
A Process-Oriented Implementation of

Brzozowski’s DFA Construction Algorithm

Tinus Strauss1, Derrick G. Kourie2, Bruce W. Watson2, and Loek Cleophas1

1 FASTAR Research group
University of Pretoria

South Africa
{tinus,loek}@fastar.org
2 FASTAR Research group
University of Stellenbosch

South Africa
{derrick,bruce}@fastar.org

Abstract. A process-algebraic description of Brzozowski’s deterministic finite automa-
ton construction algorithm, slightly adapted from a previous version, shows how the
algorithm can be structured as a set of communicating processes. This description was
used to guide a process-oriented implementation of the algorithm.
The performance of the process-oriented algorithm is then compared against the se-
quential version for a statistically significant number of randomly generated regular
expressions. It is shown that the concurrent version of the algorithm outperforms the
sequential version both on a multi-processor machine as well as on a single-processor
multi-core machine. This is despite the fact that processor allocation and process
scheduling cannot be user-optimised but are, instead, determined by the operating
system.

Keywords: automaton construction, concurrency, CSP, regular expressions

1 Introduction

Although contemporary computers commonly have multicores, the processor alloca-
tion and scheduling is not in the hands of the application software developer but,
instead, determined by the operating system. This fact raises numerous questions.
What are the implications of parallelising algorithms that have traditionally been ex-
pressed sequentially? The strengths and weaknesses of the sequential algorithms are
generally well-known, and often a lot of effort has gone into sequential optimisations.
Furthermore, for most software developers parallel thinking is unfamiliar, difficult
and error-prone compared to sequential algorithmic thinking. Is parallel thinking in-
herently difficult for software developers or is the relative scarcity of parallel versions
of sequential software simply a matter of inertia? Is it worth the effort to convert tra-
ditional sequential algorithms into parallel format when the fate of the software—the
processor allocation and process scheduling—is largely out of the developer’s control?
Perhaps questions such as these explain, at least in part, why there has not been a
mushrooming of parallel software algorithm development, notwithstanding more than
a decade of hype about the future of computing being in parallelism. These observa-
tions apply not only to algorithmic software development in general, but also to the
specific case of algorithmic software related to stringology.

This paper makes a start in assessing the practical implications of developing and
implementing parallel algorithmic versions of well-known stringological sequential al-
gorithms in contexts where we have no direct control over processor allocation and

Tinus Strauss, Derrick G. Kourie, Bruce W. Watson, Loek Cleophas: A Process-Oriented Implementation of Brzozowski’s DFA Construction Algorithm,

pp. 17–29.

Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

18 Proceedings of the Prague Stringology Conference 2014

scheduling. A process algebraic description of a Brzozowski’s deterministic finite au-
tomaton construction algorithm, slightly adapted from a previous version [15], shows
how the algorithm can be structured as a set of communicating processes in Hoare’s
CSP [8,7]. This description was used to guide a process-oriented implementation of
the algorithm in Go [17], as Go’s concurrency features (inspired by CSP) allowed us
to easily map from CSP to Go. A scheme is described to randomly generate regular
expressions within certain constraints. The performance of the process-oriented al-
gorithm is then compared against the sequential version for a statistically significant
number of randomly generated regular expressions. It is shown that the concurrent
version of the algorithm outperforms the sequential version on a multi-processor ma-
chine, despite the fact that processor allocation and process scheduling cannot be
user-optimised but is, instead, determined by the operating system.

Of course, [15] is one of several efforts at developing parallel algorithms for stringo-
logical problems. Some previous efforts include [4,18] for finite automaton construc-
tion, [12,3,9] for membership testing, and [16,10,14] for minimization. In [6] Watson
and Hanneforth consider the parallelisation of finite automaton determinisation and
in [15], a high-level CSP-based specification of Brzozowski’s DFA construction algo-
rithm was proposed.

