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Abstract. A Wavelet tree allows direct access to the underlying file, resulting in the
fact that the compressed file is not needed any more. We adapt, in this paper, the
Wavelet tree to Fibonacci Codes, so that in addition to supporting direct access to the
Fibonacci encoded file, we also increase the compression savings when compared to the
original Fibonacci compressed file.

1 Introduction and previous work

Variable length codes, such as Huffman and Fibonacci codes, were suggested long
ago as alternatives to fixed length codes, since they might improve the compression
performance. However, random access to the ith codeword of a file encoded by a
variable length code is no longer trivial since the beginning position of the ith element
depends on the lengths of all the preceding ones.

A possible solution to allow random access is to divide the encoded file into blocks
of size b codewords, and to use an auxiliary bit vector to indicate the beginning of each
block. The time complexity of random access becomes O(b), as we can begin from the
sampled bit address of the %th block to retrieve the 7th codeword. This method thus
suggests a processing time vs. memory storage tradeoff, since direct access requires
decoding ¢ — [£]b codewords, i.e., less than b.

Another line of investigation applies efficiently implemented rank and select op-
erations on bit-vectors [ to develop a data structure called a Wavelet Tree,
suggested by Grossi et al. ], which allows direct access to any codeword, and in
fact recodes the compressed file into an alternative form. The root of the Wavelet
Tree holds the bitmap obtained by concatenating the first bit of each of the sequence
of codewords in the order they appear in the compressed text. The left and right chil-
dren of the root hold, respectively, the bitmaps obtained by concatenating, again in
the given order, the second bit of each of the codewords starting with 0, respectively
with 1. This process is repeated recursively with the children.

In this paper, we study the properties of Wavelet trees when applied to Fibonacci
codes, and show how to improve the compression beyond the savings achieved by
Wavelet trees for general prefix free codes. It should be noted that a Wavelet tree
for general prefix free codes requires a small amount of additional memory storage as
compared to the memory usage of the compressed file itself. However, since it enables
efficient direct access, it is a price we are willing to pay. Wavelet trees, which are
different implementations of compressed suffix arrays, yield a tradeoff between search
time and memory storage. Given a string 7' of length n and an alphabet X one

of the implementations requires space nHj, + O(%) bits, where Hj, denotes the

hth-order empirical entropy of the text, which is bounded by log | Y|, and processing
time just O(mlog|X| + polylog(n)) for searching any pattern sequence of length m.
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Grossi and Ottaviano introduce the Wavelet trie, which is a compressed indexed
sequence of strings in which the shape of the tree is induced from the structure of the
Patricia trie M. This enables efficient prefix computations (e.g. count the number
of strings up to a given index having a given prefix) and supports dynamic changes
to the alphabet.

Brisaboa et al. [M] use a variant of a Wavelet tree on Byte-Codes, which encodes
the sequence and provides direct access. The root of the Wavelet tree contains the
first byte, rather than the first bit, of all the codewords, in the same order as they
appear in the original text. The root has as many children as the number of different
bytes (e.g., 128 for ETDC). The second level nodes store the second byte of those
codewords whose first byte corresponds to that child (in the same order as they
appear in the text), and so on. The reordering of the compressed text bits becomes
an implicit index representation of the text, which is empirically shown to be better
than explicit main memory inverted indexes, built on the same collection of words,
when using the same amount of space. We use, in this paper, a binary Wavelet tree
rather than a 256-ary one for byte-codes, using less space.

In another work, Brisaboa et al. [l] introduced directly accessible codes (DACs)
by integrating rank dictionaries into byte aligned codes. Their method is based on
Vbyte coding M, in which the codewords represent integers. The Vbyte code splits
the |log x;| + 1 bits needed to represent an integer x; in its binary form into blocks of
b bits and prepends each block with a flag-bit as follows. The highest bit is 0 in the
extended block holding the most significant bits of x;. and 1 in the others. Thus, the
0 bits acts as a comma between codewords. For example, if b = 3, and z; = 25, the
binary representation of x;, 11001, is split into two blocks, and after adding the flags
to each block, the codeword is 0011 1001. In the worst case, the Vbyte code loses one
bit per b bits of x; plus b bits for an almost empty leading block, which is worse than
0-Elias encoding. DACs can be regarded as a reorganization of the bits of Vbyte, plus
extra space for the rank structures, that enables direct access to it. First, all the least
significant blocks of all codewords are concatenated, then the second least significant
blocks of all codewords having at least two blocks, and so on. Then the rank data
structure is applied on the comma bits for attaining % processing time, where
M is the maximum integer to be encoded. In the current work, not only do we use
the Fibonacci encoding which is better than /- Elias encoding in terms of memory
space, we even eliminate some of the bits of the original Fibonacci encoding, while
still allowing direct access with better processing time.

