Improved Two-Way Bit-parallel Search ${ }^{\star}$

Branislav Ďurian ${ }^{1}$, Tamanna Chhabra ${ }^{2}$, Sukhpal Singh Ghuman ${ }^{2}$, Tommi Hirvola ${ }^{2}$, Hannu Peltola ${ }^{2}$, and Jorma Tarhio ${ }^{2}$
${ }^{1}$ S\&T Slovakia s.r.o., Priemyselná 2, SK-010 01 Žilina, Slovakia
Branislav.Durian@snt.sk
${ }^{2}$ Department of Computer Science and Engineering, Aalto University P.O.B. 15400, FI-00076 Aalto, Finland
\{Tamanna.Chhabra, Suhkpal.Ghuman, Tommi.Hirvola\}@aalto.fi, hpeltola@cs.hut.fi, Jorma.Tarhio@aalto.fi

Abstract

New bit-parallel algorithms for exact and approximate string matching are introduced. TSO is a two-way Shift-Or algorithm, TSA is a two-way Shift-And algorithm, and TSAdd is a two-way Shift-Add algorithm. Tuned Shift-Add is a minimalist improvement to the original Shift-Add algorithm. TSO and TSA are for exact string matching, while TSAdd and tuned Shift-Add are for approximate string matching with k mismatches. TSO and TSA are shown to be linear in the worst case and sublinear in the average case. Practical experiments show that the new algorithms are competitive with earlier algorithms.

1 Introduction

String matching can be classified broadly as exact string matching and string matching. In this paper, we consider both types. Let $T=t_{1} t_{2}$. $p_{1} p_{2} \cdots p_{m}$ be text and pattern respectively, over a finite alphabet Σ of si of exact string matching is to find all occurrences of the pattern P in the positions i such that $t_{i} t_{i+1} \cdots t_{i+m-1}=p_{1} p_{2} \cdots p_{m}$. Approximate string has several vari consider only the k mismatc where the task $0 \leq k<m$ hold

We will pres and Shift-Add a of these algorit handled togethe show that the loop are compe es of P with at most k mism as of the widely known Shiftly bit-parallelism. The key idea of the most j where text characters t_{i-j} and t_{i+j} are ar in the worst case. Practical experiments ims, loop unrolling, or with a greedy skip ms of same type.
All our algorithms utilize bit manipulation heavily. We use the following notations of the C programming language: ' $\&$ ', '|', ' \ll ', and ' \gg '. These represent bitwise operations AND, OR, left shift, and right shift, respectively. Parenthesis and extra space has been used to clarify the correct evaluation order in pseudocodes. Let w be the register width (or word size informally speaking) of a processor, typically 32 or 64.

2 Previous algorithms

This section describes the previous solutions for exact and approximate string matching. First, we illustrate previous algorithms for exact matching which include ShiftOr and its variants like BNDM (Backward Nondeterministic DAWG Matching),

[^0]TNDM (Two-way Nondeterministic DAWG Matching), LNDM (Linear Nondeterministic DAWG Matching), FSO (Fast Shift-Or) and FAOSO (Fast Average Optimal Shift-Or. Then the algorithms for approximate string matching are presented which cover Shift-Add Optimal Shift-Add).

2.1 Shift-O

The Shift-Or
parallelism. Pr
tomaton. The 1

for this purpose in all algorith
es the
ndeter
ing. O
it-par
hing)
nning.
vector
urren
first string matching algorithm applying bith be interpreted as simulation of an aucal. Operands in the algorithm the state of the automaton is with the bit-shift and or opof the Shift-Or algorithm, and ear variation of that algorithm. atching) is the bit-parallel simDAWG Matching). BDM scans iffix automaid, simulates he Shift-And
window is shifted with fixed steps of m. Starting from the m th cha
the text characters are examined moving leftwards. The bitvector L becomes zero, when a mismatch is detected or (m shifts has been made while) m characters have

```
\(\overline{\operatorname{Algorithm} 1} \mathbf{L N D M}\left(P=p_{1} p_{2} \cdots p_{m}, T=t_{1} t_{2} \cdots t_{n}\right)\)
Require: \(m \leq w\)
    /* Preprocessing */
    for all \(c \in \Sigma\) do \(B[c] \leftarrow 0\)
    for \(i \leftarrow 1\) to \(m\) do
        \(B\left[p_{i}\right] \leftarrow B\left[p_{i}\right]|1 \ll(i-1) \quad / *| 0^{m-i} 10^{i-1 * /}\)
    /* Searching */
    for \(i \leftarrow m\) step \(m\) while \(i \leq n\) do
        \(l \leftarrow 0 ; r \leftarrow 0 ; L \leftarrow(\sim 0) \gg(w-m) ; R \leftarrow 0 \quad /^{*} L \leftarrow 1^{m} ; R \leftarrow 0^{m} * /\)
        while \(L \neq 0\) do
            \(L \leftarrow L \& B\left[t_{i-l}\right]\)
            \(l \leftarrow l+1\)
            \((L R) \leftarrow(L R) \gg 1\)
            \(R \leftarrow R \gg(m-l)\)
            while \(R \neq 0\) do
                \(r \leftarrow r+1\)
            if \(R \&(1 \ll(m-1)) \neq 0\) then report occurrence
            \(R \leftarrow(R \ll 1) \& B\left[t_{i+r}\right]\)
```

