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Abstract. A grammar-compressed (GC) string is a string generated by a context-free
grammar. This compression model captures many practical applications, and includes
LZ78 and LZW compression as a special case. We give an efficient algorithm for thresh-
old approximate matching on a GC-text against a plain pattern. Our algorithm im-
proves on existing algorithms whenever the pattern is sufficiently long. The algorithm
employs the technique of fast unit-Monge matrix distance multiplication, as well as
a new technique for implicit unit-Monge matrix searching, which we believe to be of
independent interest.

1 Introduction

String compression is a standard approach to dealing with massive data sets. From
an algorithmic viewpoint, it is natural to ask whether compressed strings can be
processed efficiently without decompression. For a recent survey on the topic, see
Lohrey [14]. Efficient algorithms for compressed strings can also be applied to achieve
speedup over ordinary string processing algorithms for plain strings that are highly
compressible.

We consider the following general model of compression.

Definition 1. Let t be a string of length n (typically large). String t will be called a
grammar-compressed string (GC-string), if it is generated by a context-free grammar,
also called a straight-line program (SLP). An SLP of length n̄, n̄ ≤ n, is a sequence
of n̄ statements. A statement numbered k, 1 ≤ k ≤ n̄, has one of the following forms:
tk = α, where α is an alphabet character, or tk = titj, where 1 ≤ i, j < k.

We identify every symbol tr with the string it represents; in particular, we have
t = tn̄. In general, the plain string length n can be exponential in the GC-string
length n̄. Grammar compression includes as a special case the classical LZ78 and
LZW compression schemes by Ziv, Lempel and Welch [24,22].

Approximate pattern matching is a natural generalisation of both the ordinary
(exact) pattern matching, and of the alignment score and the edit distance prob-
lems. Given a text string t of length n and a pattern string p of length m ≤ n, the
approximate pattern matching problem asks to find the substrings of the text that
are locally closest to the pattern, i.e. that have the locally highest alignment score
(or, equivalently, lowest edit distance) against the pattern. The precise definition of
“locally” may vary in different versions of the problem.

Definition 2. The threshold approximate matching problem (often called simply
“approximate matching”) assumes an alignment score with arbitrary weights, and,
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given a threshold score h, asks for all substrings of text t that have alignment score
≥ h against pattern p.

The substrings asked for by Definition 2 will be called matching substrings. The
precise definition of “alignment score with weights” will be given in Subsection 2.5.

An important special case arises when the unweighted LCS score is chosen as the
alignment score, and the pattern length m is chosen as the threshold h. This special
case is known as the local subsequence recognition problem.

Approximate pattern matching on compressed text has been studied by Kärkkäinen
et al. [11]. For a GC-text of length n̄, an uncompressed pattern of length m, and an
edit distance threshold k, the (suitably generalised) algorithm of [11] solves the thresh-
old approximate matching problem in time O(mn̄k2 + output). In the special case of
LZ78 or LZW compression, the running time is reduced to O(mn̄k+ output). Bille et
al. [5] gave an efficient general scheme for adapting an arbitrary threshold approxim-
ate matching algorithm to work on a GC-text. In particular, when the algorithms by
Landau and Vishkin [12] and by Cole and Hariharan [8] are each plugged into their
scheme, the resulting algorithm runs in time O(n̄ ·min(mk, k4+m)+ n̄2+output). In
the special case of LZ78 or LZW compression, Bille et al. [4] show that the running
time can be reduced to O(n̄ ·min(mk, k4 +m) + output).

For the special case of the local subsequence recognition problem on a GC-text,
Cégielski et al. [6] gave an algorithm running in time O(m2 logm · n̄ + output). In
[21], we improved the running time to O(m logmn̄+output). Recently, Yamamoto et
al. [23] improved the running time still further to O(mn̄+ output).

In this paper, we consider the threshold approximate matching problem on a GC-
text against a plain pattern. We give an algorithm running in time O(m logm · n̄ +
output), which improves on existing algorithms whenever the pattern is sufficiently
long. The algorithm employs the technique of fast unit-Monge matrix distance mul-
tiplication [16], as well as a new technique for implicit unit-Monge matrix searching
(Lemma 12).

This paper is a sequel to [21]; we encourage the reader to refer there for a warm-
up to the result and the techniques presented in the current paper. Due to space
constraints, some proofs and examples are omitted. They can be found in [17].

2 General techniques

We recall the framework developed in [18,19,20,16,21], and fully presented in [17].

2.1 Preliminaries

For indices, we will use either integers {. . . ,−2,−1, 0, 1, 2, . . .}, or half-integers
{

. . . ,

−5
2
,−3

2
,−1

2
, 1
2
, 3
2
, 5
2
, . . .

}

. For ease of reading, half-integer variables will be indicated
by hats (e.g. ı̂, ̂). Ordinary variable names (e.g. i, j, with possible subscripts or
superscripts), will normally denote integer variables, but can sometimes denote a
variable that may be either integer, or half-integer.

It will be convenient to denote i− = i− 1
2
, i+ = i+ 1

2
for any integer or half-integer

i. The set of all half-integers can now be written as
{

. . . , (−3)+, (−2)+, (−1)+, 0+, 1+,

2+, . . .
}

. We denote integer and half-integer intervals by [i : j] = {i, i+1, . . . , j−1, j},

〈i : j〉 =
{

i+, i + 3
2
, . . . , j − 3

2
, j−

}

. In both cases, the interval is defined by integer
endpoints.
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Given two index ranges I, J , it will be convenient to denote their Cartesian
product by (I | J). We extend this notation to Cartesian products of intervals:

[i0 : i1 | j0 : j1] = ([i0 : i1] | [j0 : j1]) 〈i0 : i1 | j0 : j1〉 = (〈i0 : i1〉 | 〈j0 : j1〉)

Given index ranges I, J , a vector over I is indexed by i ∈ I, and a matrix over (I | J)
is indexed by i ∈ I, j ∈ J .