Recently, Kiilekci ] suggested the usage of Wavelet trees and the rank and select
data structures for Flias and Rice variable length codes. This method is based on
handling separately the unary and binary parts of the codeword in different strings
so that random access is supported in constant time by two select queries. As an
alternative, the usage of a Wavelet tree over the lengths of the unary section of each
Elias or Rice codeword is proposed, while storing their binary section, allowing direct
access in time logr, where r is the number of distinct unary lengths in the file.

It should also be noted that better compression can obviously be obtained by the
optimal Huffman codes. The application field of the current work is thus restricted to
those instances in which static codes are preferred, for various reasons, to Huffman
codes. These static codes include, among others, the different Elias codes, dense codes
like ETDC and SCDC [M], and Fibonacci codes.

The rest of the paper is organized as follows. Section M brings some technical
details on rank and select, as well as on Fibonacci codes. Section ll deals with random



98 Proceedings of the Prague Stringology Conference 2014

access to Fibonacci encoded files, first suggesting the use of an auxiliary index, then
showing how to apply Wavelet trees especially adapted to Fibonacci compressed files.
Section M further improves the self-indexing data structure by pruning the Wavelet
tree, and Section Ml brings experimental results.

2 Preliminaries

We bring here some technical details on the rank and select operations, as well as on
Fibonacci codes, which will be useful for the understanding of the ideas below.

2.1 Rank and Select

Given a bit vector B and a bit b € {0, 1}, rank,(B, ) returns the number of occurrences
of b up to and including position i; and selecty(B, ) returns the position of the ith
occurrence of b in B. Note that rank,_y(B,i) = i — rank,(B, i), thus, only one of

the two, say, ranky(B, i) needs to be computed. Jacobson [Bl| showed that rank, on a
bit-vector of length n, can be computed in O(1) time using n—i—O(%) =n+o(n)

bits. His solution is based on storing rank answers every log?n bits of B, using logn
bits per sample, and then storing rank answers relative to the last sample every k’%
bits (requiring log(log®n) = 2loglogn bits per sub-sample, and using a universal
table to complete the answer to a rank query within a subtable.

Raman et al. [l partition the input bitmap B into blocks of length ¢ = [1252].
These are assigned to classes: a block with &k 1s belongs to class k. Class k contains (2)

elements, so [log (})] bits are used to refer to an element of it. A block is identified
with a pair (k,r), where k is its class (0 < k < t) using [log(t + 1)] bits, and r is
the index of the block within the class using [log (Zﬂ bits. A global universal table
for each class k translates in O(1) time any index r into the corresponding ¢ bits.
The sizes of these tables add up to 2° bits. The sequences of [2] class identifiers
k is stored in one array, K, and that of the indexes r is stored in another, R. The
blocks are grouped into superblocks of length s = |[log n|. Each superblock stores the
rank up to its beginning, and a pointer to R where its indexes start. The size of R is
upper bounded by nHy(B), and the main space overhead comes from K which uses
n[logt+ 1] bits.

To solve rank,(B, ), the superblock of 7 is first computed, and its rank value up
to its beginning is obtained. Second, the classes from the start of the superblock are
scanned, and their k values are accumulated. The pointer to R is obtained in parallel
by attaining the pointer value from the start of the superblock and adding [log (,’;ﬂ
bits for each class k which is processed. This scanning continues up to the block
7 belongs to, whose index is extracted from R, and its bits are recovered from the
universal table.