The next section discusses Brzozowski’s classical sequential DFA construction al-
gorithm. Section 3 then presents a process-oriented implementation of the algorithm,
suitable for concurrent execution, and is followed by a performance comparison be-
tween the two approaches in Section 4. Section 5 presents some concluding remarks
and ideas for future work.

2 Sequential algorithm

Brzozowski’s DFA construction algorithm [2] employs the notion of derivatives of
regular expressions to construct a DFA. The algorithm takes a regular expression E
as input and constructs an automaton that accepts the language represented by E.

The automaton is represented using the normal five-tuple notation (D,Σ, δ, S, F)
where D is the set of states; Σ the alphabet; δ the transition relation mapping a
state and an alphabet symbol to a state; and S, F ⊆ D are the start and final states,
respectively. L is an overloaded function giving the language of a finite automaton or
a regular expression.

Brzozowski’s algorithm identifies each DFA state with a regular expression. Apart
from the start state, this regular expression is the derivative of a parent state’s associ-
ated regular expression1. Elements of D may therefore interchangeably be referred to
either as regular expressions or as states, depending on the context of the discussion.

The well-known sequential version of the algorithm is given in Dijkstra’s guarded
command language [5] in Figure 1. The notation assumes that the set operations
ensure ‘uniqueness’ of the elements at the level of similarity [2, Def 5.2], i.e. a ∈ A
implies that there is no b ∈ A such that a and b are similar regular expressions.
The algorithm maintains two sets of regular expressions (or states): a set T (‘to do’)
containing the regular expressions for which derivatives need to be calculated; and
another set D (‘done’) containing the regular expressions for which derivatives have

1 In fact, it can be shown that the language of each state’s associated regular expression is also the
right language of that state.

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 19

func Brz(E,Σ) →
δ, S, F := ∅, {E},∅;
D,T := ∅, S;
do (T 6= ∅) →

let q be some state such that q ∈ T ;
D,T := D ∪ {q}, T \ {q};
{ build out-transitions from q on all alphabet symbols }
for (a : Σ) →

{ find derivative of q with respect to a }
d := a−1q;
if d /∈ (D ∪ T) → T := T ∪ {d}
[] d ∈ (D ∪ T) → skip

fi;
{ make a transition from q to d on a }
δ(q, a) := d

rof ;
if ε ∈ L(q) → F := F ∪ {q}
[] ε /∈ L(q) → skip

fi

od;
return (D,Σ, δ, S, F)

cnuf

Figure 1. Brzozowski’s DFA construction algorithm

been found already. When the algorithm terminates, T is empty and D contains the
states of the automaton which recognises L(E).

The algorithm iterates through all the elements q ∈ T , finding derivatives with
respect to all the alphabet symbols and depositing these new states (regular expres-
sions) into T in those cases where no similar regular expression has already been
deposited into T ∪D.

Each q, once processed in this fashion, is then removed from T and added into D.
In each iteration of the inner for loop (i.e. for each alphabet symbol), the δ relation

is updated to contain the mapping from state q to its derivative with respect to the
relevant alphabet symbol.

Finally if state q represents a regular expression whose language contains the
empty string2, then that state is included in the set of final states F .

In the forthcoming section we present a process-oriented implementation of the
algorithm in which we attempt to structure the algorithm around a number of com-
municating sequential processes which may benefit from concurrent execution.

3 Concurrent description

We present here an approach to decompose the algorithm into communicating pro-
cesses. These processes may then be executed concurrently which may result in im-

2 Such a regular expression is called “nullable”.

20 Proceedings of the Prague Stringology Conference 2014

proved runtimes on multi-processor platforms. Of the many process algebras that
have been developed to concisely and accurately model concurrent systems, we have
selected CSP [8,7] as a fairly simple and easy to use notation. It is arguably better
known and more widely used than most other process algebras. Below, we provide
a brief introduction to the CSP operators that are used in the subsequent process
definitions.