been examined. The not two m bits long bitvecto $m+1$ character of wind two-way algorithms, thes feature in two-way algor:
bitvector which is concatenated from mining continues rightwards from the is easy to notice the matches. In our ed (into one scan). The characteristic haracters bring plenty information to
\square

the k-mismatches problem

bit-parallel algorithm for the k-mismatches problem. A vector cepresent the state of the search. A field of L bits is used for n states. The minimum value of L is $\left\lceil\log _{2}(k+1)\right\rceil+1$. In the
state of the search between the positions $1, \ldots, j$ of the text, where j is the current
position in th
A slightly (Average Opt

Galil and
matching prot
queries betwes
by giving an
a. (in the average case only) AOSA
cally fastest argormenn know worst-case time complexity
theoretical sense, but in prac on (LCE) og $m)<k$ symptotihieves the sting in a rithm for reasonable values of m and k due to the heavy L perations. Hence we have the need for developing fast practic matching with k mismatches.

3 TSO and TSA

3.1 TSO

At first we introduc docode of TSO is gi ters as the original characters. At each positions t_{i}, \ldots, t_{i+n} same time, to the p t_{i}, and it proceeds with a
D become 1^{m} or $j=m \mathrm{~h}$
-Or algorithm, TSO for short. The pseuthe same occurrence vectors B for charactraverses the text with a fixed step of m ndow $t_{i-m+1}, \ldots, t_{i+m-1}$ is inspected. The ble matches and at the tarts at the character corresponding bits in e loops of LNDM are

Require: $m \leq w$
Require: $m \leq w$
/* Preprocessing */
/* Preprocessing */
mask $\leftarrow \sim 0 \ll(w-m) \quad / *=1^{m} 0^{w-m} * /$
mask $\leftarrow \sim 0 \ll(w-m) \quad / *=1^{m} 0^{w-m} * /$
for all $c \in \Sigma$ do $B[c] \leftarrow$ mask
for $i \leftarrow 1$ to m do /* Lowest bits remain $0 * /$
$B\left[p_{i}\right] \leftarrow B\left[p_{i}\right] \& \sim(1 \ll(w-m+i-1)) \quad / * \& 1^{m-i} 01^{w-m+i-2} * /$
/* Searching */
matches $\leftarrow 0$
for $i \leftarrow m$ step m while $i \leq n$ do
$D \leftarrow B\left[t_{i}\right] ; j \leftarrow 1$
while $D<$ mask and $j<m$ do
$D \leftarrow D\left|\left(B\left[t_{i-j}\right] \ll j\right)\right|\left(B\left[t_{i+j}\right] \gg j\right) \quad / *$ no need for additional masking */
$j \leftarrow j+1$
if $D<$ mask then /* Gar
$E \leftarrow(\sim D) \&$ mask
matches \leftarrow matches
bits is then calculated with th
alization
of popcount is the following:
while $E>0$ do
me in total where s is the number of occurrences. If the locations
to be printed out, $\mathcal{O}(m)$ time is needed for every alignment
ast one match.
rectly when $n \bmod m=m-1$ holds. If access to t_{n+1}, \ldots is
er-e.g. 255-does not appear in P, assignment of stopper
orithm work also for other values of n. Another easy way
text is to use Shift-Or algorithm, because same occurrence
n example of the execution of TSO for $P=\mathrm{abcab}$ and
$T=$
3.2
Shift-And
modify TS
TSA is giv
In TSA
$B\left[t_{i-2}\right]$ an
sequent ex
'hift-Or. Therefore it
ard to
And algorithm, TSA
Original Shift-Or/Shift-And examines every text ore its practical performance is extremely insensitive to the input data. Two-way algorithms check text in alignment windows of m consecutive text positions. A mismatch can be detected immediately based on the first examined text character. In the best case the performance can be $\Theta(n / m)$. On the other hand, if a match is in any position in

[^1]```
P = abcab B[a] = 10110
 B[b] = 01101
 B[c] = 11011
 B[x] = 11111
T = ... x a b c a b c a b x ...
j=1 corer a col10
j = 2 b
c
D = 10110
 01101
 1 1 0 1 1
 D = 10110
 10110
 1 0 1 1 0
 D = 10110
 1 1 1 1 1
b
 01101
D = 10110
E = 01001
 2 matches
```

Figure 1. Example of work made in the inner loop of TSO.