The select,(B, i) operation can be done by applying binary search in B on the
index j so that rank,(B,7) = i and rank,(B,j — 1) = i — 1. Using the O(1) data
structure of Jacobson or that of Raman et al. for rank implies an O(logn) time solution
for select. As for the constant time solution for select, the bitmap B is partitioned into
blocks, similar to the solution for the rank operation. For simplicity, let us assume
that b = 1. The case in which b = 0 is dealt with symmetrically. In more details, B
is partitioned into blocks of two kinds, each containing exactly log>n 1s. The first
kind are the blocks that are long enough to store all their 1-positions within sublinear
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space. These positions are stored explicitly using an array, in which the answer is read
from the desired entry i. The second kind of blocks are the “short” blocks, of size
O(log®n), where ¢ is a constant. Recording the 1-positions inside them requires only
O(loglog n) bits by repartitioning these blocks, and storing their relative position. The
remaining blocks are short enough to be handled in constant time using a universal
table.

Gonzélez et al. [l give a practical solution for rank and select data structures.
Okanohara and Sadakane [Bl] introduce four practical rank and select data structures,
with different tradeoffs between memory storage and processing time. The difference
between the methods is based on the treatment of sparse sets and dense sets. Although
their methods do not always guarantee constant time, experimental results show that
these data structures support fast query results and their sizes are close to the zero

order entropy. Barbay et al. [l] propose a data structure that supports rank in time
O(loglog | X]) and select in constant time using nHy(T') + o(n)(Ho(T) + 1) bits.
Navarro and Providel [Ml] present two data structures for rank and select that

improve the space overheads of previous work. One using the bitmap in plain form and
the other using the compressed form. In particular, they concentrate on improving
the select operation since it is less trivial than rank and requires the computation
of selecty and select;, unlike the symmetrical nature of rank. The memory storage
improvement is achieved by replacing the universal tables of [Bl]’s implementation
by on-the-fly generation of their cells. In addition, they combine the rank and select
samplings instead of solving each operation separately, so that each operation uses
its own sampling, possibly using also that of the other operation.

2.2 Fibonacci Codes

The Fibonacci code is a universal variable length encoding of the integers based on
the Fibonacci sequence rather than on powers of 2. A finite prefix of this infinite
sequence can be used as a fixed alternative to Huffman codes, giving obviously less
compression, but adding simplicity (there is no need to generate a new code every
time), robustness and speed [MIM]. The particular property of the binary Fibonacci
encoding is that it contains no adjacent 1’s, so that the string 11 can act like a comma
between codewords. More precisely, the codeword set consists of all the binary strings
for which the substring 11 appears exactly once, at the left end of the string.

The connection to the Fibonacci sequence can be seen as follows: just as any
integer k£ has a standard binary representation, that is, can be uniquely represented
as a sum of powers of 2, k = Y .. b;2, with b; € {0,1}, there is another possible
binary representation based on Fibonacci numbers, k = > .-, fiF(¢), with f; € {0, 1},
where it is convenient to define the Fibonacci sequence here by

F(0)=0,F(1) =1 and Fli)y=F(i—1)+F(i—2) fori>2 (1)

This Fibonacci representation will be unique if, when encoding an integer, one re-
peatedly tries to fit in the largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19 is 13, for the remainder
6 one can use the Fibonacci number 5, and the remainder 1 is a Fibonacci number
itself. So one would represent 19 as 19 = 13+ 5+ 1, yielding the binary string 101001.
Note that the bit positions correspond to F'(i) for increasing values of i from right
to left, just as for the standard binary representation, in which 19 = 16 + 2 + 1
would be represented by 10011. Each such Fibonacci representation has a leading 1,
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so by preceding it with an additional 1, one gets a sequence of uniquely decipherable
codewords.

Decoding, however, would not be instantaneous, because the set lacks the prefix
property. For example, a first attempt to start the parsing of the encoded string
1101111111110 by 110 11 11 11 11 would fail, because the remaining suffix 10 is not
the prefix of any codeword. So only after having read 5 codewords in this case (and
the example can obviously be extended) would one know that the correct parsing is
1101 11 11 11 110. To overcome this problem, the Fibonacci code defined in [l simply
reverses each of the codewords. The adjacent 1s are then at the right instead of at
the left end of each codeword, yielding the prefix code {11, 011, 0011, 1011, 00011,
10011, 01011, 000011, 100011, 010011, 001011, 101011, 0000011, ...}.