We will use the parenthesis notation for indexing matrices, e.g. A(i, j). We will also
use straightforward notation for selecting subvectors and submatrices: for example,
given a matrix A over [0 : n | 0 : n], we denote by A[i0 : i1 | j0 : j1] the submatrix
defined by the given sub-intervals. A star ∗ will indicate that for a particular index,
its whole range is being used, e.g. A[∗ | j0 : j1] = A[0 : n | j0 : j1]. In particular,
A(∗, j) and A(i, ∗) will denote a full matrix column and row, respectively.

We recall the following definitions from [21,17]. We define two natural strict partial
orders on points, called ≪- and ≷-dominance:

(i0, j0)≪ (i1, j1) if i0 < i1 and j0 < j1 (i0, j0) ≷ (i1, j1) if i0 > i1 and j0 < j1

When visualising points, we will deviate from the standard Cartesian visualisation
of the coordinate axes, and will use instead the matrix indexing convention: the first
coordinate in a pair increases downwards, and the second coordinate rightwards.
Hence,≪- and ≷-dominance correspond respectively to the “above-left” and “below-
left” partial orders. The latter order corresponds to the standard visual convention
for dominance in computational geometry.

Definition 3. Let D be a matrix over 〈i0 : i1 | j0 : j1〉. Its distribution matrix DΣ

over [i0 : i1 | j0 : j1] is defined by DΣ(i, j) =
∑

ı̂∈〈i:i1〉,̂∈〈j0:j〉
D(̂ı, ̂) for all i ∈ [i0 : i1],

j ∈ [j0 : j1].

Definition 4. Let A be a matrix over [i0 : i1 | j0 : j1]. Its density matrix A� over
〈i0 : i1 | j0 : j1〉 is defined by A�(̂ı, ̂) = A(̂ı+, ̂−) − A(̂ı−, ̂−) − A(̂ı+, ̂+) + A(̂ı−, ̂+)
for all ı̂ ∈ 〈i0 : i1〉, ̂ ∈ 〈j0 : j1〉.

Definition 5. Matrix A over [i0 : i1 | j0 : j1] will be called simple, if A(i1, j) =
A(i, j0) = 0 for all i, j. Equivalently, A is simple if A�Σ = A.

Definition 6. Matrix A is called totally monotone, if A(i, j) > A(i, j′)⇒ A(i′, j) >
A(i′, j′) for all i ≤ i′, j ≤ j′.

Definition 7. Matrix A is called a Monge matrix, if A(i, j) + A(i′, j′) ≤ A(i, j′) +
A(i′, j) for all i ≤ i′, j ≤ j′. Equivalently, matrix A is a Monge matrix, if A� is
nonnegative. Matrix A is called an anti-Monge matrix, if −A is Monge.

Definition 8. A permutation (respectively, subpermutation) matrix is a zero-one
matrix containing exactly one (respectively, at most one) nonzero in every row and
every column.

Definition 9. 0 Matrix A is called a unit-Monge (respectively, subunit-Monge) ma-
trix, if A� is a permutation (respectively, subpermutation) matrix. Matrix A is called
a unit-anti-Monge (respectively, subunit-anti-Monge) matrix, if −A is unit-Monge
(respectively, subunit-Monge).
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A permutation matrix P of size n can be regarded as an implicit representation
of the simple unit-Monge matrix PΣ. Geometrically, a value PΣ(i, j) is the number
of (half-integer) nonzeros in matrix P that are ≶-dominated by the (integer) point
(i, j). Matrix P can be preprocessed to allow efficient element queries on PΣ(i, j).
Here, we consider incremental queries, which are given an element of an implicit
simple (sub)unit-Monge matrix, and return the value of an adjacent element. This
kind of query can be answered directly from the (sub)permutation matrix, without
any preprocessing.

Theorem 10. Given a (sub)permutation matrix P of size n, and the value PΣ(i, j),
i, j ∈ [0 : n], the values PΣ(i± 1, j), PΣ(i, j ± 1), where they exist, can be queried in
time O(1).

Proof. Straightforward; see [17].

2.2 Implicit matrix searching

We recall a classical row minima searching algorithm by Aggarwal et al. [1], often
nicknamed the “SMAWK algorithm”.

Lemma 11 ([1]). Let A be an n1× n2 implicit totally monotone matrix, where each
element can be queried in time q. The problem of finding the (say, leftmost) minimum
element in every row of A can be solved in time O(qn), where n = max(n1, n2).

Proof (Lemma 11). Without loss of generality, let A be over [0 : n | 0 : n]. Let B be
an implicit n

2
× n matrix over

[

0 : n
2
| 0 : n

]

, obtained by taking every other row of
A. Clearly, at most n

2
columns of B contain a leftmost row minimum. The key idea

of the algorithm is to eliminate n
2
of the remaining columns in an efficient process,

based on the total monotonicity property.
We call a matrix element marked (for elimination), if its column has not (yet) been

eliminated, but the element is already known not to be a leftmost row minimum. A
column gets eliminated when all its elements become marked.

