.$ $\left.k_{1}\right)=O(1)$. We set $k_{1}=\sqrt{n} / \log ^{1 /(h+1)} n$ and $k_{i}=\sqrt{n} \log ^{(i-1) /(h-1)-1 /(h+1)} n$ for all $2 \leq i \leq h$, which gives $k_{h}=\sqrt{n} \log ^{h /(h+1)} n$. Let us suppose that $h=O(\log \log n)$. The aforementioned condition is fulfilled, the average time is $O(n+q)$, and the space is $O\left(n / k_{1}+n / k_{2}+\ldots+n / k_{h-1}+\left(n / k_{h}\right) \log \left(n / k_{h}\right)\right)=O\left(n / k_{1}+\left(n / k_{h}\right) \log \left(n / k_{h}\right) n\right)=$ $O\left(\sqrt{n} \log ^{1 /(h+1)} n\right)$. By setting $h=\log \log n-1$ we obtain $O(\sqrt{n})$ words of space.

4 Experimental results

In the experiments, we followed the methodol y A stores a permutation of $\{1, \ldots, n\}$, obtained from the init e by swapping $n / 2$ randomly selected pairs of elements. The where ℓ_{i} and r_{i} are uniformly randomly drawn f

q (in 1000s)	stage 1	stages $1-2$	stages 1-3	stages 1-4
$n=100,000,000$				
320	1.4	95.9	95.9	100.0
10240	23.5	92.5	93.0	100.0
$n=1,000,000,000$				
32	0.4	99.6	99.6	100.0
1024	13.8	96.5	96.8	100.0
32768	59.0	87.9	88.6	100.0

Table 1. Cumulative percentages of the execution times for the successive stages of $\mathrm{BbST}_{\mathrm{con}}$ with the fastest serial sort (kxsort). The default value of k (512) was used. Each row stands for a different number of queries (given in thousands).
the former index is greater than the latter,

number of queries at $q=128 \sqrt{n})$.
le with Contracgcc 6.3.0 with downloaded from conducted on a GHz CPU and 32 GB of Professional. All presented hes in between.
lt settings ($k=512$, kxsort s of the input array A are e execution times for small s of q. We can see that the ith the number of queries, the selection was leaned Im is several times faster
percentages of the exeon with default settings, he relative impact of the contraction (stage 2) is ance in the
sort, was u
in the first stage) against ST-RMC used, 100 million and 1 billion. Th values of q while the right ones cor

 the overall timings are less sensitive to the cho optimal k can be found significantly below \sqrt{n}. serial regime, were applied in the experiment sho ++ 's qsort and std::sort, kxsort, _-gnu_parallel::s parallel stable sort (pss). The function qsort, as it is easy to guess, is be sort. The other sort from the C++ standard library, std::sort, impleme which is a hybrid of quick sort and heap sort. Its idea is to run quick so
 it gets into trouble on some pathological data (which is detected when the recursion stack exceeds some threshold), switch to heap sort. In this way, std::sort works in $O(n \log n)$ time in the worst case. The next contender, kxsort, is an efficient MSD radix sort. The last two sorters are parallel algorithms, but for this test they are run with a single thread. The gnu sort is a multiway mergesort (exact variant) from the

Figure 2. Ratio of running times to minimal running time for $\mathrm{BbST}_{\text {Con }}$ for several values of the block size k and varying the number of queries q, from \sqrt{n} to $1024 \sqrt{n}$, where n is 100 million (left figure) or 1 billion (right figure)

Figure 3. Impact of the sort algorithm on the running times of $\mathrm{BbST}_{\text {con }}$. The nur q varies from \sqrt{n} to $32 \sqrt{n}$ (left figures) and from $64 \sqrt{n}$ to $1024 \sqrt{n}$ (right figures), million (top figures) or 1 billion (bottom figures)

GNU libstdc++ parallel mode library. Finally, Intel's pss is a parallel We use it in the OpenMP 3.0 version.

[^2]

Figure 4. Impact of the number of threads in _-gnu_parallel::sort and in creating A_{Q} (by independent scanning for minima in contiguous areas of A) on the overall performance of $\mathrm{BbST}_{\mathrm{coN}}$, for different number of queries q, where n is 100 million (left figure) or the logarithmic scale on the Y-axis.

For the last experiment with $\mathrm{BbST}_{\text {con }}$, we varying the number of threads in $\{1,2, \ldots, 8,1$ we took the faster parallel sort, _-gnu_parallel::s from parallelism. The second stage computes in eas of A and the third stage correspondingly ha queries is handled in an embarassingly parallel n improves up to 8 threads (as the test machine but the overall speedups compared to the se around factor 2 or slightly more.