```
Algorithm 3 TSA \(=\) Two-way \(\operatorname{Shift-And}\left(P=p_{1} p_{2} \cdots p_{m}, T=t_{1} t_{2} \cdots t_{n}\right)\)
Require: \(m \leq w\)
 /* Preprocessing */
 for all \(c \in \Sigma\) do \(B[c] \leftarrow 0\)
 for \(i \leftarrow 1\) to \(m\) do
 \(B\left[p_{i}\right] \leftarrow B\left[p_{i}\right]|1 \ll(m-i) \quad / *| 0^{i-1} 10^{m-i} * /\)
 /* Searching */
 matches \(\leftarrow 0\)
 for \(i \leftarrow m\) step \(m\) while \(i \leq n\) do
 \(D \leftarrow B\left[t_{i}\right] ; j \leftarrow 1\)
 while \((D>0)\) and \((j<m)\) do /* alternatively \(D \neq 0\) */
 \(D \leftarrow D \&\left(\left(\left(B\left[t_{i-j}\right]+1\right) \ll j\right)-1\right) \&\left(\left(B\left[t_{i+j}\right] \gg j\right) \mid\right.\)
 \(\left.(((\sim 0) \gg(w-m)) \ll(m-j))) \quad / *\left(1^{m} \ll(m-j)\right)\right)^{*}\)
 \(j \leftarrow j+1\)
 if \(D>0\) then /* alternatively \(D \neq 0\) */
 matches \(\leftarrow\) matches \(+\operatorname{popcount}(D)\)
```

the window, or if the mismatch is detected based on two last examined characters, then $2 m-1$ characters need to be examined. So in the worst case all text characters except the last characters in each alignment window are examined twice.

ften improves the speed of bit-parallel searching nd TSA, it means that $3,5,7$, or 9 characters r loop instead of a single character. We denote vhere $x$ is the number of characters read in the the following:

7: $\quad D \leftarrow\left(B\left[t_{i-1}\right] \ll 1\right)\left|B\left[t_{i}\right]\right|\left(B\left[t_{i+1}\right] \gg 1\right) ; j \leftarrow 2$
Moreover, the shifted values $B[a] \ll 1$ computed arrays in order to speed up access

Many string searching algorithms apply hich is used for fast scanning before entering the matching $p \quad$ ee called greedy, if it handles two alignment windows at the $s$

$$
\left(B\left[t_{i-1}\right] \ll 1\right) \mid B\left[t_{i}\right.
$$

in TSO3 by $f(3, i)$. If the programming langu
then we can use the following greedy skip lo

AND command, in TSO3:
while $f(3, i)=$ mask \&\& $f(3, i+m)=$ mask do $i \leftarrow i+2 \cdot m$
Because \&\& is the short-circuit AND, the second condition is evaluated only if the first condition holds. The resulting version of TSO3 is denoted by GTSO3. (Initial G comes from greedy. GTSA3 is formed in a corresponding way.)

### 3.4 Analysis

We will show that TSO is linear in the worst case and sublinear in the average case. For simplicity we assume in the analysis that $m \leq w$ holds and $w$ is divisible by $m$.

The outer loop of TSO is executed $n / m$ times. In each round, the inner loop is executed at most $m-1$ times. The most trivial implementation of popcount requires $\mathcal{O}(m)$ time. So the total time in the worst case is $\mathcal{O}(n m / m)=\mathcal{O}(n)$.

When analyzing the average case complexity of TSO, we assume that the characters in $P$ and $T$ are statistically independent of each other and the distribution of characters is discrete uniform. We consider the time complexity as the number of read characters.

In each window, TSO reads $1+2 k$ characters, $0 \leq k \leq m-1$, where $k$ depends on the window. Let us consider algorithms TSOr, $r=1,2,3, \ldots$, such that TSOr reads an $r$-gram in the window before entering the inner loop. For odd $r$, TSO $r$ was described in the previous section. For even $r$, $\operatorname{TSO} r$ is modified from $\operatorname{TSO}(r-1)$ by reading $t_{i-r / 2}$ before entering the inner loop. It is clear that $\mathrm{TSO} r_{2}$ reads at least as many characters as TSO $r_{1}$, if $r_{2}>r_{1}$ holds. Let us consider TSO $r$ as a filtering algorithm. The reading of an $r$-gram and computing $D$ for it belong to filtration and the rest of the computation is considered as verification. The verification probability is $(m-r+1) / \sigma^{r}$. The verification cost is in the worst case $\mathcal{O}(m)$, but only $\mathcal{O}(1)$ on average. The total number of read characters is $r n / m$ in filtration. When we select $r$ to be $\log _{\sigma} m$, TSO $r$ is sublinear. Because TSO $r$ never reads less characters than TSO1 $=$ TSO, we conclude that also TSO is sublinear.

In other words, the time complexity of TSO is optimal $\mathcal{O}\left(n \log _{\sigma} m / m\right)$ with a proper choice of $r$ for $m=\mathcal{O}(w)$ and $\mathcal{O}\left(n \log _{\sigma} m / w\right)$ for larger $m$.

The time complexity of preprocessing of TSO is $\mathcal{O}(m+\sigma)$. Because of the similarity of TSO and TSA, TSA has the same time complexities as TSO. The space requirement of both algorithms is $\mathcal{O}(\sigma)$.

## 4 Variations of Shift-Add

### 4.1 Two-way Shift-Add

The basic idea in Shift-Add algorithm is to simultaneously evaluate the number of mismatches in each inside field using $L$ bits. The highest bit in each field is an
overflow bit, which is used in preventing the error count rolling to the next field. The original Shift-Add algorithm actually used two state vectors, State and Overflow which were shifted $L$ bits forward. Opposite this, two-way approach in exact matching is successful due to simple (one statement) analogy to the one-way algorithm (ShiftOr, Shift-And). Such an improved (one statement) Shift-Add is introduced in the next section.

The core problem is addition; there can be up to $m$ mismatches. When in some position $k$ errors is reached, we should stop addition into it. In the occurrence vector array, $B[]$, only the lowest bit in each field may be set. The key trick is to use the overflow bits in the state vector $D$. We take the logical and operation between the applied occurrence vector and the $L-1$ right shifted complemented state vector $D$. Then the complemented overflow bits and the possibly set bits in the occurrence vector are aligned, and addition happens only when there is no overflow.

This idea is applied in the Two-way Shift-Add $q$ The limitation of Two-way Shift-