Initially, both the set of eliminated columns and the set of marked elements are
empty. In the process of column elimination, marked elements may only be contained
in the i leftmost uneliminated columns; the value of i is initially equal to 1, and
gets either incremented or decremented in every step of the algorithm. The marked
elements form a staircase: in the first, second, . . . , i-th uneliminated column, respec-
tively zero, one, . . . , i − 1 topmost elements are marked. In every iteration of the
algorithm, two outcomes are possible: either the staircase gets extended to the right
to the i + 1-st uneliminated column, or the whole i-th uneliminated column gets
eliminated, and therefore deleted from the staircase.

Let j, j′ denote respectively the indices of the i-th and i+ 1-st uneliminated col-
umn in the original matrix (across both uneliminated and eliminated columns). The
outcome of the current iteration depends on the comparison of element B(i, j), which
is the topmost unmarked element in the i-th uneliminated column, against element
B(i, j′), which is the next uneliminated (and unmarked) element immediately to its
right. The outcomes of this comparison and the rest of the elimination procedure are
given in Table 1. By storing indices of uneliminated columns in an appropriate dy-
namic data structure, such as a doubly-linked list, a single iteration of this procedure
can be implemented to run in time O(q). The whole procedure runs in time O(qn),
and eliminates n

2
columns.
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i← 0; j ← 0; j′ ← 1
while j′ ≤ n:
case B(i, j) ≤ B(i, j′):
case i < n

2
: i← i+ 1; j ← j′

case i = n

2
: eliminate column j′

j′ ← j′ + 1
case B(i, j) > B(i, j′):
eliminate column j

case i = 0: j ← j′; j′ ← j′ + 1
case i > 0: i← i− 1; j ← max{k : k uneliminated and < j}

Table 1. Elimination procedure of Lemmas 11 and 12.

Let A′ be the n
2
× n

2
matrix obtained from B by deleting the n

2
eliminated columns.

We call the algorithm recursively on A′. This recursive call returns the leftmost row
minima of A′, and therefore also of B. It is now straightforward to fill in the leftmost
minima in the remaining rows of A in time O(qn). Thus, the top level of recursion runs
in time O(qn). The amount of work gets halved with every recursion level, therefore
the overall running time is O(qn).

Let us now restrict our attention to implicit unit-Monge matrices. An element
of such a matrix (represented by an appropriate data structure, see [17]) can be
queried in time q = O(log2 n). A more careful analysis of the elimination procedure
of Lemma 11 shows that the required matrix elements can be obtained, instead of
standalone element queries, by the more efficient incremental queries of Theorem 10.

Lemma 12. Let A be an implicit (sub)unit-Monge matrix over [0 : n1 | 0 : n2],
represented by the (sub)permutation matrix P = A� and vectors b = A(n1, ∗), c =
A(∗, 0), such that A(i, j) = PΣ(i, j) + b(j) + c(i) − b(0) for all i, j. The problem of
finding the (say, leftmost) minimum element in every row of A can be solved in time
O(n log log n), where n = max(n1, n2).

Proof (Lemma 12). First, observe that vector c has no effect on the positions (as
opposed to the values) of any row minima. Therefore, we assume without loss of
generality that c(i) = 0 for all i (and, in particular, b(0) = c(n1) = 0). Further,
suppose that some column P (∗, ̂) is identically zero; then, depending on whether
b(̂−) ≤ b(̂+) or b(̂−) > b(̂+), we may delete respectively column A(∗, ̂+) or A(∗, ̂−)
as it does not contain any leftmost row minima. Also, suppose that some row P (̂ı, ∗)
is identically zero; then the minimum value in row A(̂ı−, ∗) lies in the same column as
the minimum value in row A(̂ı−, ∗), hence we can delete one of these rows. Therefore,
we assume without loss of generality that A is an implicit unit-Monge matrix over
[0 : n | 0 : n], and hence P is a permutation matrix.

To find all the leftmost row minima, we adopt the column elimination procedure
of Lemma 11 (see Table 1), with some modifications outlined below.

Let B be an implicit n1/2 × n matrix, obtained by taking a subset of n1/2 rows of
A at regular intervals of n1/2. Clearly, at most n1/2 columns of B contain a leftmost
row minimum. We need to eliminate n− n1/2 of the remaining columns.

Let B be over
[

0 : n
2
| 0 : n

]

. Throughout the elimination procedure, we maintain

a vector d(i), i ∈ [0 : n1/2 − 1], initialised by zero values. In every iteration, given a
current value of the index j′, each value d(i) gives the count of nonzeros P (s, t) = 1
within the rectangle s ∈

〈

n1/2i : n1/2(i+ 1)
〉

, t ∈ 〈0 : j′〉.
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Consider an iteration of the column elimination procedure of Lemma 11 with given
values i, j, j′, operating on matrix elements B(i, j), B(i, j′). For the iteration that
follows the current one, the following matrix elements may be required:

• B(i−1, j′),B(i+1, j′). These values can be obtained respectively asB(i, j)+d(i−1)
and B(i, j)− d(i).
• B(i, j′+1), B(i+1, j′+1). These values can be obtained respectively from B(i, j′),
B(i+ 1, j′) by a rowwise incremental query of matrix PΣ via Theorem 10, plus a
single access to vector b.
• B(i − 1, {k : k uneliminated and < j}). This element was already queried in the
iteration at which its column was first added to the staircase. There is at most one
such element per column, therefore each of them can be stored and subsequently
queried in constant time.