Since the set of Fibonacci codewords is fixed in advance, and the codewords are
assigned by non-increasing frequency of the elements, but otherwise independently
from the exact probabilities, the compression performance of the code depends on
how close the given probability distribution is to one for which the Fibonacci code-

word lengths would be optimal. The lengths are 2, 3, 4, 4, 5, 5, 5, 6, ..., so the
optimal (infinite) probability distribution would be (1, £, 15, 15+ 35+ 330 33> 4> - - -)- For

any finite probability distribution, the compression by a prefix of the Fibonacci code
will always be inferior to what can be achieved by a Huffman code. For a typical
distribution of English characters, the excess of Fibonacci versus Huffman encoding
is about 17% [M, and may be less, around 9%, on much larger alphabets [ll]. On
the other hand, Fibonacci coding may be significantly better than other static codes
such as Elias coding, End-tagged dense codes (ETDC) and (s,c)-dense codes (SCDC)

.

3 Random Access to Fibonacci Encoded Files

3.1 Using an Auxiliary Index

A trivial solution for gaining random access is to use an additional auxiliary index
constructed in the following way:

1. Compress the input file, T, using a Fibonacci Code, resulting in the file £(T) of
size u.

2. Generate a bitmap B of size u so that B[i] = 1 if and only if £(T)[z] is the first
bit of a codeword.

3. Construct a rank and select succinct data structure for B.

Recall that u = |E(T)| is the size of the uncompressed text, and X denote the
alphabet. In the suggested solution, the space used to accomplish constant time rank
and select operations (excluding the encoded file) is

u+ B(u, | X| +u) + o(u) + O(loglog | X)),

where B(z,y) = [log (Y)] (the information theoretic lower bound in bits for storing a
set of x elements from a universe of size y) using Raman et al.’s implementation [Il.
A better approach would be to omit the bitmap B of the first implementation and
rather embed the index into the Fibonacci encoded file. This can be accomplished
by treating two consecutive 1 bits in £(T[i]) as a single 1-bit in B, and other bits
in £(T'[i]) as a 0 in B. The memory storage is therefore reduced to B(u, |X| + u) +
o(u) + O(loglog | X|). Even better solutions are presented below.
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3.2 Using Wavelet Trees

We adjust the Wavelet tree to Fibonacci codes in the following way. Given is an alpha-
bet X and a text T' = tyty - - - t,, of size n, where t; € X. Let Ep(T) = f(t1) -+ f(tn)
be the encoding of T" using the first | 2| codewords of the Fibonacci code. The Wavelet
tree is in fact a set of annotations to the nodes of the binary tree corresponding to the
given prefix code. These annotations are bitmaps, which together form the encoded
text, though the bits are reorganized in a different way to enable the random access.
The exact definition of the stored bitmaps has been given above in the introduction.

Recall that the binary tree Ty corresponding to a prefix code C' is defined as
follows: we imagine that every edge pointing to a left child is labeled 0 and every
edge pointing to a right child is labeled 1; each node v is associated with the bitstring
obtained by concatenating the labels on the edges on the path from the root to v;
finally, T¢ is defined as the binary tree for which the set of bitstrings associated with
its leaves is the code C. Figure B is the tree corresponding to the first 7 elements of
the Fibonacci code. Since the bitmaps used by the Wavelet tree algorithms use the
tree T as underlying structure, we shall refer to this tree as the Wavelet tree, for the
ease of discourse.

00100111001

Figure 1. Fibonacci Wavelet Tree for the text 7' =COMPRESSORS.

The bitmaps in the nodes of the Wavelet tree can be stored as a single bit stream
by concatenating them in order of any predetermined top-down tree traversal, such
as depth-first or breadth-first. No delimiters between the individual bitmaps are re-
quired, since we can restore the tree topology along with the bitmaps lengths at each
node once the size u of the text is given in the header of the file. We shall henceforth
refer to the Wavelet tree built for a Fibonacci code as the Fibonacci Wavelet tree
(FWT). They are related, but not quite identical, to the trees defined by Knuth [Il]
as Fibonacci trees.

Consider, for example, the text 7" = COMPRESSORS over an alphabet {C, M, P,
E, 0, R, S} of size 7, whose elements appear {1, 1, 1, 1, 2, 2, 3} times, respectively.
The Fibonacci encoded file of 39 bits is the following binary string, in which spaces
have been added for clarity.