3.1 Introductory Remarks

CSP is concerned with specifying a system of communicating sequential processes
(hence the CSP acronym) in terms of sequences of events, called traces. Various
operators are available to describe the sequence in which events may occur, as well as
to connect processes. Table 1 briefly outlines the main operators used in this article.

a → P event a then process P
a → P |b → Q a then P choice b then Q

x : A → P (x) choice of x from set A then P (x)
P ‖ Q P in parallel with Q

Synchronize on common events in the alphabet of P and Q

b!e on channel b output event e
b?x from channel b input to variable x

P <| C >| Q if C then process P else process Q
P ;Q process P followed by process Q
P �Q process P choice process Q

Table 1. Selected CSP notation

Full details of the operator semantics and laws for their manipulation are available
in [8,7]. Note that SKIP designates a special process that engages in no further event,
but that simply terminates successfully. Parallel synchronisation of processes means
that if A ∩ B 6= ∅, then process (x : A → P (x)) ‖ (y : B → Q(y)) engages in
some nondeterministically chosen event z ∈ A ∩ B and then behaves as the process
P (z) ‖ Q(z). However, if A ∩ B = ∅ then deadlock results. A special case of such
parallel synchronisation is the process (b!e → P) ‖ (b?x → Q(x)). This should be
viewed a process that engages in the event b.e and thereafter behaves as the process
P ‖ Q(e). This can also be interpreted as processes communicating over a channel b.
The one process writes e onto channel b and the other process reads from channel b
into variable x.

3.2 Process descriptions

The concurrent version of the algorithm can be modeled as a process BRZ which is
composed of four concurrent processes which may themselves be composed of more
processes. The first of these processes is named OUTER and corresponds to the outer
loop of the algorithm in Figure 1. It is responsible for maintaining the sets D, T , and
F . The second process computes the derivatives of regular expressions and is called
DERIV. A FANOUT process is responsible for distributing a regular expression to the
components of DERIV. The final process UPDATE modifies the transition relation δ.
The process definition for BRZ(T,D,F,δ) is thus:

BRZ(T,D, F, δ) = OUTER(T,D, F) ‖ FANOUT ‖ DERIV ‖ UPDATE (δ)

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 21

Process OUTER is modelled as a process which initialises its local state and then
repeatedly performs actions to modify T , D, and F as well as its local state. This
repetition is modelled as process LOOP.

OUTER(T,D, F) = init → LOOP(T ,D ,F)

LOOP first modifies the local state and has a choice between the following behaviours.
It may write q ∈ T to channel outNode and repeat, it may receive a new regular
expression d from channel inNode and repeat, or it may terminate if the local state
is such that no more states need to be processed. When LOOP sends q out, q is
removed from T and added to D and if ε ∈ L(q) then q is also added into F . In the
case when a new state is received it is added into T if no similar state is in T ∪D.

LOOP(T,D, F) = modifyLocalState →

((q : T → outNode!q →

LOOP (T \ q,D ∪ q, F ∪ q) <| ε ∈ L(q) >| LOOP (T \ q,D ∪ q, F))

�

(inNode?d → LOOP (T ∪ d,D, F) <| d /∈ T ∪D >| LOOP (T,D, F))

�

SKIP)

DERIV is responsible for concurrently calculating the derivatives of a regular
expression with respect to each alphabet symbol. This corresponds to the inner for
loop in Figure 1. DERIV is thus modelled as the concurrent composition of |Σ|
processes, each responsible for calculating the derivative with respect to a given i ∈ Σ.

DERIV =‖i:Σ DERIV i

Each DERIV i repeatedly reads a regular expression re from its input channel
dOuti, calculates the derivative and then sends the result as a triple 〈re, i, i−1re〉 out
on a shared channel derivChan.