At the end of the current iteration, index j′ may be incremented (i.e. the staircase
may grow by one column). In this case, we also need to update vector d for the next
iteration. Let s ∈ 〈0 : n〉 be such that P (s, j′ − 1

2
) = 1. Let i =

⌊

s/n1/2
⌋

; we have

s ∈
〈

n1/2i : n1/2(i+ 1)
〉

. The update consists in incrementing d(i) by 1.
The total number of iterations in the elimination procedure is at most 2n. This

is because in total, at most n columns are added to the staircase, and at most n (in
fact, exactly n− n1/2) columns are eliminated. Therefore, the elimination procedure
runs in time O(n).

Let A′ be the n1/2×n1/2 matrix obtained from B by deleting the n−n1/2 eliminated
columns. Using incremental queries to matrix P , it is straightforward to obtain matrix
A′ explicitly in random-access memory in time O(n). We now call the algorithm of
Lemma 11 to compute the row minima of A′, and therefore also of B, in time O(n).

We now need to fill in the remaining row minima of matrix A. The row minima of
matrix A′ define a chain of n1/2 submatrices in A at which these remaining row minima
may be located. More specifically, given two successive row minima of A′, all the n1/2

row minima that are located between the two corresponding rows in A must also be
located between the two corresponding columns. Each of the resulting submatrices
has n1/2 rows; the number of columns may vary from submatrix to submatrix. It
is straightforward to eliminate from each submatrix all columns not containing any
nonzero of matrix P ; therefore, without loss of generality, we may assume that every
submatrix is of size n1/2 × n1/2.

We now call the algorithm recursively on each submatrix to fill in the remaining
leftmost row minima. The amount of work remains O(n) in every recursion level.
There are log log n recursion levels, therefore the overall running time of the algorithm
is O(n log log n).

An even faster algorithm, running in optimal time O(n) on the RAM model, has
been recently suggested by Gawrychowski [9]. The algorithm of Lemma 12, which is
thus suboptimal but has weaker model requirements, will be sufficient for the purposes
of this paper.

2.3 Semi-local LCS

We will consider strings of characters taken from an alphabet. Two alphabet charac-
ters α, β match, if α = β, andmismatch otherwise. In addition to alphabet characters,
we introduce two special extra characters: the guard character ‘$’, which only matches
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itself and no other characters, and the wildcard character ‘?’, which matches itself
and all other characters.

It will be convenient to index strings by half-integer, rather than integer indices,
e.g. string a = α0+α1+ · · ·αm− . We will index strings as vectors, writing e.g. a(̂ı) = αı̂,
a〈i : j〉 = αi+ · · ·αj− . Given strings a over 〈i : j〉 and b over 〈i′ : j′〉, we will distinguish
between string right concatenation ab, which is over 〈i : j + j′ − i′〉 and preserves
the indexing within a, and left concatenation ab, which is over 〈i′ − j + i : j′〉 and
preserves the indexing within b. We extend this notation to concatenation of more
than two strings, e.g. abc is a concatenation of three strings, where the indexing of
the second string is preserved. If no string is marked in the concatenation, then right
concatenation is assumed by default.

Given a string, we distinguish between its contiguous substrings, and not neces-
sarily contiguous subsequences. Special cases of a substring are a prefix and a suffix
of a string. Unless indicated otherwise, an algorithm’s input is a string a of length m,
and a string b of length n.

We recall the following definitions from [21,17].

Definition 13. Given strings a, b, the longest common subsequence (LCS) problem
asks for the length of the longest string that is a subsequence of both a and b. We will
call this length the LCS score of strings a, b.

Definition 14. Given strings a, b, the semi-local LCS problem asks for the LCS
scores as follows: a against every substring of b (the string-substring LCS scores);
every prefix of a against every suffix of b (the prefix-suffix LCS scores); symmetri-
cally, the substring-string LCS scores and the suffix-prefix LCS scores, defined as
above but with the roles of a and b exchanged. The first three (respectively, the last
three) components, taken together, will also be called the extended string-substring
(respectively, substring-string) LCS problem.

Definition 15. A grid-diagonal dag is a weighted dag, defined on the set of nodes
vl,i, l ∈ [0 : m], i ∈ [0 : n]. The edge and path weights are called scores. For all

l ∈ [0 : m], l̂ ∈ 〈0 : m〉, i ∈ [0 : n], ı̂ ∈ 〈0 : n〉, the grid-diagonal dag contains:

• the horizontal edge vl,̂ı− → vl,̂ı+ and the vertical edge vl̂−,i → vl̂+,i, both with score
0;
• the diagonal edge vl̂− ,̂ı− → vl̂+ ,̂ı+ with score either 0 or 1.

Definition 16. An instance of the semi-local LCS problem on strings a, b corresponds
to an m×n grid-diagonal dag Ga,b, called the alignment dag of a and b. A cell indexed

by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉 is called a match cell, if a(l̂) matches b(̂ı), and a mismatch
cell otherwise (recall that the strings may contain wildcard characters). The diagonal
edges in match cells have score 1, and in mismatch cells score 0.

Definition 17. Given strings a, b, the corresponding semi-local score matrix is a
matrix over [−m : n | 0 : m+n], defined by Ha,b(i, j) = max score(v0,i  vm,j), where
i ∈ [−m : n], j ∈ [0 : m+ n], and the maximum is taken across all paths between the
given endpoints v0,i, vm,j in the m×(2m+n) padded alignment dag Ga,?mb?m. If i = j,
we have Ha,b(i, j) = 0. By convention, if j < i, then we let Ha,b(i, j) = j − i < 0.