Emp(T) =01011 0011 10011 00011 o011 1011 11 11 0011 O11 11

The corresponding FWT, including the annotating bitmaps, is given in Figure l
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The Wavelet tree for E¢4(T) is a succinct data structure for 1" as it takes space
asymptotically equal to the Fibonacci encoding of T', and it enables accessing any
symbol ¢; in time O(|f(¢;)]), where f(x) is the Fibonacci encoding of x. The algorithm
for extracting ¢; from an FWT rooted by v, is given in Figure [l using the function
call extract(v,o01,1). B, denotes the bit vector belonging to vertex v of the Wavelet
tree, and - denotes concatenation. Computing the new index in the following bit
vector is done by the rank operation, given in lines 3.3 and 4.3. As the Fibonacci code
is a universal one, the decoding of code in line 5 is done by a fixed lookup table.

extract(Vroot, )
1 code +— ¢
2 while v is not a leaf

3 if By[i] =0

3.1 v «— left(v)

3.2 code +— 0 - code
33 i «— ranko(By, 1)
4 else

4.1 v «— right(v)
4.2 code <— 1 - code
4.3 i <— ranky (By, 1)

5  return D(code)

Figure 2. Extracting ¢; from a Fibonacci Wavelet Tree rooted at vypo¢-

We extend the definition of selecty(B, ), which was defined on bitmaps, to be
defined on the text T' for general alphabets, in a symmetric way. More precisely, we
use the notation select, (7', ) for returning the position of the ith occurrence of  in T'.

Computing select, (T, 7) is done in the opposite way. We start from the leaf, ¢,
representing the Fibonacci codeword f(z) of x, and work our way up to the root.
The formal algorithm is given in Figure @l The running time for select, (7, 4) is, again,

O(f(@)])-

select, (T, )

1 ¢ +— leaf corresponding to f(x)
2 v <— father of ¢

3 while v # Voot

3.1 if £ is a left child of v

3.1.1 i <— index of the ith 0 in B,
3.2 else // £ is a right child of v

3.2.1 1 <— index of the ith 1 in B,
3.3 v «— father of v

4 return ¢

Figure 3. select the ith occurrence of x in T.
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4 Enhanced Wavelet Trees for Fibonacci codes

In this section, we suggest to prune the Wavelet Tree, so that the attained pruned
Wavelet Tree still achieves efficient rank and select operations, and even improves
the processing time. The proposed compressed data structure not only provides ef-
ficient random access capability, but also improves the compression performance as
compared to the original Wavelet Tree.

4.1 Pruning the tree

The idea is based on the property of the Fibonacci code that all codewords, except
the first one 11, terminate with the suffix 011. The binary tree corresponding to the
Fibonacci code is therefore not complete, as can be seen, e.g., in the example in
Figure l and the nodes corresponding to this suffix, at least for the lowest levels of
the tree, are redundant. We can therefore eliminate all nodes which are single children
of their parent nodes. The bitmaps corresponding to the remaining internal nodes of
the pruned tree are the only information needed in order to achieve constant random
access. A similar idea to this collapsing strategy is applied on suffix or position trees
in order to attain an efficient compacted suffix trie. They have also been applied on
Huffman trees M| producing a compact tree for efficient use, such as compressed
pattern matching WM. Applying this strategy on the FWT of Figure M results in the
pruned Fibonacci Wavelet Tree given in Figure l

00100111001

Figure 4. Pruned Fibonacci Wavelet Tree for the text T'= COMPRESSORS.

