
Online Recognition of Dictionary with One Gap

Amihood Amir1,2, Avivit Levy3, Ely Porat1, and B. Riva Shalom3

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
E-mail: {amir, porately}@cs.biu.ac.il

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218.
3 Department of Software Engineering, Shenkar College, Ramat-Gan 52526, Israel.

E-mail: {avivitlevy, rivash}@shenkar.ac.il

Abstract. We formalize and examine the online Dictionary Recognition with One Gap
problem (DROG) which is the following. Preprocess a dictionary D of d patterns, where
each pattern contains a special gap symbol that can match any string, so that given a
text that arrives online, a character at a time, we can report all the patterns fromD that
have not been reported yet and are suffixes of the text that has arrived so far, before
the next character arrives. The gap symbols are associated with bounds determining
the possible lengths of matching strings. Online DROG captures the difficulty in a
bottleneck procedure for cyber-security, as many digital signatures of viruses manifest
themselves as patterns with a single gap.
Following the work of [4] on the closely related online Dictionary Matching with One
Gap problem (DMOG), we provide algorithms whose time cost depends linearly on
δ(GD), where GD is a bipartite graph that captures the structure of D and δ(GD) is
the degeneracy of this graph. These algorithms are of practical interest since although
δ(GD) can be as large as

√
d, and even larger if GD is a multi-graph, it is typically a

very small constant in practice. Finally, when δ(GD) is large we describe other efficient
solutions.

1 Introduction

Cyber-security is a critical modern challenge. Network intrusion detection systems
(NIDS) perform protocol analysis, content searching, recognizing and matching, in
order to detect harmful software. Such malware may appear non-contiguously, scat-
tered across several packets, which necessitates matching gapped patterns.

A gapped pattern P is one of the form P1 {α, β} P2, where each subpattern P1,
P2 is a string over alphabet Σ, and {α, β} matches any substring of length at least α
and at most β, which are called the gap bounds. Gapped patterns may contain more
than one gap, however, those considered in NIDS systems typically have at most one
gap, and are a serious bottleneck in such applications [22,4]. Therefore, an efficient
solution for this case is of special interest.

Though the gapped pattern matching problem arose over 20 years ago in computa-
tional biology applications [20,14] and has been revisited many times in the interven-
ing years (e.g. [19,8,17,7,12,21,23]), network intrusion detection systems applications
necessitate a different generalization of the problem. These applications motivate the
dictionary matching with one gap (DMOG) problem defined by [4], which is a variant
of the well-studied dictionary matching problem (see, e.g. [1,2,9,3,11]). The dictionary,
which is the set of d gapped patterns to be detected, could be quite large.

The DMOG problem was, therefore, studied [6,15,4] for both the offline and the
online settings. Lower bounds on the complexity of this problem as well as (almost)
matching upper bounds were described in [4]. These lower bounds expose a hidden
parameter of input dictionary that sheds light on the reason why this problem has

Amihood Amir, Avivit Levy, Ely Porat, B. Riva Shalom: Online Recognition of Dictionary with One Gap, pp. 3–17.

Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2017

resisted many researcher’s attempts at finding a definitive efficient solution on the
one hand, while on the other hand, enables describing the solutions in terms of this
parameter. We elaborate on this issue in Section 2.

The definition of the DMOG problem requires reporting all occurrences of the
dictionary patterns. This is a necessary requirement in order to remove all viruses
from a given source. However, the size of the input may be quite large if dictionary
patterns occur many times in the source. The process of malware detection is required
to be very fast, and in many cases we would prefer a faster scan in order to determine
whether the source stream is infected by viruses or not. We would also like to know
which viruses attacked the source in case it is affected, so that an appropriate (slower)
exhaustive infection recovery procedure can be applied on the source. Motivated by
this need of NIDS applications, we focus in this paper on the recognition of the set of
viruses that exists in the source, and formally define the Dictionary Recognition with
One Gap problem (DROG) as follows:

Definition 1. The Dictionary Recognition with One Gap problem (DROG) is:
Input: A text T of length |T | over alphabet Σ, and a dictionary D of d gapped

patterns P1, . . . , Pd over alphabet Σ, where each pattern has at most one gap.
Output: The maximal subset S ⊆ D, where pattern Pi ∈ S appears at least once in T .

We study the more practical online DROG problem. The dictionary D can be
preprocessed in advance, resulting in a data structure. Given this data structure the
text T is presented one character at a time, and when a character arrives only the
subset of patterns with a match ending at this character that were not previously
reported should be reported before the next character arrives. Two cost measures are
of interest: a preprocessing time and a time per character.

Preprocess Total Query Time Algorithm Remark
Time Type

[16] none Õ(|T |+ |D|) online
reports only

first occurrence

[23] O(|D|) Õ(|T |+ d) online
reports only

first occurrence

[13] O(|D|) O(|T | · lsc+ socc) online
reports one occurrence
per pattern and location

[5] Õ(|D|) Õ(|T |(β − α) + op) offline DMOG

[15] O(|D|) Õ(|T |(β∗ − α∗) + op) offline DMOG
[4]

O(|D|) Õ(|T | · δ(GD) · lsc+ op) online DMOG

[4] O(|D|) Ω(|T | · δ(GD)1−o(1) + op) online
DMOG

O(|D|) Ω(|T | · (β − α)1−o(1) + op) or offline

This
paper

O(|D|) Õ(|T | · δ(GD) · lsc+ d) online DROG

Table 1. Comparison of previous work and some new results. The parameters: lsc is the longest
suffix chain of subpatterns inD, socc is the number of subpatterns occurrences in T , op is the number
of pattern occurrences in T , α∗ and β∗ are the minimum left and maximum right gap borders in the
non-uniformly bounded case, δ(GD) is the degeneracy of the graph GD representing dictionary D.