```
Algorithm 4 Two-way Shift-Add \(q\left(P=p_{1} p_{2} \cdots p_{m}, T=t_{1} t_{2} \cdots t_{n}, k\right)\)
Require: \(m \cdot L \leq w\) and \(L \geq \max \left\{2,\left\lceil\log _{2}(\max \{k, q\}+1)\right\rceil+1\right\}\) and \(m>(q+1)\) div 2
 /* Preprocessing */
 mask \(\leftarrow 0\)
 for \(i \leftarrow 1\) to \(m\) do
 mask \(\leftarrow(\) mask \(\ll L) \mid((1 \ll(L-1))-k)\)
 for all \(c \in \Sigma\) do \(B W[c] \leftarrow\) mask
 mask \(\leftarrow 0\)
 for \(i \leftarrow 1\) to \(m\) do
 mask \(\leftarrow(\) mask \(\ll L) \mid 1\)
 for all \(c \in \Sigma\) do \(B[c] \leftarrow\) mask \(\quad / *\) mask \(=\left(0^{L-1} 1_{2}\right)^{m-1} * /\)
 mask \(\leftarrow \operatorname{mask} \ll(L-1) \quad / *\) mask \(=\left(10_{2}^{L-1}\right)^{m-1} * /\)
 for \(i \leftarrow 1\) to \(m\) do
 \(B W\left[p_{i}\right] \leftarrow B W\left[p_{i}\right]-(1 \ll L \cdot(i-1))\)
 \(B\left[p_{i}\right] \leftarrow B\left[p_{i}\right] \& \sim(1 \ll L \cdot(i-1)) \quad /^{*}-(1 \ll L \cdot(i-1))\) also works normally */
 /* Searching */
 for \(i \leftarrow m\) step \(m\) while \(i \leq n\) do
 \(D \leftarrow B W\left[t_{i}\right]+\left(B\left[t_{i-1}\right] \ll L\right)+\left(B\left[t_{i+1}\right] \gg L\right) \quad / *\) this one is for \(q=3 * /\)
 \(j \leftarrow(q+1) \operatorname{div} 2 \quad / *\) integer division - values of \(q\) are odd */
 while \(j<m\) and \((\sim D)\) \& mask do
 \(D \leftarrow D+(\sim D \gg(L-1)) \& B\left[t_{i-j}\right] \ll(L \cdot j)\)
 \(+(\sim D \gg(L-1)) \& B\left[t_{i+j}\right] \gg(L \cdot j)\)
 \(j \leftarrow j+1\)
 \(E \leftarrow(\sim D)\) \& mask
 while \(E\) do
 report an occurrence /* shifting of \(E\) is not needed */
 \(E \leftarrow E \&(E-1) \quad / *\) turning off rightmost 1-bit */
```



Figure 2. Example of checking $m$ positions in Two-way Shift-Add.

### 4.2 Analysis

The worst case analysis is similar to the analysis of TSO/TSA given in For simplicity we assume in the analysis that $m \leq w$ holds and $w$ $m$. The outer loop of $\operatorname{TSAdd} q$ is executed $n / m$ times, and in each text characters are read and $\mathcal{O}(m)$ occurrences are reported. Thus, complexity is $\mathcal{O}(n / m) \cdot \mathcal{O}(m+m)=\mathcal{O}(n)$ for the worst case.

On the average case TSAdd $q$ is sublinear. It can been seen from the test results where the search time decreases when $m$ gets larger.