DERIV i = dOuti?re → computeDeriv.re → derivChan!〈re, i, i−1re〉 → DERIV i

The FANOUT process connects OUTER and DERIV and is responsible for com-
municating the regular expressions from OUTER to each DERIV i. It repeatedly reads
a regular expression from its input channel outNode and concurrently replicates it to
the |Σ| output channels dOuti.

FANOUT = (outNode?re →‖i:Σ (dOuti!re → SKIP));FANOUT

In order to complete the DFA, we need to record all the state transitions in δ.
This is the responsibility of UPDATE. It is modelled as a repeating process which
reads a triple 〈re, i, d〉 from its input channel derivChan and records δ(re, i) = d. It
also sends one element of the triple, d, on to OUTER via channel inNode. This d
is potentially a new state from which transitions should be calculated and hence it
should be added into T if a similar node has not been processed before.

UPDATE (δ) = derivChan?〈re, i, d〉 → inNode!d → UPDATE (δ ∪ 〈re, i, d〉)

22 Proceedings of the Prague Stringology Conference 2014

outNode

DERIV 1

DERIVn

UPDATE (δ)inNode

dOut1

dOutn

FANOUT

derivChan

DERIV

OUTER(T,D, F)

Figure 2. The communications network of the BRZ process.

Figure 2 shows the communicating processes along with their associated input
and output channels.

Termination is not addressed completely in the above process models. Notably,
processes which repeatedly read from an input channel live until their input channels
are closed. Consequently they can be modelled as a choice between reading from the
channel and SKIP. These choices were omitted above to simplify the presentation.

In the following section we compare the performance of the concurrent implemen-
tation against the sequential algorithm.

4 Performance comparison

In the preceding section the Brzozowski DFA construction algorithm was decomposed
into a network of communicating processes. The next step is then to implement the
CSP descriptions as an executable program and compare the performance of the
sequential and concurrent algorithms.

It was decided to use the Go programming language [17] for the implementation.
Go is a compiled language with concurrency features inspired by Hoare’s CSP. Par-
ticularly relevant to the present context is the fact that Go has channels as first class
members of the language. The CSP processes in the process network from Section 3
map to so-called go-routines and the communication channels map to Go channels.
An alternative language that implements CSP-like channels of which we are aware
is occam-π [1]. Go was chosen over occam-π since Go allows us to implement data
structures more easily and documentation is also more readily available.

4.1 Experimental setup

The aim of the present experiment is simply to test the hypothesis that the concurrent
implementation can construct DFAs faster than the sequential version. No attempt
was made to investigate completely the performance characteristics of the process-
oriented implementation.

In order to compare the performance the following approach was followed. A regu-
lar expression was generated and both the sequential and concurrent algorithms were
executed with this regular expression. The respective execution times were recorded.
In order to reduce the effects of transient operating system events, each construction

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 23

was executed 30 times and the minimum duration was used as the data point for
that regular expression. Various regular expressions were used as input to observe
the performance of the algorithms over a range of input.

Regular expressions were randomly generated via a simple recursive procedure
gen(Σ, d). The procedure takes as input two parameters: an alphabet Σ and an inte-
ger d. If d = 0 the procedure returns a random symbol from Σ. If d > 0 then gen(Σ, d)
randomly chooses a regular expression operator and then recursively generates the
required operands for the operator by calling gen(Σ, d − 1). The size of the regular
expression is thus controlled by d since d defines the depth of the expression tree for
the regular expression. The upper bound for the number of operators in the tree is
2d − 1 and for the number of symbols (leaves) it is 2d. Many generated regular ex-
pressions will be smaller since some regular expression operators are unary operators
which result in a tree that is smaller than a complete binary tree.

We decided to consider the performance of the algorithms with regular expressions
over both a small alphabet and a larger alphabet. The small alphabet contained 4
symbols and the larger alphabet 85 symbols.

Regular expression were generated with depths d = 5, 6, . . . , 10. For each of the
12 elements in {4, 85} × {5, 6, . . . , 10} we generated 50 regular expressions.