Theorem 18. Given strings a, b, the corresponding semi-local score matrix Ha,b is
unit-anti-Monge. More precisely, we have Ha,b(i, j) = j−i−PΣ

a,b(i, j) = m−PTΣT
a,b (i, j),

where Pa,b is a permutation matrix over 〈−m : n | 0 : m+n〉. In particular, string a is
a subsequence of substring b〈i : j〉 for some i, j ∈ [0 : n], if and only if PTΣT

a,b (i, j) = 0.
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Definition 19. Given strings a, b, the semi-local seaweed matrix is a permutation
matrix Pa,b over 〈−m : n | 0 : m+ n〉, defined by Theorem 18.

When talking about semi-local score and seaweed matrices, we will sometimes
omit the qualifier “semi-local”, as long as it is clear from the context.

2.4 Seaweed submatrix notation

The four individual components of the semi-local LCS problem correspond to a par-
titioning of both the score matrix Ha,b and the seaweed matrix Pa,b into submatrices.
It will be convenient to introduce a special notation for the resulting subranges of
their respective index ranges [−m : n | 0 : m + n] and 〈−m : n | 0 : m + n〉. This
notation will be used as matrix superscripts, e.g. Ha,b = Ha,b[0 : n | 0 : n] denotes
the matrix of all string-substring LCS scores for strings a, b. The notation for other
subranges is as follows.

0 : n n : m+ n
−m : 0 Ha,b Ha,b

0 : n Ha,b Ha,b

and analogously for Pa,b. Note that the four defined half-integer subranges of matrix
Pa,b are disjoint, but the corresponding four integer subranges of matrix Ha,b overlap
by one row/column at the boundaries.

Definition 20. Given strings a, b, the corresponding suffix-prefix, substring-string,
string-substring and prefix-suffix score (respectively, seaweed) matrices are the sub-
matrices Ha,b, Ha,b, Ha,b, Ha,b (respectively, Pa,b, Pa,b, Pa,b, Pa,b). The defined seaweed
submatrices are all disjoint; the defined score submatrices overlap by one row/column
at the boundaries. In particular, the global LCS score Ha,b(0, n) belongs to all four
score submatrices.

The nonzeros of each seaweed submatrix introduced in Definition 20 can be re-
garded as an implicit solution to the corresponding component of the semi-local LCS
problem. Similarly, by considering only three out of the four submatrices, we can
define an implicit solution to the extended string-substring (respectively, substring-
string) LCS problem.

Definition 21. Given strings a, b, we define the extended string-substring (respec-
tively, substring-string) seaweed matrix over 〈−m : n | 0 : m+ n〉 as

Pa,b =

[

Pa,b ·
Pa,b Pa,b

]

Pa,b =

[

Pa,b Pa,b

· Pa,b

]

The extended string-substring seaweed matrix Pa,b contains at least n and at most
min(m + n, 2n) nonzeros. Note that for m ≥ n, the number of nonzeros in Pa,b is at
most 2n, which is convenient when m is large. Analogously, for m ≤ n, the number
of nonzeros in the extended substring-string matrix Pa,b is at most 2m, which is
convenient when n is large.

Let string a of length m be a concatenation of two fixed strings: a = a′a′′, where
a′, a′′ are nonempty strings of length m′, m′′ respectively, and m = m′ + m′′. A
substring of the form a〈i′ : i′′〉 with i′ ∈ [0 : m′ − 1], i′′ ∈ [m′ + 1 : m] will be called
a cross-substring. In other words, a cross-substring of a consists of a nonempty suffix
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of a′ and a nonempty prefix of a′′. A cross-substring that is a prefix or a suffix of a
will be called a cross-prefix and a cross-suffix, respectively. Given string b of length n
that is a concatenation of two fixed strings, b = b′b′′, cross-substrings of b are defined
analogously.

Definition 22. Given strings a = a′a′′ and b, the corresponding cross-semi-local
score matrix is the submatrix Ha′,a′′;b = Ha,b[−m

′ : n | 0 : m′′+n].Symmetrically, given
strings a and b = b′b′′, the corresponding cross-semi-local score matrix is the submatrix
Ha;b′,b′′ = Ha,b[−m : n′ | n′ : m+n].The cross-semi-local seaweed matrices are defined
analogously: Pa′,a′′;b = Pa,b〈−m

′ : n | 0 : m′′ + n〉,Pa;b′,b′′ = Pa,b〈−m : n′ | n′ : m+ n〉.

A cross-semi-local score matrix represents the solution of a restricted version of the
semi-local LCS problem. In this version, instead of all substrings (prefixes, suffixes)
of string a (respectively, b), we only consider cross-substrings (cross-prefixes, cross-
suffixes). At the submatrix boundaries Ha′,a′′;b(∗,m

′′ + n) and Ha′,a′′;b(−m
′, ∗), cross-

substrings of string a degenerate to suffixes of a′ and prefixes of a′′; in particular, cross-
prefixes and cross-suffixes of a degenerate respectively to the whole a′ and a′′. The
submatrix boundaries Ha;b′,b′′(∗, n

′) and Ha;b′,b′′(n
′, ∗) correspond to similar degenerate

cross-substrings of string b.
As before, the cross-semi-local seaweed matrix Pa′,a′′;b (respectively, Pa;b′,b′′) gives

an implicit representation for the corresponding score matrix Ha′,a′′;b (respectively,
Ha;b′,b′′).

Occasionally, we will use cross-semi-local score and seaweed matrices in combi-
nation with the superscript subrange notation, introduced earlier in this section. In
such cases, the range of the resulting matrix will be determined by the intersec-
tion of the ranges implied by the superscript and the subscript. For example, matrix
Ha;b′,b′′ = Ha,b[0 : n′ | n′ : n] is the matrix of all LCS scores between string a and all
cross-substrings of string b = b′b′′.