```
Algorithm 5 Tuned Shift-Add \(\left(P=p_{1} p_{2} \cdots p_{m}, T=t_{1} t_{2} \cdots t_{n}, k\right)\)
Require: \(m \cdot L \leq w\) and \(L \geq \max \left\{2,\left\lceil\log _{2}(k+1)\right\rceil+1\right\}\)
 /* Preprocessing */
 mask \(\leftarrow 0\)
 for \(i \leftarrow 1\) to \(m\) do
 mask \(\leftarrow(\) mask \(\ll L) \mid 1\)
 for all \(c \in \Sigma\) do \(B[c] \leftarrow\) mask
 for \(i \leftarrow 1\) to \(m\) do
 \(B\left[p_{i}\right] \leftarrow B\left[p_{i}\right] \& \sim(1 \ll L \cdot(i-1)) \quad /^{*}-(1 \ll L \cdot(i-1))\) also works normally */
 mask \(\leftarrow 1 \ll(L \cdot m-1)\)
 Xmask \(\leftarrow(1 \ll(L-1))-(k+1)\)
 /* Searching */
 \(D \leftarrow \sim 0 \quad / *=1_{2}^{w}\) */
 for \(i \leftarrow 1\) to \(n\) do
 \(D \leftarrow((D \ll L) \mid X\) mask \()+\left(B\left[t_{i}\right] \&(\sim(D \ll 1))\right)\)
 if \((D \&\) mask \()=0\) then
 report an occurrence ending at \(i\)
```


## 5 Experiments

The tests were run on Intel Core i7-860 2 is $256 \mathrm{KiB} /$ core and L 3 cache: 8 MiB . and has gec 4.6.3 C compiler. Programs and compiled with gcc compiler using implemented and tested in the testing

[^2]
of data structures in memory and data cache. We nave tested the search speed of e.g. Sunday's algorithm and various Boyer-Moore variations with implementations made by others. Thus we believe that implementations enclosed in Hume and Sunday test framework are very efficient. This kind of comparison makes it also possible to learn coding of efficient implementations. We encourage everybody to make comparisons with different implementations of same and similar algorithms.
demonstrate the behavio We did not test the according to the original than BNDM. In addition In the test runs we us 2 MB . The English text text in the alphabet of two o
(Drosophila melanogaster). Sets of patterns of various lengths were randomly taken from each text. Each set contains 200 patterns.

| Data | Algorithm | 2 | 4 | 8 | 12 | 16 | 20 | 30 | 40 | 50 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Binary SO | 465 | 465 | 465 | 465 | 465 | 465 | 466 | 469 | 466 | 465 |  |
| FSO | 1406 | 707 | 268 | 241 | 234 | 234 | 235 | 236 | 235 | - |  |
| FAOSO | 3522 | 1728 | 859 | 745 | 695 | 469 | 372 | 239 | 263 | 239 |  |
| BNDM | 1892 | 1579 | 1059 | 723 | 554 | 452 | 316 | 246 | 201 | 171 |  |
| LNDM | 2814 | 2291 | 1573 | 1166 | 925 | 767 | 544 | 421 | 346 | 294 |  |
| TSA | 1999 | 1501 | 927 | 641 | 491 | 399 | 276 | 215 | 177 | 152 |  |
| TSO | 1565 | 1129 | 673 | 455 | 344 | 279 | 188 | 142 | 114 | 96.4 |  |
| TSO3 | 1429 | 1158 | 718 | 502 | 385 | 316 | 219 | 172 | 142 | 122 |  |
| TSO5 | 1704 | 911 | 632 | 462 | 359 | 297 | 207 | 161 | 135 | 116 |  |
| TSO9 | 1881 | 771 | 473 | 342 | 272 | 229 | 172 | 141 | 121 | 109 |  |
| GTSO3 | 1409 | 1165 | 719 | 499 | 381 | 313 | 217 | 169 | 139 | 121 |  |
|  | 3 | 1529 | 1281 | 819 | 571 | 441 | 362 | 252 | 195 | 163 | 141 |


ch time of algorithms (in milliseconds) for binary data
earch times in milliseconds for these data sets. Before meaage, the text and the pattern set were loaded to the main ution times do not contain I/O time. The results were ob00 runs. During repeated tests, the variation in timings was

$m \geq 30$.