Finally, we ran a preliminary test of the using the parameters of $k=\{4096,16384,65$ value of k fits better the smaller value of n ar larger n our timings were slightly unpredictabl
 we can easily see the po
he largest tested numbe
parallel mode, ng the queries es also benefit contiguous arally, answering he largest tested numbe Changing r case increases the time ratio to well over 8 -fold! he memory use (apart from input array A and the set of variants. BbST is insensitive here to q. The parameter k was $\mathrm{f} \mathrm{BbS}_{\mathrm{con}}$. As expected, the space for $\mathrm{BbST}_{\text {con }}$ grows linearly succinct for the tested number of queries $(q \geq \sqrt{n})$, even if for ${ }_{N}$ would easily win in this respect.

5 Final remarks

We have proposed simple yet efficient algorithms for bulk range minimum queries. Experiments on random permutations of $\{1, \ldots, n\}$ and with ranges chosen uniformly random over the input sequence show that one of our solutions, $\mathrm{BbST}_{\text {CoN }}$, is from 3.8 to 7.8 times faster than its predecessor, ST-RMQ ${ }_{\text {con }}$ (the gap grows with increasing the number of queries). The key idea that helped us achieve this advantage is adapting the well-known Sparse Table technique to work on blocks, with speculative block minima comparisons.

Figure 5. Running times for BbST for several values of the block size k and varying the number of queries q, from \sqrt{n} to $32 \sqrt{n}$ (left figures) and from $64 \sqrt{n}$ to $1024 \sqrt{n}$ (right figures), where n is 100 million (top figures) or 1 billion (bottom figures)

variant	extra space as $\%$ of the input	
with parameter	$n=100,000,000$	$n=1,000,000,000$
BbST $_{\text {CoN }}, q \approx \sqrt{n}$	0.10	0.03
BbST $_{\text {CON }}, q \approx 32 \sqrt{n}$	3.23	1.03
BbST $_{\text {CON }}, q \approx 1024 \sqrt{n}$	103.68	33.20
BbST, $k=2048$	1.56	1.86
BbST, $k=4096$	0.73	0.88
BbST, $k=8192$	0.34	0.42
BbST, $k=16,384$	0.16	0.20
BbST, $k=32,768$	0.07	0.09

Table 2. Memory use for the two variants, as the percentage of the space occupied by the input array A (which is $4 n$ bytes). The parameter k was set to 512 for $\mathrm{BbST}_{\text {con }}$.

Not surprisingly, extra speedups can be obtained with parallelization, as shown by our preliminary experiments. This line of research, however, should be pursued further.

The variant BbST, although possibly not as compact as $\mathrm{BbST}_{\text {con }}$ (when the number of queries is very small), proves even much faster. We leave running more thorough experiments with this variant, including automated selection of parameter k, as a future work.

Acknowledgement

The work was supported by the Polish National Science Centre under the project DEC-2013/09/B/ST6/03117 (both authors).

References

1. P. Afshani and N. Sitchinava: I/O-efficient range minima queries, in SWAT, R. Ravi and I. L. Gørtz, eds., vol. 8503 of LNCS, Springer, 2014, pp. 1-12.
2. M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, and S. P. Pissis: How to answer a small batch of RMQs or LCA queries in practice. CoRR, abs/1705.04589 2017, accepted to IWOCA'17.
3. M. A. Bender and M. Farach-Colton: The LCA problem revisited, in LATIN, G. H. Gonnet, D. Panario, and A. Viola, eds., vol. 1776 of LNCS, Springer, 2000, pp. 88-94.
4. H. Ferrada and G. Navarro: Improved range minimum queries. Journal of Discrete Algorithms, 43 2017, pp. 72-80.
5. J. Fischer and V. Heun: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput., 40(2) 2011, pp. 465-492.
6. J. Fischer, V. Mäkinen, and N. Välimäki: Space efficient string mining under frequency constraints, in ICDM, IEEE Computer Society, 2008, pp. 193-202.
7. H. N. Gabow, J. L. Bentley, and R. E. Tarjan: Scaling and related techniques for geometry problems, in STOC, ACM, 1984, pp. 135-143.
8. S. Grabowski and M. Raniszewski: Sampled suffix array with minimizers. Softw., Pract. Exper., 2017, accepted.
9. R. Grossi and G. Ottaviano: Design of practical succinct data structures for large data collections, in SEA, V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, eds., vol. 7933 of LNCS, Springer, 2013, pp. 5-17.
10. D. Harel and R. E. Tarjan: Fast algorithms for finding nearest common ancestors. SIAM J. Comput., 13(2) 1984, pp. 338-355.
11. K. Sadakane: Compressed suffix trees with full functionality. Theory Comput. Syst., 41(4) 2007, pp. 589-607.

[^0]: University in Prague, Czec

[^1]: ${ }^{1}$ On an Intel Xeon 2.4 GHz , running on one core (H. Ferrada, personal comm.).

[^2]: ${ }^{6}$ https://software.intel.com/en-us/articles/
 a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp