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 5

Previous Work. Finding efficient solutions for the problem has proven to be a dif-
ficult algorithmic challenge as little progress has been obtained even though many
researchers in the pattern matching community and the industry have tackled it.
Table 1 describes a summary and comparison of previous work. It illustrates that
previous formalizations of the problem until that of [4], either do not enable detec-
tion of all intrusions or are incapable of detecting them in an online setting, and
therefore, are inadequate for NIDS applications. Table 1 also demonstrates that the
upper bounds of [4] for the DMOG problem are essentially optimal (assuming some
popular conjectures). Most importantly, Table 1 demonstrates that no previous work
has been done on the DROG problem as formalized in this paper.

Our Results. Our goal in this paper is that the time per character cost would be
independent of the number of occurrences of dictionary patterns in the text. This
is a nontrivial requirement as we can no longer afford costly operations that were
accounted for the size of the output for the detection of dictionary patterns at query
time in the online DMOG solutions of [4]. In our case such costly operations can be
afforded for newly detected patterns only. This raises the difficulty of limiting the de-
tection process to the dynamically changing set of yet undetected dictionary patterns.

Paper Organization. In Section 2 we give a brief review of the solutions to the
online Dictionary Matching with One Gap (DMOG) problem suggested by [4]. Sec-
tion 3 describes our solution for the online Dictionary Recognition with One Gap
(DROG) problem, which is based on the solutions described in Section 2 for the
DMOG problem with changes and adoptions in order to fulfill the requirement of the
DROG problem. Section 4 concludes the paper and poses some open problems.

2 An Overview of the DMOG Solutions

In this section we give a brief description of the DMOG solutions of [4]. The reader
who is familiar with their ideas and techniques can skip this section.

The Bipartite Graph GD. The first baseline idea of their solutions is to represent
the dictionary as a graph GD = (V,E), where the subpatterns are the vertices, and
there is an edge (u, v) ∈ E if and only if there is a pattern P ∈ D, where P 1 is
associated with node u and P 2 is associated with v. Moreover, the graph GD = (V,E)
is converted to a bipartite graph by creating two copies of V called L (the left vertices)
and R (the right vertices) in the following way. For every edge (u, v) ∈ E, an edge is
added to the bipartite graph from uL ∈ L to vR ∈ R, where uL is a copy of u and vR
is a copy of v.

Graph Orientations. The next baseline idea is to preprocess GD using linear time
greedy algorithm suggested by Chiba and Nishizeki [10] to obtain a δ(GD)-orientation
of the graph GD, where an orientation of an undirected graph G = (V,E) is called a
c-orientation if every vertex has out-degree at most c ≥ 1. The orientation is viewed
as assigning “responsibility” for all data transfers occurring on an edge to one of its
endpoints, depending on the direction of the edge in the orientation (regardless of the
actual direction of the edge in the input graph GD). The notation of an edge e = (u, v)
is as oriented from u to v, while e could be directed either from u to v or from v to
u. The vertex u is called a responsible-neighbour of v and v an assigned-neighbour

6 Proceedings of the Prague Stringology Conference 2017

of u. The notion of graph degeneracy δ(GD) is defined as follows. The degeneracy
of an undirected graph G = (V,E) is δ(G) = maxU⊆V minu∈U dGU

(u), where dGU
is

the degree of u in the subgraph of G induced by U . In words, the degeneracy of G
is the largest minimum degree of any subgraph of G. A non-multi graph G with m
edges has δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a

multi-graph can be much higher.

Subpatterns Detection Mechanism. An Aho-Corasick (AC) Automaton [1] is
used for determining when a subpattern arrives using a standard binary encoding
technique, so that each character arrival costs O(log |Σ|) worst-case time for rec-
ognizing the arrival of a dictionary subpattern. For simplicity of exposition, |Σ| is
assumed to be constant. Since each arriving character may correspond to the arrival
of several subpatterns when a subpattern is a proper suffix of another, the complex-
ities are phrased in terms of lsc, which is the maximum number of vertices in the
graph that arrive due to a character arrival. The lsc factor was used even in solutions
for simplified relaxations of the DMOG problem [13]. Another issue is that, since
subpatterns may be long, a delay must be accommodated in the time a vertex corre-
sponding to a second subpattern is treated as if it has arrived, thus inducing a minor
additive space usage.

Two variants of the gapped dictionary are considered having either uniformly
bounded gap borders or non-uniformly bounded gap borders. In the former case, all
gapped patterns of the dictionary have the same gaps borders {α, β}, whereas in
the latter, every pattern Pi has its own gap borders {αi, βi}. Two sets of solutions

are described: for sparse graphs, where δ(GD) = o(
√
d), and for dense graphs. The

solutions for these four cases are described hereafter.

2.1 DMOG for Sparse Graphs

Uniformly Bounded Gaps. The data structures used in this case are:

1. For each vertex v ∈ R, a list Lv maintaining all responsible-neighbours of v, u ∈ L,
that arrived at least α and at most β time units ago.

2. For each vertex u ∈ L, an ordered list of time stamps τu of the times u arrived
within the appropriate gap to the current time unit (text index).

3. The list Lβ of delayed vertices u ∈ L for at least α time units before they are
considered.

The Lv lists are updated by deleting u nodes that arrived more than β time units
ago and inserting u nodes that just arrived α time units ago and do not appear
already in the data structure. Therefore, when an appearance of node v is detected,
all the patterns u{α, β}v for u ∈ Lv are reported according to the time stamps in
τu, as the output includes all appearances of the gapped patterns. In addition, the
edges for which v is their responsible-neighbour are scanned, and those for which the
assigned-neighbour u is marked as arrived, are reported.

The removal of u ∈ L from Lv must be delayed by at least mv − 1 time units,
where mv is the length of the substring represented by v. If u is removed from Lv

after a delay of mv − 1, then we may be forced to remove a large number of such
vertices at a given time. Therefore, the removal of u is delayed by M − 1 time units,
where M is the length of the longest subpattern that corresponds to a vertex in R.

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 7

Time and Space Complexity: [4] show that using the above data structures, the
DMOG problem with uniformly bounded gap borders can be solved in O(|D|) prepro-
cessing time, O(δ(GD)·lsc+op) time per text character, where op is the number of pat-
terns that are reported due to the character arriving, and O(|D|+lsc·(β−α+M)+α)
space.

Non-Uniformly Bounded Gaps. In the case of non-uniformly bounded gaps, each
edge e = (u, v) has its own boundaries {αe, βe}, yielding a multi-graph. Let α∗ and β∗

be the minimum left and maximum right gap borders in the non-uniformly bounded
dictionary. A framework similar to the previous subsection is used, yet, instead of the
list Lv, a fully dynamic data structure Sv supporting 4-sided 2-dimensional orthogonal
range reporting queries, is used for saving the occurrences of responsible neighbour
of v.

For each responsible-neighbour u ∈ L of v, that arrived in the active window in
time t, where e = (u, v), the point (t+αe+1, t+βe+1) is inserted into Sv, yielding the
information saved is the intervals in which an occurrence of v implies an occurrence of
a gapped pattern. When a vertex v ∈ R arrives at time t, a range query [0, t]× [t,∞]
over Sv returns the points that have (x, y) coordinates in the given range, thus a
pattern appearance.

To implement Sv, a Mortensen’s data structure [18] is used. It supports the set of

|Sv| points from R
2 with O(|Sv| log7/8+ǫ |Sv|) words of space, insertion and deletion

time of O(log7/8+ǫ |Sv|) and O(log |Sv |
log log |Sv |

+ op) time for range reporting queries on Sv,

where op is the size of the output.

Time and Space Complexity: [4] show that using the above, the DMOG problem with
non-uniformly bounded gap borders on a graph G with m edges (gapped patterns)
and n vertices can be solved with O(|D|) preprocessing time, Õ(δ(G) + op) time per
query vertex, where op is the number of edges reported due to the vertex arriving,
and Õ(m+ δ(G)(β∗ − α∗) + α∗) space.

2.2 DMOG for Dense Graphs

In the case of dense graphs where δ(GD) = Ω(
√
d), the solutions described above

require O(lsc ·
√
d) time. For such cases a different method for orienting the graph

is suggested by [4], referred to as a threshold orientation, where a vertex in GD is

defined as heavy if it has more than
√

d/lsc neighbours, and light otherwise. Hence,

the number of heavy vertices is less than
√
lsc · d. An edge where at least one of its

endpoints is light is oriented to leave the light vertex. For such edges the algorithms
from the previous subsection are applied in Õ(lsc+

√
lsc · d+ op) time complexity.

Reporting edges between two heavy vertices is done differently. Although the
number of vertices from L that arrive at the same time can be as large as lsc and
the number of neighbours of each such vertex can be very large, the number of heavy
vertices in R is still less than

√
lsc · d. So [4] use a batched scan on all vertices of R

to keep the time cost low. The vertices from L are ordered in a tree T according to
suffix relations between the subpatterns associated with the vertices, where a vertex
u is an ancestor of a vertex u′ if and only if the subpattern associated with u is a
suffix of the subpattern associated with u′.

8 Proceedings of the Prague Stringology Conference 2017

Uniformly Bounded Gaps. Let R = {v1, v2, . . .}, where |R| = O(
√
lsc · d), since

we only deal with heavy vertices.
For this case, the Lv,Lβ, τu data structures are used as well as the framework of the

solution to DMOG for bounded gaps in sparse graphs, as described in Subsection 2.1.
In addition, in order to add vertices that are suffix of each other to Lv in a single
operation, the following data structures are also used:

1. For each vertices u ∈ L and vi ∈ R such that e = (u, vi) ∈ E, a pointer next(e)
is set to an edge e′ = (u′, vi) where u

′ is the lowest proper ancestor of u in T such
that there is an edge from u′ to vi. If no such vertex u′ exists then next(e) = null.
All these pointers can be added in linear time, and their space usage is linear.

2. For each vertex u ∈ L, an array Au[] of size |R| is built, where Au[i] is a pointer
to a list of edges connecting all ancestors of u in T (which may be u) to vi. If
e = (u, vi) ∈ E, then Au[i] points to e = (u, vi), and the list of all ancestors of u in
T that have edges touching vi is obtained through the next(·) pointers. Similarly,
if there is no edge (u, vi) then the entry of Au[i] points to the edge (u′, vi) where
u′ is the lowest proper ancestor of u in T such that there is an edge from u′ to vi.
If no such edge exists then Au[i] = null.