[^3]| Data Algorithm | 2 | 4 | 8 | 12 | 16 | 20 | 30 | 40 | 50 | 60 |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dna SO | 464 | 465 | 465 | 464 | 465 | 465 | 465 | 469 | 465 | 465 |
| FSO | 709 | 272 | 235 | 235 | 234 | 235 | 235 | 234 | 235 | - |
| FAOSO | $\underline{372}$ | 639 | 524 | 331 | 311 | 212 | 185 | 216 | 217 | 213 |
| BNDM | 1496 | 984 | 548 | 385 | 302 | 248 | 175 | 134 | 111 | 93.4 |
| LNDM | 2255 | 1438 | 843 | 609 | 481 | 398 | 281 | 219 | 181 | 154 |
| TSA | 1481 | 869 | 498 | 355 | 285 | 241 | 179 | 143 | 119 | 103 |
| TSO | 1353 | 757 | 364 | 243 | 192 | 161 | 117 | 90.9 | 74.6 | 62.7 |
| TSO3 | 758 | 491 | 295 | 225 | 189 | 164 | 128 | 106 | 89.3 | 79.8 |
| TSO5 | 992 | 401 | 215 | 153 | 121 | 102 | 78.1 | 65.6 | 60.9 | 56.1 |
| TSO9 | 1217 | 465 | 242 | 168 | 131 | 109 | 81.1 | 66.4 | 57.6 | 52.3 |
| GTSO3 | 753 | 474 | 289 | 223 | 191 | 167 | 132 | 107 | 92.4 | 74.7 |
| GTSA3 | 747 | 486 | 296 | 228 | 193 | 169 | 135 | 111 | 96.9 | 85.3 |

Table 2. Search time of algorithms (in milliseconds) for DNA data

| Data | Algorithm | 2 | 4 | 8 | 12 | 16 | 20 | 30 | 40 | 50 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| English SO | 465 | 465 | 465 | 465 | 464 | 465 | 464 | 464 | 465 | 465 |
| FSO | 328 | 246 | 235 | 234 | 234 | 234 | 234 | 234 | 232 | - |
| FAOSO | 1165 | 307 | 167 | 156 | 142 | 141 | 198 | 199 | 195 | 198 |
| BNDM | 651 | 505 | 342 | 252 | 198 | 164 | 115 | 93.3 | 78.0 | 68.3 |
| LNDM | 1398 | 903 | 561 | 412 | 326 | 272 | 194 | 154 | 126 | 109 |
| TSA | 1243 | 652 | 348 | 245 | 195 | 168 | 121 | 99.7 | 87.1 | 78.4 |
| TSO | 701 | 518 | 328 | 231 | 176 | 141 | 92.3 | 69.5 | 56.6 | 48.9 |
| TSO3 | 485 | 274 | 159 | 121 | 104 | 89.1 | 72.9 | 64.8 | 59.1 | 56.1 |
| TSO5 | 701 | 341 | 184 | 132 | 105 | 88.9 | 67.1 | 58.9 | 54.6 | 49.6 |
| TSO9 | 924 | 448 | 235 | 165 | 128 | 107 | 79.3 | 64.6 | 57.7 | 52.4 |
| GTSO3 | 449 | 249 | 149 | 115 | 96.5 | 86.6 | 71.8 | 63.4 | 57.6 | 52.8 |
| GTSA3 | 441 | 252 | 151 | 116 | 97.4 | 86.4 | 72.1 | 65.1 | 58.2 | 53.7 |

Table 3. Search time of algorithms (in milliseconds) for English data

### 5.1 Experiments for $k$-mismatches problem

For the $k$-mismatch problem we tested the following alg Two-way Shift-Add with $q$-values 1, 3, and 5 (TSAdd-1, Shift-Add (TuSAdd), Average Optimal Shift-Add (AO a sublinear multi-pattern algorithm by Fredriksson and suitable for approximate circular pattern matching prob

The text files are same as before. The binary pattern 32 patterns, all different. To make the results compara containing 200 patterns, the timings have been multipli
 were obtained as an average of 300 runs.

Programs were written in the $C$ programming language and compiled with gcc
 nization level. During preliminary tests we noticed perfor, which seems to be related to the optimization level in gcc error level $k=1$ and optimization -02 the search speed with here used -03.
the results for the $k$-mismatches problem.
Shift-Add was faster than the original Shift-Add. Both seem arge number of occurrences. On $k=1$ TSAdd- 3 showed best data set except on 5 nucleotide long DNA patterns. (This

|  | $m$ | TSAdd-1 | TSAdd-3 | TuSAdd | SAdd | AOSA | CMFN |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| English | 5 | 177 | $\boxed{137}$ | 149 | 231 | 229 | 880 |
|  | 10 | 98 | $\boxed{77}$ | 145 | 228 | 115 | 270 |
|  | 20 | 53 | $\boxed{43}$ | 145 | 228 | 51 | 113 |