The implementations were compiled in Go version 1.2.2 and initially executed in
Mac OS X 10.7.5 on a MacPro1,1 with two Dual-Core Intel Xeon 2.66GHz processors
and 5GB RAM. The runtimes of the programs on this platform are analysed in the
next section.

4.2 Observations

Let us now consider the results of the experiment. The results will be communicated
mainly through graphical plots and a few statistical calculations. These plots and
statistical calculations were produced using the statistical system R version 3.1.0 [13].
In most cases the two alphabet cases were considered separately.

5 6 7 8 9 10

5
1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

|Σ|= 4

Depth

S
ta

te
s

5 6 7 8 9 10

5
1
0

2
0

5
0

|Σ|= 85

Depth

S
ta

te
s

Figure 3. Sizes of automata generated.

First we consider the sizes of the automata constructed by the algorithms. The
plots in Figure 3 show the number of states (on a logarithmic scale) in the resultant

24 Proceedings of the Prague Stringology Conference 2014

automata. The plots in the figure provide a visualisation of the distribution of the
50 values for each of the depths. As expected, the regular expressions with larger
depths generally yielded larger automata. It should also be noted that for the small
alphabet case a few very large automata were constructed. The data confirm that the
input regular expressions did indeed vary significantly and hence the algorithms were
executed with a variety of input. In future work a more sophisticated approach to
obtain input should be considered so that one may better control the nature of the
input regular expressions.

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 4

Depth

T
im

e
 S

e
q
u
e
n
ti
a
l
(n

s
)

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 4

Depth

T
im

e
 C

o
n
c
u
rr

e
n
t
(n

s
)

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 85

Depth

T
im

e
 S

e
q
u
e
n
ti
a
l
(n

s
)

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 85

Depth

T
im

e
 C

o
n
c
u
rr

e
n
t
(n

s
)

Figure 4. Construction times against problem size.

Let us now consider the construction times. Figure 4 shows the construction times
for the sequential algorithm and the concurrent algorithm in both of the alphabet
cases for the various regular expression sizes. Note that in each plot the y-axis is
logarithmic. Outlying observations were omitted from the plots to make them clearer.

From the plots it is clear that in all cases the time increased as the regular expres-
sion grew. It can also be seen – although less clearly due to the logarithmic scale –
that the construction time for the concurrent algorithm tends to be lower than that
of the sequential algorithm. The construction time difference is less pronounced in
the large alphabet case. This could be due to the larger overhead involved in this

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 25

case. For example, when one considers the process FANOUT from Figure 2 it will be
seen that it creates a process for each alphabet symbol. As the alphabet grows, this
creation and scheduling overhead will also increase.

The data from the plots suggest that the concurrent algorithm may indeed be
faster. To confirm this we performed the Wilcoxon signed rank test for paired ob-
servations. The test tests the null hypothesis that the median difference between the
pairs of construction times is zero against the alternative that the median difference
is greater than zero:

H0 : median difference between runtimes is 0

Ha : median difference between runtimes is greater than 0

The results of the tests are as follows.

N Test statistic p < 0.01

|Σ| = 4 300 44482 Yes
|Σ| = 85 300 44141 Yes

In both the small alphabet and large alphabet cases the null hypothesis can be
rejected at 99% level of confidence. Our data thus provides evidence in support of
our hypothesis that the concurrent algorithm can outperform the sequential one.