The Au[]s arrays are constructed by filling Au[i] while consulting Au′ [], where u′

is a proper ancestor of u and Au′ [] was already filled. In order to reduce space usage
of the Au arrays, the Au arrays are constructed during preprocessing time only for

specially chosen O(
√

d
lsc
) vertices so that the time cost for constructing the rest of

the Au arrays online is O(
√
lsc · d).

Time and Space Complexity: [4] show that the DMOG problem with one gap and

uniform gap borders can be solved with O(|D|) preprocessing time, O(lsc+
√
lsc · d+

op) time per text character, and O(|D|+ lsc(β − α +M) + α) space.

Non-Uniformly Bounded Gaps. Recall that for the non-uniform gaps, the gap
boundaries of an edge e are denoted by αe and βe. For the case of dense graphs and
unbounded gaps [4] used different data structures:

1. For each e = (u, vi) ∈ E, an array nexte of size βe − αe + 1 is maintained,
where for αe ≤ j ≤ βe, nexte[j] points to an edge e′ = (u′, vi) such that u′ is the
lowest ancestor of u in T (possibly u itself) such that there is an edge e′ = (u′, vi)
where αe′ ≤ j ≤ βe′ and the pointers nexte[j] do not form a loop. If no such edge
exists then nexte[j] = null. (For simplicity, the indices of the array are treated as
starting from αe and ending at βe)

2. For each pair of vertices u ∈ L and vi ∈ R, an array Wu,i of size β∗ − α∗ + 1 is
maintained. If e = (u, vi) ∈ E, then Wu,i[j] is a pointer to e if its gap boundaries
include j, and to nexte[j] otherwise.The remaining entries of Wu,i[j] are null.

3. For each vertex vi ∈ R, a cyclic active window array AWi of size β
∗−α∗+M+1

is maintained, where AWi[j] is a pointer to a list of lists of edges that all need to
be reported if vi appears in j − 1 time units from now.

The total space usage for the nexte pointer arrays is ρ :=
∑

e∈E(βe − αe + 1) ≤
d(β∗ − α∗), and they can be constructed in O(ρ) time. Yet, if all the arrays Wu,i

are computed in the preprocessing, the time and space would be O(lsc · d(β∗ − α∗)).
Therefore, [4] reduce this cost by postponing the construction of a carefully chosen
part of them to the query time.

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 9

Time and Space Complexity: [4] show that the DMOG problem with non-uniform
gap borders can be solved with O(|D| + d(β∗ − α∗)) preprocessing time, Õ(lsc +√
lsc · d(β∗ −α∗ +M) + op) time per query text character, and Õ(|D|+ d(β∗ −α∗) +√
lsc · d(β∗ − α∗ +M) + α∗) space.

3 Solving Online Dictionary Recognition with One Gap

Our solution follows the framework of [4] showing that it is possible to make changes
in their algorithms in order to solve the DROG problem. Recall that the definition
of the DROG problem requires reporting only a single appearance of each gapped
pattern in the dictionary, where each gapped pattern is represented as an edge in
the bipartite graph GD. Our basic idea is, therefore, quite simple: in order to avoid
repetitious reports of an edge (u, v), after the first time an edge is reported we delete
it from the graph, thus assuring that u will not be inserted to the data structures
maintaining v’s responsible neighbours again. In order to avoid considering vertices
whose associated edges are all reported, we add two counters to each vertex v, lcount
and rcount, which are initialized with the number of responsible neighbours of v and
with the number of neighbours that v is responsible for, respectively. Each report and
deletion of an edge (u, v) implies a decrease in lcount(u) and in rcount(v).

The remaining task we should carefully take care of is to assure that for every
edge (u, v), u appears only once in the data structure of v, so that reporting the edge
will be unique even if v occurs again. This task is nontrivial since in some cases it is
not possible to save a single copy of u in the data structure of v (otherwise, we might
miss an occurrence of a dictionary gapped pattern), therefore, the deletion of the
edge (u, v) requires a deletion of additional appearances of u from the data structure
associated with v. This should be done without causing an unbearable overhead in
the time complexity.

In the following subsections we consider the four solutions described in Section 2,
giving for each of them a tailored adaptation for the online Dictionary Recognition
with One Gap problem.

3.1 DROG for Sparse Graphs

Uniformly Bounded Gaps. Following the framework described in Subsection 2.1,
We use the Lv lists to maintain at most a single appearance of the responsible neigh-
bours of v. Hence, when going over the list and reporting edges in case v occurred, each
edge is reported once without scanning the τu list of u appearance times. Therefore,
the solution to the DROG problem for uniformly bounded gap borders is identical
to the solution for DMOG with the additional task of deleting an edge after its first
report, updating the relevant rcount and lcount and considering only vertices whose
rcount and lcount values are non zero.

This immediately gives Theorem 2.

Theorem 2. The online DROG problem with uniformly bounded gap borders on a
graph GD with m edges and n vertices can be solved in O(m+ n) preprocessing time,
O(lsc · δ(GD) + op∗) time per query vertex, where op∗ is the number of new distinct
dictionary patterns reported due to a character arrival, and O(m+ β) space.

10 Proceedings of the Prague Stringology Conference 2017

Non Uniformly Bounded Gaps. In this case, for every vertex v ∈ R, the data
structure Sv supporting 4-sided 2-dimensional orthogonal range reporting queries
saves the occurrences of responsible neighbours of v, as in Subsection 2.1. Now, the
deletion of a reported edge from GD is not sufficient in order to assure a unique report
of edge occurrence, since the same vertex u can be represented by several points in a
certain Sv data structure due to several arrival times. If several points are within the
query bounds, the range query will return all these occurrences of the edge (u, v). We
need to avoid such redundant reports.