2.5 Weighted scores and edit distances

The concept of LCS score is generalised by that of (weighted) alignment score. An
alignment of strings a, b is obtained by putting a subsequence of a into one-to-
one correspondence with a (not necessarily identical) subsequence of b, character by
character and respecting the index order. The corresponding pair of characters, one
from a and the other from b, are said to be aligned. A character that is not aligned
against a character of another string is said to be aligned against a gap in that string.
Each of the resulting character alignments is given a real weight :

• a pair of aligned matching characters has weight wm ≥ 0;
• a pair of aligned mismatching characters has weight wx < wm;
• a gap-character or character-gap pair has weight wg ≤

1
2
wx; it is normally assumed

that wg ≤ 0 (i.e. this weight is in fact a penalty).

The intuition behind the weight inequalities is as follows: aligning a matching pair
of characters is always better than aligning a mismatching pair of characters, which
in its turn is never worse than leaving both characters unaligned (aligned against a
gap).

Definition 23. The (weighted) alignment score for strings a, b is the maximum total
weight of character pairs in an alignment of a against b.
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We define the semi-local (weighted) alignment score problem and its component
(string-substring, etc.) subproblems by straightforward extension of Definition 14.
The concepts of alignment dag and score matrix can be naturally generalised to the
weighted case. To distinguish between the weighted and unweighted cases, we will
use a script font in the corresponding notation.

The weighted alignment of strings a, b corresponds to a weighted alignment dag
Ga,b, where diagonal match edges, diagonal mismatch edges, and horizontal/vertical
edges have weight wm, wx, wg, respectively. A semi-local alignment score corresponds
to a boundary-to-boundary highest-scoring path in Ga,b. The complete output of the
semi-local alignment score problem is a semi-local (weighted) score matrix Ha,b. This
matrix is anti-Monge; however, in contrast with the unweighted case, it is not neces-
sarily unit-anti-Monge.

Given an arbitrary set of alignment weights, it is often convenient to normalise
them so that 0 = wg ≤ wx < wm = 1. To obtain such a normalisation, first observe
that, given a pair of strings a, b, and arbitrary weights wm ≥ 0, wx < wm, wg ≤

1
2
wx,

we can replace the weights respectively by wm + 2x, wx + 2x, wg + x, for any real x.
This weight transformation increases the score of every global alignment (top-left to
bottom-right) path in Ga,b by (m+n)x. Therefore, the relative scores of different global
alignment paths do not change. In particular, the maximum global alignment score
is attained by the same path as before the transformation. By taking x = −wg, and
dividing the resulting weights by wm−2wg > 0, we achieve the desired normalisation.
(A similar method is used e.g. by Rice et al. [15]).

Definition 24. Given original weights wm, wx, wg, the corresponding normalised

weights are w∗
m

= 1, w∗
x
= wx−2wg

wm−2wg

, w∗
g
= 0. We call the corresponding alignment

score the normalised score. The original alignment score h can be restored from the
normalised score h∗ by reversing the normalisation: h = h∗ · (wm−2wg)+(m+n) ·wg.

Thus, for fixed string lengths m and n, maximising the normalised global align-
ment score h∗ is equivalent to maximising the original score h. However, more care
is needed when maximising the alignment score across variable strings of different
lengths, e.g. in the context of semi-local alignment. In such cases, an explicit con-
version from normalised weights to original weights will be necessary prior to the
maximisation.

Definition 25. A set of character alignment weights will be called rational, if all the
weights are rational numbers.

Given a rational set of normalised weights, the semi-local alignment score problem
on strings a, b can be reduced to the semi-local LCS problem by the following blow-up
procedure. Let wx =

µ
ν
< 1, where µ, ν are positive natural numbers. We transform

input strings a, b of lengths m, n into new blown-up strings ã, b̃ of lengths m̃ = νm,
ñ = νn. The transformation consists in replacing every character γ in each of the
strings by a substring $

µγν−µ of length ν (recall that $ is a special guard character,
not present in the original strings). We have

Ha,b(i, j) =
1
ν
· Hã,b̃(νi, νj)

for all i ∈ [−m : n], j ∈ [0 : m+n], where the matrix Ha,b is defined by the normalised
weights on the original strings a, b, and the matrix Hã,b̃ by the LCS weights on the

blown-up strings ã, b̃. Therefore, all the techniques of the previous chapters apply
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to the rational-weighted semi-local alignment score problem, assuming that ν is a
constant.

An important special case of weighted string alignment is the edit distance prob-
lem. Here, the characters are assumed to match “by default”: wm = 0. The mismatches
and gaps are penalised: 2wg ≤ wx < 0. The resulting score is always nonpositive.
Equivalently, we regard string a as being transformed into string b by a sequence of
weighted character edits :

• character insertion or deletion (indel) has weight −wg > 0;
• character substitution has weight −wx > 0.

Definition 26. The (weighted) edit distance between strings a, b is the minimum
total weight of a sequence of character edits transforming a into b. Equivalently, it is
the (nonnegative) absolute value of the corresponding (nonpositive) alignment score.

In the rest of this work, the edit distance problem will be treated as a special case
of the weighted alignment problem. In particular, all the techniques of the previous
sections apply to the semi-local edit distance problem, as long as the character edit
weights are rational.

3 Threshold approximate matching in compressed strings

Given a matrix A and a threshold h, it will be convenient to denote the subset of
entries above the threshold by τh(A) =

{

(i, j), such that A(i, j) ≥ h
}

. The threshold
approximate matching problem (Definition 2) corresponds to all points in the set
τh(Hp,t).