|  | 30 | 37 | $\boxed{30}$ | 145 | 228 | 38 | 93 |
| DNA | 5 | 226 | 225 | 165 | 246 | 267 | 2770 |
|  | 10 | 136 | $\boxed{114}$ | 145 | 228 | 164 | 1420 |
|  | 20 | 69 | $\boxed{58}$ | 145 | 228 | 92 | 1810 |
|  | 30 | 47 | $\boxed{39}$ | 145 | 227 | 62 | 3083 |
| Bin | 5 | 333 | $\boxed{167}$ | 625 | 937 | 937 | 1062 |
|  | 10 | 167 | $\boxed{77}$ | 603 | 966 | 966 | 440 |
|  | 20 | 83 | $\boxed{39}$ | 600 | 947 | 467 | 240 |
|  | 30 | 57 | $\boxed{30}$ | 593 | 943 | 317 | 140 |

Table 4. Search times of algorithms (in milliseconds) for $k=1$.

|  | $m$ | TSAdd-1 | TSAdd-3 | TSAdd-5 | TuSAdd | SAdd | AOSA | CMFN |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| English | 5 | 238 | 201 | 186 | 161 | 245 | 253 | 2807 |
|  | 10 | 124 | 107 | 101 | 145 | 230 | 137 | 533 |
|  | 20 | 65 | 56 | 51 | 147 | 216 | 73 | 223 |
| DNA | 5 | 322 | 280 | 268 | $\underline{255}$ | 339 | 497 | 4203 |
|  | 10 | 176 | 158 | 151 | $\boxed{147}$ | 239 | 225 | 3183 |
|  | 20 | 88 | 79 | 69 | 146 | 214 | 113 | 3563 |
| Bin | 5 | 354 | $\boxed{146}$ | 270 | 625 | 958 | 937 | 5688 |
|  | 10 | 167 | $\boxed{73}$ | 127 | 642 | 962 | 947 | 800 |
|  | 20 | 82 | 46 | 67 | 611 | 941 | 470 | 350 |

Table 5. Search times of algorithms (in milliseconds) for $k=2$.

|  | $m$ | TSAdd- | TSAdd-3 | TSAdd-5 | TuSAdd | SAdd | AOSA | CMFN |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| English | 5 | 299 | 259 | 247 | 209 | 291 | 377 | 3936 |
|  | 10 | 155 | 137 | 133 | $\boxed{145}$ | 236 | 297 | 1128 |
|  | 20 | 78 | 70 | $\underline{67}$ | 145 | 217 | 107 | 292 |
| DNA | 5 | 357 | 316 | 310 | 447 | 536 | 1073 | 4290 |
|  | 10 | 215 | 196 | 194 | 151 | 241 | 238 | 4900 |
|  | 20 | 108 | 99 | 98 | 148 | 215 | 128 | 5293 |
| Bin | 5 | 333 | 146 | 250 | 604 | 937 | 917 | 5524 |
|  | 10 | 160 | 77 | 120 | 580 | 910 | 893 | 808 |
|  | 20 | 83 | 42 | 61 | 580 | 917 | 450 | 300 |

Table 6. Search times of algorithms (in milliseconds) for $k=3$.
test was rerun, but results remained about the same.) TSAdd-3 was best on all tests using binary text. On English and DNA texts for $k=2$ and $k=3$ TSAdd and TuSAdd were the best.

To our surprise CMFN was not competitive in these tests. The macro bitvector was defined unsigned long long, but we suspect that some other compilation parameter was unoptimal.

## 6 Concluding remarks

We have presented two new bit-parallel algorithms based on Shift-Or/Shift-And and Shift-Add techniques for exact string matching. The compact form of these algorithms is an outcome of a long series of experimentation on bit-parallelism. The new algorithms and their tuned versions are efficient both in theory and practice. They run in linear time in the worst case and in sublinear time in the average case. Our experiments show that the best ones of the new algorithms are in most cases faster than the previous algorithms of the same type.

## References

1. K. Abrahamson: Generalized string matching. SIAM Journal on Computing, 16(6) 1987, pp. 1039-1051.
2. A. Amir, M. Lewenstein, and E. Porat: Faster algorithms for string matching with $k$ mismatches. Journal of Algorithms, 50(2) 2004, pp. 257-275.
3. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the ACM, 35(10) 1992, pp. 74-82.