To explore further the relationship between the sequential and concurrent con-
struction times scatterplots were constructed. These can be found in Figure 5. Each
point represents a pair of sequential and concurrent runtimes for a given regular ex-
pression. The x-coordinate of the point is the sequential runtime and the y-coordinate
is the concurrent runtime. Each plot contains 50 × 6 = 300 points. From the plots

0e+00 1e+10 2e+10 3e+10 4e+10 5e+10

0
e
+

0
0

1
e
+

1
0

2
e
+

1
0

3
e
+

1
0

4
e
+

1
0

5
e
+

1
0

|Σ|= 4

Time Sequential (ns)

T
im

e
 C

o
n
c
u
rr

e
n
t
(n

s
)

0e+00 2e+09 4e+09 6e+09 8e+09

0
e

+
0

0
2

e
+

0
9

4
e

+
0

9
6

e
+

0
9

8
e

+
0

9

|Σ|= 85

Time Sequential(ns)

T
im

e
 C

o
n

c
u

rr
e

n
t

(n
s
)

Figure 5. Scatter plots of sequential time against concurrent time.

it can be seen that there appears to be a linear relationship between the sequential
and concurrent runtimes. Linear regression lines were fitted to data and also plotted
on the graph as solid lines. The dotted line in each plot is simply a line through the
origin with slope 1. From the graph it can be seen that the slope of the regression
line for the small alphabet case is less steep than that of the regression line for the
large alphabet case.

26 Proceedings of the Prague Stringology Conference 2014

If we let Tc and Ts be the construction times for the concurrent and sequential
algorithms respectively, then the regression lines that were fitted are as follows.

Tc = 39.6ms + 0.47 · Ts for |Σ| = 4

Tc = 65.7ms + 0.74 · Ts for |Σ| = 85

The fact that the slopes are less than one is consistent with the fact that the concur-
rent construction times are smaller than the sequential times. From the slope terms
in the equations above it is clear that the performance increase for the small alphabet
case was greater than for the large alphabet case. As mentioned earlier this can be
explained by the greater amount of overhead present in the large alphabet case.

Speedup and efficiency are well-known metrics for characterising parallel algo-
rithmic performance [11]. Speedup is defined as the execution time of the sequential
program divided by the execution time of the parallel program. Efficiency is defined
as the speedup divided by the number of processes. Table 2 contains the observed
speedup and efficiency for our experiment. Each entry shows the median for the rel-
evant subset of the data.

Speedup Efficiency
Depth |Σ| = 4 |Σ| = 85 |Σ| = 4 |Σ| = 85

All 1.72 1.09 0.43 0.27
5 1.15 1.21 0.29 0.30
6 1.84 1.45 0.46 0.36
7 1.82 1.43 0.46 0.36
8 1.80 1.06 0.45 0.27
9 1.71 1.09 0.43 0.27
10 1.83 1.21 0.46 0.30

Table 2. Speedup and efficiency overall and for different problem sizes.

Ideal speedup in a p processor environment is p and efficiency equal to 1 is very
good. The median speedup for the small alphabet case is 1.72 and for the large
alphabet case it is 1.09. Recall that the total number of cores in our experimental
platform was four. We have clearly not achieved optimal speedup, but we have a
median speedup greater than one. From this and from the relatively low efficiency
numbers it is clear that the process-oriented approach is promising especially if we
can reduce the amount of overhead.

Finally, let us consider whether the problem size influences the speedup. Figure 6
shows the plots for speedup against the depths used to generate the regular expres-
sions. The plots show that the speedup for smaller regular expressions is sometimes
less than 1. This implies that the concurrent version is sometimes slower than the se-
quential version for these smaller regular expressions. This effect is more pronounced
in the large alphabet case. In the small alphabet case, the effect is seen at depths 5
and 6, but in the large alphabet case the speedup less than 0 is also found at depth 7.
In the smaller regular expressions the overhead removes entirely the performance gain
of the concurrent processes. In larger expressions the nett gain is still positive.