Using the techniques of the previous sections, we now show how the threshold
approximate matching problem on a GC-text can be solved more efficiently, assuming
a sufficiently high value of the edit distance threshold k. The algorithm extends
Algorithms 1 and 2 of [21], and assumes an arbitrary rational-weighted alignment
score. As in Algorithm 2 of [21], we assume for simplicity the constant-time index
arithmetic, keeping the index remapping implicit. The details of index remapping
used to lift this assumption can be found in Algorithm 1 of [21].

Algorithm 1 (Threshold approximate matching).
Parameters: character alignment weights wm, wx, wg, assumed to be constant ra-
tionals.
Input: plain pattern string p of length m; SLP of length n̄, generating text string t
of length n; score threshold h.
Output: locations (or count) of matching substrings in t.
Description.

First phase. Recursion on the input SLP generating t.
To reduce the problem to an unweighted LCS score, we apply the blow-up tech-

nique described in Subsection 2.5. Consider the normalised weights (Definition 24),
and define the corresponding blown-up strings p̃, t̃ of length m̃ = νm, ñ = νn,
respectively.
Recursion base: n = n̄ = 1, ñ = ν. The extended substring-string seaweed matrix P

p̃,t̃

can be computed by the seaweed algorithm [20,17] in ν linear sweeps of string p̃. This
matrix can be used to query the LCS score Hp̃,t̃(0, ν) between p̃ and t̃. String t is
matching, if and only if the corresponding weighted alignment score Hp,t(0, 1) is at
least h.
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Recursive step: n ≥ n̄ > 1, ñ = νn. Let t = t′t′′ be the SLP statement defining string
t. We have t̃ = t̃′t̃′′ for the corresponding blown-up strings.

As in Algorithm 2 of [21], we obtain recursively the extended substring-string
seaweed matrix P

p̃,t̃
and the cross-semi-local seaweed matrix Pp̃;t̃′,t̃′′ by an application

of the fast algorithm for distance multiplication of unit-Monge matrices [16]. These
two subpermutation matrices are typically very sparse: P

p̃,t̃
contains at most 2m̃ =

2νm nonzeros, and Pp̃;t̃′,t̃′′ exactly m̃ = νm nonzeros.
In contrast to Algorithm 2 of [21], it is no longer sufficient to consider just the ≷-

maximal nonzeros of Pp̃;t̃′,t̃′′ ; we now have to consider all its m̃ nonzeros. Let us denote
the indices of these nonzeros, in increasing order independently for each dimension,
by

ı̂0+ < ı̂1+ < · · · < ı̂m̃− ̂0+ < ̂1+ < · · · < ̂m̃− (1)

These two index sequences define an m̃× m̃ non-contiguous permutation submatrix
of Pp̃;t̃′,t̃′′ :

P (ŝ, t̂) = Pp̃;t̃′,t̃′′ (̂ıŝ, ̂t̂) (2)

for all ŝ, t̂ ∈ 〈0 : m̃〉.
Index sequence ı̂ŝ (respectively, ̂t̂) partitions the range [−m̃ : ñ′] (respectively,

[ñ′ : m̃+ ñ]) into m̃+1 disjoint non-empty intervals of varying lengths. Therefore, we
have a partitioning of the cross-semi-local score matrix Hp̃;t̃′,t̃′′ into (m̃+ 1)2 disjoint
non-empty rectangular H-blocks of varying dimensions. Consider an arbitrary H-
block

Hp̃;t̃′,t̃′′

[

ı̂+u− : ı̂−u+ | ̂
+
v− : ̂−v+

]

(3)

where u, v ∈ [0 : m̃]. For the boundary H-blocks, some of the above bounds are not
defined. In these cases, we let ı̂0− = −m̃, ı̂m̃+ = ñ′, ̂0− = ñ′, ̂m̃+ = m̃+ ñ.

Since the boundaries of an H-block (3) are given by adjacent pairs of indices from
(1), we have Pp̃;t̃′,t̃′′ (̂ı, ̂) = 0 for all ı̂ ∈

〈

ı̂+u− : ı̂−u+

〉

, u ∈ [0 : m̃] and arbitrary ̂, as

well as for arbitrary ı̂ and all ̂ ∈
〈

̂+v− : ̂−v+
〉

, v ∈ [0 : m̃]. Therefore, given a fixed
H-block, all its points are ≷-dominated by some fixed set of nonzeros in Pp̃;t̃′,t̃′′ (and
hence also in Pp̃,t̃). The number of nonzeros in this set is

d = PTΣT
p̃;t̃′,t̃′′ (̂ı

−
u+ , ̂

+
v−) = PTΣT

p̃,t̃ (̂ı−u+ , ̂
+
v−) (4)

where the H-block’s bottom-left (≷-minimal) point (̂ı−u+ , ̂
+
v−) is chosen arbitrarily to

be its reference point. Since the value of d is constant across the H-block, all its
entries have identical value: we have

Hp̃;t̃′,t̃′′(i, j) = m̃− d (5)

for all i ∈ [̂ı+u− : ı̂−u+ ], j ∈ [̂+v− : ̂−v+ ].