The select, (7', i) algorithm for selecting the ith occurrence of  in 7" is the same as
in Figure W gaining faster processing time since the lengths of the longer codewords
were shortened. However, the algorithm for extracting ¢; from a pruned FWT requires
minor adjustments for concatenating the pruned parts. The following lines should be
added instead of line 5 in the algorithm of Figure Ik

5 if suffix of code = 0

5.1 code +— code - 11
6  if suffix of code # 11
6.1 code <— code - 1

7 return D(code)

Figure 5. Extracting ¢; from the pruned Fibonacci Wavelet Tree.
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The FWT of an alphabet of finite size is well defined and fixed. Therefore, only
the size of the alphabet is needed for recovering the topological structure of the tree,
as opposed to Huffman Wavelet Trees. Recall that the Wavelet tree for general prefix
free codes is a reorganization of the bits of the underlying encoded file. The suggested
pruned Fibonacci Wavelet tree only uses a partial set of the bits of the encoded file.
The main savings of pruned FWTs as compared to the original FWTs of Section l
stems from the fact that the bitmaps corresponding to the nodes are not all necessary
for gaining the ability of direct access. These non-pruned nodes, therefore, are in a
one-to-one correspondence with the bits of the encoded Fibonacci file. The bold bits of
Figure M correspond to those bits that should be encoded; the others can be removed
when we use the pruned FWT.

T C 0 M P R E S|S 0 R |S
€ 7 (T)|0[1[0[11|0[O[1[1[1[0]0]1[1|0[0[O[1[1[O[L[L[L[O[1[t[T[T[T[T[O[O[L[1[O[1[1[1[1

Figure 6. The Bitmap Encoding

4.2 Analysis

We now turn to evaluate the number of nodes in the original and pruned FWTs, from
which the compression savings can be derived. Two parameters have to be considered:
the number of nodes in the trees, which relate to the storage overhead of applying
the Wavelet trees, and the cumulative size of the bitmaps stored in them, which is
the size of the compressed file. A certain codeword may appear several times in the
compressed file, but will be recorded only once in the WFT.

Since we are interested in asymptotic values, we shall restrict our discussion here
to prefixes of the Fibonacci code corresponding to full levels, that is, since the number
of codewords of length h + 1 is a Fibonacci number Fj, M|, we assume that if the
given tree is of depth h + 1, then all the F} codewords of length h + 1 are in the
alphabet. This restricts the size n of the alphabet to belong to the sequence 1, 2,
4,7, 12, 20, 33, etc., or generally n € {F,—1|h > 3}. We defer the more involved
calculations for general n to the full paper.

Figure 7. Recursive definition of a Fibonacci Wavelet Tree of depth h.
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There are two ways to obtain the FW'T of height A+ 1 from that of height h. The
first is to consider the defining inductive process, as given in Figure ll The left subtree
of the root is the FWT of height h, while the right subtree of the root consists itself
of a root, with a left subtree being the FWT of height & — 1, and the right subtree
being a single node. Denote by N, the number of nodes in the FW'T of height h, we
then have

Npy1 = Np+ N1+ 3. (2)

The second way is by adding the paths corresponding to the Fj, longest codewords
(of length h+1) to the tree for height h. This is done by referring to the nodes on level
h — 2 which have a single child, and there are again exactly Fj, such nodes. The single
child of these nodes corresponds to the bit 1, and their parent nodes are extended by
adding trailing outgoing paths corresponding to the terminating string 011, turning
each of them into a node with two children. For example, the grey nodes in Figure ll
are the FW'T of height h = 4. The three darker nodes are those on level 2 which are
internal nodes with only one child. In the passage to the FWT of height h 4+ 1 = 5,
the bold edges and nodes (representing the suffix 011) are appended to these nodes.
This yields the recursion
Npy1 = Ny + 3F},. (3)

Applying eq. (3) repeatedly gives
Nhy1 = N1+ 3(Fpo1 + F) = Npo + 3(Fho + Fo1 + Fp),

and in general after k£ stages we get that

h
Nig1 = Np_i +3( Z F;).
i—h—k

When substituting h — k by 2 we get that

h
N1 = Na+3()_ F).

1=2

By induction it is easy to show that

h
Y Fi=Fia—2.
1=2

Since Ny = 3, we get that
Nh+1 == 3 + 3(Fh+2 - 2) = 3Fh+2 - 3 (4)

This is also consistent with our first derivation, since the basis of the induction is
obviously the same, and assuming the truth of eq. (2) for values up to h, we get by
inserting eq. (4) for Ny, and Nj_; that

Niy1 = (3Fpp1 —3) + (3F, — 3) +3 = 3Fp10 — 3.