In order to avoid an increase in the time complexity, we modify the algorithm
as follows. When a vertex u arrives at time t, each assigned-neighbour v such that
e = (u, v), the point (t + αe + 1, t + βe + 1) is inserted to the data structure Sv,
representing a time interval in which an occurrence of v yields an occurrence of the
edge e. Our modification is to unite every two points representing overlapping or
adjacent intervals into a single point. This procedure is delicately performed, as the
intervals may be separated again, when one of the occurrences of u represented by
the interval becomes irrelevant – when located beyond the gaps bounds. An example
of the union effect is depicted in Figure 1. In addition, all intervals associated with
the same edge are linked, in order to enable deleting all of them, when the edge is
reported due to one of the intervals.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 �

a�

b�

Figure 1. Consider e = (bbb{2− 4}a) and τu = {2, 3, 5, 8, 12}. (a) depicts the intervals represented
by points that are inserted to Sa by the DMOG algorithm. (b) depicts the intervals represented by
points that are inserted to Sa by the DROG algorithm.

The modified algorithm is:
For an arrived vertex at query time t, do:

1. If the arrived vertex is v ∈ R, such that rcount(v) 6= 0,
(a) A range query [0, t]× [t,∞] is performed over Sv. Edges representing the range

output are reported.
(b) Edges for which v is their responsible-neighbour are scanned, and those for

which the assigned-neighbour u is marked as arrived are reported according to
a search in their time stamp.

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 11

(c) For every reported edge e = (u, v),
i. e is deleted from GD,
ii. Every point associated with e is deleted from Sv,
iii. lcount(u) and rcount(v) are decreased by one.

2. If the arrived vertex is u ∈ L, such that lcount(u) 6= 0,
(a) u is inserted to Lβ∗ ,
(b) For each assigned-neighbour v such that e = (u, v) ∈ E,

i. If τu is empty or t+ αe > t′ + βe + 1, where t′ is the newest time stamp in
τu, then (t+ αe + 1, t+ βe + 1) is inserted to Sv.

ii. Else, let (x, y) be the last point associated with e that was inserted to Sv,
then delete (x, y) from Sv and insert (x, t+ βe + 1) to Sv.

3. For vertices u ∈ L arriving exactly α∗ + 1 time units before time t, such that
lcount(u) 6= 0,
(a) u is marked as arrived,
(b) t− α∗ − 1 is added to τu.

4. For vertices u ∈ L arriving exactly β∗ +M +1 time units before time t, such that
lcount(u) 6= 0,
(a) u is removed from Lβ∗ ,
(b) The time stamp t− β∗ −M − 1 is removed from τu,
(c) For each assigned-neighbour v, such that e = (u, v) ∈ E,

i. Let t′ be the oldest time stamp in τu,
ii. If τu is empty or t−β∗−M+βe < t′+αe, then the point (t−β∗+αe, t−β∗+βe)

is deleted from Sv,
iii. Else, let (x′, y′) be the first point associated with e in Sv, delete (x

′, y′) from
Sv and insert (t′ + αe + 1, y′) to Sv.

Theorem 3 follows.

Theorem 3. The online DROG problem with non-uniformly bounded gap borders can
be solved in O(|D|) preprocessing time, Õ(δ(GD) · lsc+ op∗) time per text character,
where op∗ is the number of new distinct dictionary patterns reported due to character
arrival, and Õ(|D|+ lsc · δ(GD)(β

∗ − α∗ +M) + α∗) space.

Proof. Correctness: The strategy of inserting a point (x, y) = (t+ αe + 1, t+ βe + 1)
to Sv when u appears at time t and e = (u, v), implies that when v appears at time
t∗, the range query [0, t∗][t∗,∞] is performed giving all points (x, y) where x ≤ t∗ and
t∗ ≤ y. Thus, all overlapping intervals associated with edge e including point t∗ are
reported. Our method of uniting all these intervals to a single interval ensures a single
report due to an occurrence of e and the occurrence of v at time t∗. Note that only
points representing intervals related to the same edge are united to the same point,
and therefore, to the same gap since several possible gaps between some vertices u
and v define distinct edges. Hence, it is only necessary to consider the start point of
a new interval with the endpoint of the last interval included in Sv.

Uniting overlapping intervals is sufficient for a unique report of an edge e, yet if
there exist several intervals representing e in Sv due to later occurrences of u, they
are deleted when e is reported, in order to avoid additional redundant report of e in
future arrivals of v.

Time complexity: As the framework of [4] is used, the time complexity is in accor-
dance with a decrease due to the fact that our total output size is limited to d. The

12 Proceedings of the Prague Stringology Conference 2017

modifications require only extra O(1) operations in all cases except for the necessity
to delete all points representing intervals associated with e from Sv after reporting
e. However, as deletion from Sv requires the same time as the insertion to it, we
account a deletion of a point by its insertion that was already accounted in the time
complexity of the algorithm.

In addition, uniting points representing overlapping intervals and deleting points
associated with a reported edges may decrease the time complexity of each insertion,
deletion and range query, as their time complexity depends on |Sv| in [18], which we

use. Moreover, the range query requires O(log |Sv |
log log |Sv |

+ op) time, where op is the size

of the output of the query, so by reducing the total output size to be at most d in all
queries, we reduce the time complexity.