4. D. Cantone, S. Faro, and E. Giaquinta: Bit-(parallelism)²: Getting to the next level of parallelism, in Fun with Algorithms, 5th International Conference, FUN 2010, June 2-4, 2010. Proceedings, P. Boldi and L. Gargano, eds., vol. 6099 of LNCS, Springer, 2010, pp. 166-177.
5. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string matching. Information Processing Letters, 110(4) 2010, pp. 148-152.
6. B. Durian, H. Peltola, L. Salmela, and J. Tarhio: Bit-parallel search algorithms for long patterns, in Experimental Algorithms, 9th International Symposium, SEA 2010, May 2022, 2010. Proceedings, P. Festa, ed., vol. 6049 of LNCS, Springer, 2010, pp. 129-140.
7. K. Fredriksson and S. Grabowski: Practical and optimal string matching, in International Symposium on String Processing and Information Retrieval, SPIRE, LNCS, vol. 12, 2005.
8. K. Fredriksson and G. Navarro: Average-optimal single and multiple approximate string matching. ACM Journal of Experimental Algorithmics, 92004.
9. Z. Galil and R. Giancarlo: Improved string matching with $k$ mismatches. SIGACT NEWS $62,17(4) 1986$, pp. 52-54.
10. L. He and B. Fang: Linear nondeterministic dawg string matching algorithm, in String Processing and Information Retrieval, 11th International Conference, SPIRE 2004, October 5-8, 2004, Proceedings, A. Apostolico and M. Melucci, eds., vol. 3246 of LNCS, Springer, 2004, pp. 70-71.
11. L. He, B. Fang, and J. Sui: The wide window string matching algorithm. Theoretical Computer Science, 3322005.
12. J. Henry and S. Warren: Hacker's Delight, Addison-Wesley, 2003.
13. A. Hume and D. Sunday: Fast string searching. Software - Practice and Experience, 21(11) 1991, pp. 1221-1248.
14. G. Navarro: A guided tour to approximate string matching. ACM Computing Surveys, 33(1) 2001, pp. 31-88.
15. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics, 5(4) 2000.
16. G. Navarro and M. Raffinot: Flexible pattern matching in strings - practical on-line search algorithms for texts and biological sequences, Cambridge University Press, 2002.
17. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in International Symposium on String Processing and Information Retrieval, SPIRE, LNCS, vol. 10, 2003, pp. 80-93.
18. H. Peltola and J. Tarhio: String matching with lookahead. Discrete Applied Mathematics, 163(3) 2014, pp. 352-360.
19. S. Wu and U. Manber: Fast text searching allowing errors. Communications of the ACM, $35(10) 1992$, p. 83.

[^0]:    * Supported by the Academy of Finland (grant 134287).

[^1]:    ${ }^{2}$ Population count, popcount, counts the number of 1-bits in a register or word. On many computers it is a machine instruction; e.g. in Sparc, and in x86_64 processors in AMDs SSE4a extensions and in Intel's SSE4.2 instruction set extension.

[^2]:    3 Hume and Sunday test framework allows dir pattern can be selected as considered approp is coded and separately ensures that the teste

[^3]:    ${ }^{4}$ The performance of the Shift-Or a also to the input data as long as tne number or the matcnes is relative moderate. The relative speed of some algorithm compared to the speed of Shift-Or on given data and pattern length is suitable for comparing tests with similar data. This relative speed is useful for comparing roughly performance of exact string matching algorithms with different text lengths and processors even in different papers.