The pruned FWT corresponding to the FWT of height h+1 is of height h—1 and
obtained by pruning all single child nodes of the FWT: for each of the Fj, leaves of
the lowest level h + 1, two nodes are saved, and for each of the Fj,_; leaves on level h,
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Figure 8. Extending a Fibonacci Wavelet Tree

only a single node is erased. Denoting by .S;, the number of nodes in a pruned FWT
of height h, we get

Sh-1 = Npy1 — 2F, — Fj_1. (5)

But
2Fy + Fypy = Fppq + Fpy = Fhpo,

so substituting the value for N, from eq. (4), we get
Sh-1 = 3Fp42 — 3 — Fhpo = 2F) 0 — 3.
The ratio of the sizes of the pruned to the original FWTs is therefore

Spo1 2Fhs —3 2

= —
Nh+1 3Fh+2 -3 h—oo 3’

when the size of the tree grows to infinity, so that about one third of the nodes will
be saved. Figure Ml plots the number of nodes in both original and pruned FWTs as
a function of the tree’s heights.

2000

T T
FWT ——
pruned-FWT =--x---

1800
1600
1400
1200
1000
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200
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i L L L
6 8 10 12 14

Figure 9. Number of nodes in original and pruned FWT as function of height.
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5 Experimental Results

While the number of nodes saved in the pruning process could be analytically derived
in the previous section, the number of bits to be saved in the compressed file will
depend on the distribution of the different encoded elements. It might be hard to
define a “typical” distribution of probabilities, so we decided to calculate the savings
for the distribution of characters in several real-life languages.

File n | height | FWT | pruned | Huffman
English |26 8 4.90 | 4.43 4.19
Finnish |29 8 4.76 | 4.44 4.04
French |26 8 453 | 4.14 4.00
German | 30 8 4.70 | 4.37 4.15
Hebrew |30 8 4.82 | 4.42 4.29
Italian 26 8 4.70 | 4.32 4.00

Portuguese | 26 8 4.67 | 4.28 4.01
Spanish | 26 8 4.71 | 4.30 4.05
Russian | 32 8 5.13 | 4.76 4.47

English-2 [378] 14 8.78 | 8.56 7.44
Hebrew-2 |743| 15 9.13 | 897 8.04

Table 1. Compression Performance

The distribution of the 26 letters and the 371 letter pairs of English was taken
from Heaps [M]; the distribution of the 29 letters of Finnish is from Pesonen [Bl;
the distribution for French (26 letters) has been computed from the database of the
Trésor de la Langue Fran¢aise (TLF) of about 112 million words (for details on TLF,
see [M); for German, the distribution of 30 letters (including blank and Umlaute) is
given in Bauer & Goos [H]; for Hebrew (30 letters including two kinds of apostrophes
and blank, and 735 bigrams), the distribution has been computed using the database
of The Responsa Retrieval Project (RRP) [|] of about 40 million Hebrew and Aramaic
words; the distribution for Italian, Portuguese and Spanish (26 letters each) can be
found in Gaines [, and for Russian (32 letters) in Herdan [W.

Note that the input of our tests consists of published probability distributions,
not of actual texts. There are therefore no available texts that could be compressed.
We can only calculate the average codeword lengths, from which the expected size
of the compressed form of some typical natural language text can be extrapolated.
To still get some idea on the compression performance, we add as comparison the
average codeword length of an optimal Huffman code.

The results are summarized in Table B, the two last lines corresponding to the
bigrams. The second column shows the size n of the alphabet. The column entitled
height is the height of the original FW'T tree for the given distribution, FWT shows
the average codeword length for the original FWT, and pruned the corresponding
value for the pruned FWT. As can be seen, there is a 7-10% gain for the smaller
alphabets, and 2-3% for the larger ones. The reduced savings can be explained by
the fact that though a third of the nodes has been eliminated, they correspond to the
leaves with lowest probabilities, so the expected savings are lower. The last column,
entitled Huffman, gived the average codeword length of an optimal Huffman code.
We see that the increase, relative to the Huffman encoded files, of the size of the
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FWT compressed files can roughly be reduced to half by the pruning technique. For
example, for English, the FWT compressed file is 17 % than the Huffman compressed
one, but the pruned FWT reduces this excess to 6 %. All the numbers have been
calculated for the given sizes n of the alphabets, and not been approximated by trees
with full levels.
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