4.3 A second experiment

In order to gain insight into whether or not the foregoing results are reasonably robust
across different platforms, we repeated the experiment on a newer machine with a

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 27

5 6 7 8 9 10

0
.5

1
.0

1
.5

2
.0

2
.5

|Σ|= 4

Depth

S
p
e
e
d
u
p

5 6 7 8 9 10

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

|Σ|= 85

Depth

S
p
e
e
d
u
p

Figure 6. Speedup against problem size.

slightly different configuration. This machine is a MacBookPro11,3. It has a four-
core single Intel i7 processor running at 2.3GHz, whereas the earlier machine had
two Dual-Core Intel Xeon processors, each running at 2.66GHz. The newer machine
ran Mac OS X 10.9.3 as opposed to the earlier machine which ran Mac OS X 10.7.5.
Finally, the newer machine had considerably more RAM—16GB compared to the
earlier machine’s 5GB.

The data produced by this experiment results in figures that are broadly similar to
those in Figures 3, 4 and 5, but on a somewhat different scale—i.e. there is a general
increase in speedup and efficiency. The best speedup attained was 2.2, representing
an efficiency of 0.55. This was for the large alphabet when the parameter d for the
depth of regular expression trees was set to 5. Rather than providing all the raw
values, Table 3 shows the increases in speedup and efficiency as a percentage of the
corresponding data in Table 2.

Note that the improvement is largest for the large alphabet case where overall
speedup and efficiency increases are attained of approximately 40%. The table also
illustrates that these gains tend to diminish as the problem size increases. However,
there is no obvious relationship between problem size and the extent to which the
gains diminish. For the largest problem size, the speedup and efficiency increases on
the large alphabet were around 20%. By way of comparison, there was a mere 2% to
3% increase in the case of the small alphabet.

It has already been pointed out that in the concurrent design that has been
implemented, an increase in alphabet size results in an increase in process creation and
scheduling. There results suggest that the overhead required to create and schedule
processes over four cores on the same CPU is somewhat more efficient than achieving
the same task across two dual-core CPUs. It has been left, however, to future research
to carry out a more fine-grained analysis to determine the contribution of other factors
to improved performance, such as the increase in RAM size, the small increase in clock
speed and the more recent version of the operating system.

28 Proceedings of the Prague Stringology Conference 2014

Speedup Increase Efficiency Increase
Depth |Σ| = 4 |Σ| = 85 |Σ| = 4 |Σ| = 85

All 12.8% 40.4% 14.0% 40.7%
5 22.6% 54.5% 20.7% 56.7%
6 2.7% 51.7% 2.2% 52.8%
7 15.9% 44.8% 15.2% 44.4%
8 15.6% 13.2% 15.6% 11.1%
9 18.1% 16.5% 16.3% 14.8%
10 3.3% 18.2% 2.2% 20.0%

Table 3. Speedup and efficiency increase on the four core machine.

5 Conclusion

We set out to test whether a process-oriented implementation of Brzozowski’s DFA
construction algorithm could outperform the sequential implementation in a multi-
processor environment. The results of our experiment, carried out on two different
(but similar) platforms, confirm that it is indeed possible. In neither case was the
speedup close to ideal. Nevertheless, there were instances where double the speed
of the sequential algorithm was reached. Even though this represents an efficiency of
about 50%, the results are a big improvement over the sequential algorithm’s runtime
in light of typical under-utilization of multi-core capabilities of present-day CPUs.

Inefficiencies in the process-oriented implementation are, no doubt, part of the
reason why efficiency measurements are not higher. The FANOUT process, in par-
ticular, could be enhanced to be more efficient by creating fewer processes. Future
work would include improving on implementation efficiency and exploring further
algorithms to implement in a process-oriented manner. It will also be interesting to
verify results to date on a wider variety of platforms.

In the first experimental setup we used a machine with two CPUs, each with two
cores. We conjecture that the operating system may schedule the threads of the exe-
cutable to run only on one of the two processors—effectively utilising only two cores
for the execution. If this turns out to be true, the observed speedup is, especially in
the small alphabet case, rather closer to the ideal. This matter should be investigated
further. As a simple first step, we repeated the experiment on a machine with a single
processor with four cores and compared the results, obtaining somewhat improved
efficiencies. More sophisticated profiling tools are, however, needed to examine the
behaviour of the running processes in finer detail.