The space complexity is identical to that of the DMOG solution. ⊓⊔

3.2 DROG for Dense Graphs

Uniformly Bounded Gaps. We follow the framework of Subsection 2.2 of con-
structing the Au arrays, and inserting Au to Lvi when u arrives, where e = (u, vi) ∈ E.
After reporting an edge, it is deleted from GD, yet, as in the previous subsection, this
deletion is not sufficient for preventing repetitious report of the edge e, since addi-
tional occurrences of vi or of u′′, where the subpattern associated with u is a suffix
of the subpattern associated with u′′, can yield additional reports of e. Nevertheless,
by analyzing carefully the problematic scenarios this difficulty can be overcome. The
modified algorithm follows.

When a vertex arrives at query time t:

1. If the arrived vertex is vi ∈ R, such that rcount(vi) 6= 0,
(a) For every Au[i] ∈ Lvi where Au[i] contains a pointer to edge e,

i. if e appeared in the appropriate time frame according the τu list (since the
tail of Lvi should be skipped), then while e 6= null
A. Edge e is reported once,
B. e = next(e)

ii. The edges for which vi is their responsible-neighbour are scanned, and those
for which the assigned-neighbour u is marked as arrived are reported.

(b) For every reported edge e = (u, vi)
i. e is deleted from ED,
ii. Au[i] = null,
iii. Au[i] is deleted from Lvi ,
iv. lcount(u) and rcount(vi) are decreased by one.

2. If the arrived vertex is u ∈ L, such that lcount(u) 6= 0, then u is inserted into Lβ.
3. For vertices u ∈ L arriving exactly α + 1 time units before time t, such that

lcount(u) 6= 0,
(a) For each vi, where Au[i] 6= null,

i. Au[i] is added to the beginning of Lvi ,
ii. if it was already in the reporting list Lvi then the older copy is removed

from Lvi .
(b) u is marked as arrived,
(c) t− α− 1 is added to τu.

4. For vertices u ∈ L arriving exactly β +M time units before time t, such that
lcount(u) 6= null,

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 13

(a) u is removed from Lβ,
(b) The time stamp t− β −M is removed from τu,
(c) For each vi, where Au[i] 6= null, Au[i] is deleted from Lvi .

This gives Theorem 4.

Theorem 4. The online DROG problem with uniform gap borders can be solved in
O(|D|) preprocessing time, O(lsc+

√
lsc · d+op∗) time per text character, where op∗ is

the number of new distinct dictionary patterns reported due to the character arriving,
and O(|D|+ lsc(β − α +M) + α) space.

Proof. Correctness : According to the algorithm each Au[i] is uniquely added to Lvi ,
thus, in case edge e = (u, vi) is detected, it is reported once from the current Lvi . The
deletion of Au[i] from Lvi after reporting e = (u, vi) prevents another report of e upon
additional occurrences of vi. By adding the requirement of overriding Au[i] by null, it
is guaranteed that no additional report of e, either by another occurrence of u or by
an occurrence of u′′, where the subpattern associated by u is a suffix of the subpattern
associated by u′′. In the latter case, if the subpattern associated by u′′ occurred after
the subpattern associated by u in the text, Lvi contains Au′′ [i], thus, e = (u, vi) is
included in the list derived from Au′′ [i]. When vi occurs within a proper gap from
the occurrence of u′′, all the edges in the list derived from Au′′ [i] are reported. Never-
theless, our modified algorithm requires that before reporting edge e, the array Au[i]
associated with e is checked to be non null, if Au[i] = null the report of the edges
derived from the occurrence of u′′ is terminated, as the null implies that all edges asso-
ciated with u as well as its suffixes and vi were already reported if they existed. In case
u′′ occurred before u, the edge e = (u, vi) is reported by the list derived from Au′′ [i],
yet when e is reported the algorithm deletes Au[i] from Lvi , so the occurrence of u
is not checked again with regard to vi. Hence, a single occurrence of (u, vi) is reported.

Time Complexity: The main modifications of the original DMOG algorithm for uni-
formly bounded gaps are the check whether Au[i] 6= null before reporting the edge
e = (u, vi), and the procedure of deleting an edge after its report. We show that both
these additions to the algorithm do not increase its time complexity. First, note that
every check of Au[i] can be attributed to a reported edge. Either Au[i] is found to
be non null, due to locating u in the text and reporting (u, vi), or Au[i] is found
to be null due to a report of a e′′ = (u′′, vi), where u is a suffix of u′′. Even in the
latter case, the check operation can be accounted for by the report of the (u′′, vi),
as a termination of a loop reporting the edges derived from the fact that some Au[i]
already occurred in the report process, thus the loop reaches an already reported
edge implying that all the following edges in the list were already reported. Second, a
reported edge indeed induces the deletion operations required to preserve the unique-
ness of the edges reported. However, the number of such operations is constant and
can be accounted for the reported occurrence of an edge. Also note, that updating
Au[i] = null after reporting the associated edge does not change the efficiency of the
Au arrays construction, as it implies that all edges associated with u and its suffixes
and vi were already reported, so the list starting in a predecessor of u comes to an
end, as no further suffixes should be considered with node vi. The rest of the time
complexity analysis is the same as that of [4] except for the op factor which is replaced
by a total of at most d reports due to a single report of every edge.