We now switch our focus from the blown-up strings p̃, t̃′, t̃′′ back to the original
strings p, t′, t′′. The partitioning of the LCS score matrix Hp̃;t̃′,t̃′′ into H-blocks induces
a partitioning of the alignment score matrix Hp;t′,t′′ into (m̃+1)2 disjoint rectangular
H-blocks of varying dimensions. The H-block corresponding to H-block (3) is

Hp;t′,t′′
[

ı̂
(+)

u− : ı̂
(−)

u+ | ̂
(+)

v− : ̂
(−)

v+

]

(6)
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where we denote ı̂(−) =
⌊

1
ν
ı̂
⌋

, ı̂(+) =
⌈

1
ν
ı̂
⌉

, for any ı̂. Note that, although an H-block
(3) is by definition non-empty, the corresponding H-block (6) may be empty: we

have ı̂
(+)

u− > ı̂
(−)

u+ (respectively, ̂
(+)

v− > ̂
(−)

v+ ), if the interval
[

ı̂+u− : ı̂−u+

]

(respectively,
[

̂+v− : ̂−v+
]

) contains no multiples of ν.
Although all entries within an H-block (3) are constant, the entries within the

corresponding H-block (6) will typically vary. By (5) and Definition 24, we have

Hp;t′,t′′(i, j) =
m̃−d
ν
· (wm − 2wg) + (m+ j − i) · wg (7)

where i ∈
[

ı̂
(+)

u− : ı̂
(−)

u+

]

, j ∈
[

̂
(+)

v− : ̂
(−)

v+

]

. Recall that wg ≤ 0. Therefore, the score within
an H-block is maximised when j − i is minimised, so the maximum score is attained

by the block’s bottom-left (i.e. ≷-minimal) entry Hp;t′,t′′
(

ı̂
(−)

u+ , ̂
(+)

v−

)

. If wg < 0, then
this maximum is strict; otherwise, we have wg = 0, and all the entries in the H-block
have an identical value m̃−d

ν
· wm.

Without loss of generality, let us now assume that all the H-blocks (6) are non-
empty. We are interested in the bottom-left entries attaining block maxima, taken
across all the H-blocks. The leftmost column and the bottom row of these entries
(respectively Hp;t′,t′′

(

ı̂
(−)

u+ , n′
)

and Hp;t′,t′′
(

n′, ̂
(+)

v−

)

for all u, v) lie on the boundary of
matrix Hp;t′,t′′ , and correspond to comparing p against respectively suffixes of t′ and
prefixes of t′′, rather than cross-substrings of t. After excluding such boundary entries,
the remaining block maxima form an m̃ × m̃ non-contiguous submatrix H(u, v) =

Hp;t′,t′′
(

ı̂
(−)

u+ , ̂
(+)

v−

)

, where u ∈ [0 : m̃− 1], v ∈ [1 : m̃].
Consider the string-substring submatrix of H (i.e. the submatrix of entries that

correspond to the comparison of a string against a cross-substring, as opposed to
a prefix against a cross-suffix, or a suffix against a cross-prefix): H =

(

H(u, v) :
(

ı̂
(−)

u+ , ̂
(+)

v−

)

∈ [0 : n′ | n′ : n]
)

. Since matrix Hp;t′,t′′ is anti-Monge, its submatrices H
and H are also anti-Monge.

We now need to obtain the row maxima of matrix H . Let

N(u, v) =
ν

2wg − wm

H (u, v) = P TΣT (u, v)− m̃+
ν
(

m+ ̂
(+)

v− − ı̂
(−)

u+

)

wg

2wg − wm

(By (7), (4), (2))

Since 2wg−wm < 0, the problem of finding row maxima of H is equivalent to finding
row minima of matrixN , or, equivalently, column minima of the transpose matrixNT .
This matrix (and therefore N itself) is subunit-Monge: we have NT (v, u) = N(u, v) =

P TΣ(v, u) + b(u) + c(v), where b(u) = −
νı̂

(−)

u
+ ·wg

2wg−wm
, c(v) = −m̃+

ν
(

m+̂
(+)

v
−

)

wg

2wg−wm
. Therefore,

the column minima of NT can be found by Lemma 12 (replacing row minima with
column minima by symmetry).

The set τh(H ) of all entries in H scoring above the threshold h, and therefore
the set of all matching cross-substrings of a, can now be obtained by a local search
in the neighbourhoods of the row maxima. (End of recursive step)
Second phase. For every SLP symbol, we now have the relative locations of its min-
imally matching cross-substrings. It is now straightforward to obtain their absolute
locations and/or their count (as in Algorithm 2 of [21], substituting “matching” for
“minimally matching”).
Cost analysis.

First phase. Each seaweed matrix multiplication runs in time O(m̃ log m̃) =
O(m logm). The algorithm of Lemma 12 runs in timeO(m̃ log log m̃) = O(m log logm).
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Hence, the running time of a recursive step is O(m logm). There are n̄ recursive
steps in total, therefore the whole recursion runs in time O(m logm · n̄).
Second phase. For every SLP symbol, there are at most m − 1 minimally matching
cross-substrings. Given the output of the first phase, the absolute locations of all
minimally matching substrings in t can be reported in time O(mn̄+ output).
Total. The overall running time is O(m logm · n̄+ output).

Algorithm 1 improves on the algorithm of [11], as long as k = ω
(

(logm)1/2
)

in
the case of general GC-compression, and k = ω(logm) in the case of LZ78 or
LZW compression. Algorithm 1 also improves on the algorithms of [4,5], as long
as k = ω

(

(m logm)1/4
)

, in the case of both general GC-compression and LZ78 or
LZW compression.

4 Conclusions

We have obtained a new efficient algorithm for threshold approximate matching be-
tween a GC-text and a plain pattern. Our algorithm is of interest not only in its
own right, but also as a natural application of fast unit-Monge matrix multiplication,
developed in our previous works. We have also demonstrated a new technique for in-
cremental searching in an implicit totally monotone matrix, which which we believe
to be of independent interest.
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