This uncertainty regarding the operating system’s scheduling behaviour raises the
theme of control over scheduling of tasks. A number of questions immediately come
to mind. Would greater speedups be possible if such control was readily available?
What (if any) are the disadvantages of granting greater control to software developers?
Could such control mechanisms not be built into the operating systems, accompanied
by appropriate escape measures in case the user abuses these mechanisms? These
questions open up various avenues for further research.

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 29

References

1. F. Barnes and P. Welch: occam-pi: blending the best of CSP and the pi-calculus.
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

2. J. A. Brzozowski: Derivatives of regular expressions. Journal of the ACM, 11(4) 1964,
pp. 481–494.

3. B. Burgstaller, Y.-S. Han, M. Jung, and Y. Ko: On the parallelization of DFA mem-
bership tests, tech. rep., Technical Report. TR-0003, Department of Computer Science, Yonsei
University, Seoul 120–749, Korea. http://elc. yonsei. ac. kr/PDFA. html, 2011.

4. H. Choi and B. Burgstaller: Non-blocking parallel subset construction on shared-memory
multicore architectures, in Proceedings of the Eleventh Australasian Symposium on Parallel and
Distributed Computing-Volume 140, Australian Computer Society, Inc., 2013, pp. 13–20.

5. E. W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.
6. T. Hanneforth and B. W. Watson: An efficient parallel determinisation algorithm for

finite-state automata, in Stringology, J. Holub and J. Žďárek, eds., Department of Theoretical
Computer Science, Faculty of Information Technology, Czech Technical University in Prague,
2012, pp. 42–52.

7. C. A. R. Hoare: Communicating sequential processes. Communications of the ACM, 26(1)
1983, pp. 100–106.

8. C. A. R. Hoare: Communicating sequential processes (electronic version), 2004,
http://www.usingcsp.com/cspbook.pdf.

9. J. Holub and S. Štekr: On parallel implementations of deterministic finite automata, in
Implementation and Application of Automata, S. Maneth, ed., vol. 5642 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2009, pp. 54–64.

10. J. JáJá and K. W. Ryu: An optimal randomized parallel algorithm for the single function
coarsest partition problem. Parallel Processing Letters, 6(2) 1996, pp. 187–193.

11. A. H. Karp and H. P. Flatt: Measuring parallel processor performance. Commun. ACM,
33(5) May 1990, pp. 539–543.

12. Y. Ko, M. Jung, Y.-S. Han, and B. Burgstaller: A speculative parallel DFA membership
test for multicore, simd and cloud computing environments. International Journal of Parallel
Programming, 2012, pp. 1–34.

13. R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2014.

14. B. Ravikumar and X. Xiong: A parallel algorithm for minimization of finite automata, in
IPPS, IEEE Computer Society, 1996, pp. 187–191.

15. T. Strauss, D. G. Kourie, and B. W. Watson: A concurrent specification of Brzozowski’s
DFA construction algorithm. Int. J. Found. Comput. Sci., 19(1) 2008, pp. 125–135.

16. A. Tewari, U. Srivastava, and P. Gupta: A parallel DFA minimization algorithm, in HiPC,
S. Sahni, V. K. Prasanna, and U. Shukla, eds., vol. 2552 of Lecture Notes in Computer Science,
Springer, 2002, pp. 34–40.

17. The Go Authors: The Go programming language. http://golang.org/.
18. D. Ziadi and J.-M. Champarnaud: An optimal parallel algorithm to convert a regular ex-

pression into its Glushkov automaton. Theoretical Computer Science, 215(1-2) February 1999,
pp. 69–87.

http://www.cs.kent.ac.uk/projects/ofa/kroc/
http://www.usingcsp.com/cspbook.pdf
http://golang.org/