The space complexity is unchanged. ⊓⊔

14 Proceedings of the Prague Stringology Conference 2017

Non-Uniformly Bounded Gaps. Following the same basic idea, after reporting
an edge e = (u, vi) it is deleted from GD and Wu,i[j] should be assigned null for
αe ≤ j ≤ βe, so that additional occurrence of u are not inserted to the active window
of vi, AWvi []. In addition, other occurrences of u already in AWvi [] may derive a
repetitious report of e due to an additional occurrence of vi. In the case of uniformly
bounded gaps, we handled the problem by deleting all appearances of e = (u, vi)
from the data structure Lvi of located neighbours of vi. However, dealing with non-
uniformly bounded gaps is more complicated, since when edge (u, vi) is reported, some
edges e′ = (u′, vi), where u

′ represents a subpattern that is a suffix of the subpattern
represented by u, are reported too while other such e′s are not reported due to different
gap boundaries. Consequently, we cannot automatically delete all appearances of u
from Wu,i[j] and from the data structure AWvi [] of located neighbours of vi, since it
may cause misses of occurrence of some suffixes of u, as a node occurrence implies all
the suffixes of the subpattern associated by that node occurred as well, so a deletion
of the occurrence of u causes the suffixes of u to have no indication of it.

For example, consider the dictionary appearing in Figure 2 and suppose e1 was
reported due to a gap of size 2 between the subpatterns. Hence e1, e4 are reported, as
e4 is included in nexte1 [2] list. If e1 and e4 are deleted from every AWc[j] or Wbaa,c[j],
it causes and implicit deletion of e2 and e3 from these locations, since both are present
in AWc[4 − 6] implicitly through the nexte1 [3 − 5] lists. In case c occurs again with
gap of 4 − 6 locations, edges e3 and e2 should be reported, as it may be their only
occurrence in the text. We, therefore, only assign Wbaa,c[3] to null, and Wbaa,c[j 6= 3]
is updated to the longest suffix of baa, u′′, where e′′ = (u′′, c) ∈ E, e′′ appears in
the list emanating from nexte1 [j] and e′′ was has not been reported yet. AWc[j] is
updated accordingly. Our modified algorithm follows.

When a vertex arrives at query time t, the data structures are updated as follows.

1. For each vi ∈ R, such that rcount(vi) 6= 0,
(a) the active window array AWi is shifted by one position by incrementing its

starting position in a cyclic manner,
(b) AWi[β

∗ − α∗ +M + 1] is cleared (It may have been reported in the previous
query when it was AWi[1]).

2. If the arrived vertex is vi ∈ R, such that rcount(vi) 6= 0, then for every Wu,i[j] ∈
AWi[1],
(a) [e, j] = [(u, vi), j](= Wu,i[j], j),
(b) Report & Update([e, j])

i. Edge e is reported,
ii. Wu,i[j] = null,
iii. e′ = nexte[j]
iv. if e′ 6= null, then Report & Update([e′, j]),
v. For f = αe to βe, such that f 6= j, if e′ = nexte[f] and e′ was reported,

then
A. nexte[f] = nexte′ [f],
B. If Wu,vi [f] contains a pointer to e then Wu,vi [f] = nexte[f].

3. If the arrived vertex is u ∈ L, such that lcount(u) 6= 0, then
For each vi ∈ R and each j, such that Wu,i[j] 6= null,
(a) (Wu,i[j], j) is inserted to the list at AWi[j + mvi], where mvi is the length of

the subpattern associated with vi, (since in j + mvi time units from now, if
vi ∈ R arrives, the edges pointed to by Wu,i[j] should be reported).

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 15

e1 = baa {2, 5} c�

e2 = baa {5, 7} c�

e3 = aa {3, 4} c�

e4 = a {2, 4} c�

e5 = a {6, 7} c�

�

�

(1)� (3)�

(2)�

nexte4�

nexte1�

nexte2�

nexte3�

nexte5�

 2 3 4 5 6 7�

Waa,c�

e5*�

e3*�e3*�e4*�

 2 3 4 5 6 7 �

null� e5*� e5*�

e4*�e4*�

 2 3 4 5 6 7 �

e5*�e4*� e5*�null�

 2 3 4 5 6 7 �

e5*�null�null� null� null�

 2 3 4 5 6 7�

Wbaa,c� e1*� e1*�

 2 3 4 5 6 7�

Wa,c�

e4*� e2*�e2*� e2*�

 2 3 4 5 6 7 �

e3*�e3*�

e3*� e3*�

e1*� e1*� e2*� e2*�

e4*� e4*� e4*�

null�

null�

e5*� e5*�

e5*� e5*�

 2 3 4 5 6 7 �

null�null� null� null� null� null�

 3 4 5 6 7 8 �

e1*,2� e1*,3� e1*,4� e1*,5� e2*,6� e2*,7�

(4)�

 3 4 5 6 7 8 �

e4*�

null�

e1*�

e5*�

null�

e2*�

e2*�

null�

e1*�

e3*�

null�

e1*�

e4*�

e5*�

null�

e2*�

e3*�

null�

e1*�

e4*�

(5)�

Figure 2. Consider the dictionary in (1). Its next arrays appear on (2), its Wu, vi arrays appear on
(3), AWc after baa was found appears on (4), and the implicit lists that are saved in AWc appear
in (5). The * denotes a pointer to an edge.

Theorem 5 follows.

Theorem 5. The online DROG problem with non-uniform gap borders can be solved
in O(|D|+ d(β∗−α∗)) preprocessing time, Õ(lsc+

√
lsc · d(β∗−α∗+M)+ op∗) time

per query text character, where op∗ is the number of new distinct dictionary patterns
reported due to the character arriving, and Õ(|D| + d(β∗ − α∗) +

√
lsc · d(β∗ − α∗ +

M) + α∗) space.

Proof. Correctness: To avoid repetitious reports of an edge e, after e is reported once
due to a gap of size j′, e is deleted both from GD and fromWu∗,vi [j

′], where (u∗, vi) = e
or (u, vi) = e and u represents a subpattern that is a suffix of the one represented
by u∗. As described before, the deletion from Wu∗,vi [j], j 6= j′, yields an update to
the array entry of the first edge to the nexte[j] list that has not been reported yet,
thus ensuring that a reported edge (u, vi) is reported again. Nevertheless, unreported
edges are not overlooked, even if it is of the form (u′, vi), where u

′ represents a suffix
of the subpattern represented by u. Such edges are indicated by u in the Wu,vi [] array
on indices where the gaps of the edges overlap.

Time Complexity: Due to the recursive nature of the updating procedure, every
update of Wu,vi [j] requires O(1) time, as the arrays of all u′s are already updated,
where u′ represents a suffix of the subpattern represented by u. Recall from Subsec-
tion 2.2 that there are at most

√
lsc · d nodes currently in L, so that each report of

an edge requires O(
√
lsc · d(β∗−α∗)) time. Such a time requirement already exists in

the original DMOG solution. The rest of the time complexity analysis is the same as

16 Proceedings of the Prague Stringology Conference 2017

that of [4], except for the op factor which is replaced by a total of at most d reports
due to the single report of every edge.

The space complexity is identical to that of the DMOG solution. ⊓⊔

4 Conclusion and Open Problems

In this paper we give the first formalization of the Dictionary Recognition with One
Gap (DROG) problem and give practical solutions for this problem in the online
setting required for NIDS applications. Some open problems are:

– Can some of the factors in these solutions be reduced?
– Can these solutions be adapted to take care of a dictionary with subpatterns
having more than one gap?

Since the DROG problem is a crucial bottleneck procedure in NIDS applications these
open problems should be addressed in the future.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search.
Commun. ACM, 18(6) 1975, pp. 333–340.

2. A. Amir, M. Farach, R. M. Idury, J. A. L. Poutré, and A. A. Schäffer: Improved

dynamic dictionary matching. Inf. Comput., 119(2) 1995, pp. 258–282.
3. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M. Rodeh:

Text indexing and dictionary matching with one error. J. Algorithms, 37(2) 2000, pp. 309–325.
4. A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom: Mind

the gap: Essentially optimal algorithms for online dictionary matching with one gap, in 27th
International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016,
Sydney, Australia, 2016, pp. 12:1–12:12.

5. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Dictionary matching with one gap, in
CPM, 2014, pp. 11–20.

6. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Dictionary matching with a few gaps.
Theor. Comput. Sci., 589 2015, pp. 34–46.

7. P. Bille, I. L. Gørtz, H. W. Vildhøj, and D. K. Wind: String matching with variable

length gaps. Theor. Comput. Sci., 443 2012, pp. 25–34.
8. P. Bille and M. Thorup: Regular expression matching with multi-strings and intervals, in

Proc. of SODA, 2010, pp. 1297–1308.
9. G. S. Brodal and L. Gasieniec: Approximate dictionary queries, in Proc. of CPM, 1996,

pp. 65–74.
10. N. Chiba and T. Nishizeki: Arboricity and subgraph listing algorithms. SIAM J. Comput.,

14(1) 1985, pp. 210–223.
11. R. Cole, L. Gottlieb, and M. Lewenstein: Dictionary matching and indexing with errors

and don’t cares, in Proc. of STOC, 2004, pp. 91–100.
12. K. Fredriksson and S. Grabowski: Efficient algorithms for pattern matching with general

gaps, character classes, and transposition invariance. Inf. Retr., 11(4) 2008, pp. 335–357.
13. T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen: Online dictionary match-

ing with variable-length gaps, in Proc. of SEA, 2011, pp. 76–87.
14. K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch: The PROSITE database, its status

in 1999. Nucleic Acids Research, 27(1) 1999, pp. 215–219.
15. W.-K. Hon, T.-W. Lam, R. Shah, S. V. Thankachan, H.-F. Ting, and Y. Yang: Dic-

tionary matching with uneven gaps, in CPM, 2015, pp. 247–260.
16. G. Kucherov and M. Rusinowitch: Matching a set of strings with variable length don’t

cares. Theor. Comput. Sci., 178(1-2) 1997, pp. 129–154.
17. M. Morgante, A. Policriti, N. Vitacolonna, and A. Zuccolo: Structured motifs search.

Journal of Computational Biology, 12(8) 2005, pp. 1065–1082.

A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 17

18. C. W. Mortensen: Fully dynamic orthogonal range reporting on RAM. SIAM J. Comput.,
35(6) 2006, pp. 1494–1525.

19. E. W. Myers: A four russians algorithm for regular expression pattern matching. J. ACM,
39(2) 1992, pp. 430–448.

20. G. Myers and G. Mehldau: A system for pattern matching applications on biosequences.
CABIOS, 9(3) 1993, pp. 299–314.

21. G. Navarro and M. Raffinot: Fast and simple character classes and bounded gaps pattern

matching, with applications to protein searching. Journal of Computational Biology, 10(6) 2003,
pp. 903–923.

22. Verint: Personal communication, 2013.
23. M. Zhang, Y. Zhang, and L. Hu: A faster algorithm for matching a set of patterns with

variable length don’t cares. Inf. Process. Lett., 110(6) 2010, pp. 216–220.

