
Crochemore’s String Matching Algorithm:

Simplification, Extensions, Applications⋆

Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

Department of Computer Science,
University of Helsinki
Helsinki, Finland

{firstname.lastname }@cs.helsinki.fi

Abstract. We address the problem of string matching in the special case where the
pattern is very long. First, constant extra space algorithms are desirable with long
patterns, and we describe a simplified version of Crochemore’s algorithm retaining
its linear time complexity and constant extra space usage. Second, long patterns are
unlikely to occur in the text at all. Thus we define a generalization of string matching
called Longest Prefix Matching that asks for the occurrences of the longest prefix of
the pattern occurring in the text at least once, and modify the simplified Crochemore’s
algorithm to solve this problem. Finally, we define and solve the problem of Sparse
Longest Prefix Matching that is useful when the pattern has to be split into multiple
pieces because it is too long to be processed in one piece. These problems are motivated
by and have application in Lempel-Ziv (LZ77) factorization.

1 Introduction

String matching, the problem of finding all the occurrences of a string Y[0..m) (the
pattern) in a larger string X[0..n) (the text)1 is a foundational problem in computer
science, and has applications throughout modern computer software. Several algo-
rithms that are optimal in space (O(1) extra space) as well as in time (O(n+m)) were
discovered in the 80’s and 90’s [11,10,2,3]. In practice, these algorithms, though opti-
mal in theory, are greatly outperformed by algorithms that use O(m) extra space [5],
and thus to date have been mostly a theoretical curiousity. Our own interest in con-
stant extra space algorithms is, however, a practical one: the space-efficient compu-
tation of the LZ77 factorization of a string [20]. To our knowledge, this is the first
practical application to make use of these optimal string matching techniques, and
the first time they have been applied to problems beyond simple pattern matching.

The LZ77 factorization of large strings has many important applications these
days, for example in compression [6,12] and indexing [9,8,18] of large text collections
(see [16] for more applications of LZ77). The factorization can be computed in linear
time but at the cost of using a lot of space [8,15]. We have recently introduced a more
space-efficient approach running in O(nd) time while using O(n/d) space. The space
requirement is in addition to the text when operating in main memory [14], and in
total when using external memory [13]. However, very long phrases are a problem for
the basic approach and have to be processed differently. There are at most O(d) of
such long phrases and thus we can afford to spend O(n) time for each. As mentioned
in [14,13], the long phrase computation is based on a modified Crochemore’s algorithm

⋆ This research is partially supported by the Academy of Finland thorugh grant 118653 (ALGO-
DAN) and grant 250345 (CoECGR).

1 We write [i..j) as a shorthand for [i..j − 1].

Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi: Crochemore’s String Matching Algorithm: Simplification, Extensions, Applications, pp. 168–175.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

J. Kärkkäinen et al.: Crochemore’s String Matching Algorithm: Simplification, . . . 169

for string matching but it is never described in more detail. In this paper, we formulate
the long phrase computation task as two more general formal problems and show how
to solve them by modifying Crochemore’s algorithm.

The critical operation in computing the factorization is to find the longest prefix
of suffix X[i..n) that occurs at the some earlier position j < i in X. If the length of
this prefix is ℓ, then the next factor will be a prefix of X[i+ ℓ..n). If we consider suffix
X[i..n) as a pattern, we can formulate the operation as a special case of the following
more general problem.

Definition 1. Given two strings, a text and a pattern, the Longest Prefix Matching
problem is to find the length of the longest prefix of the pattern that occurs in the text

and to report all occurrences of that prefix in the text.

From now on we will only consider this general problem. However, consistent with
the application in LZ factorization, we focus on the case where the pattern and even
the matching prefix is extremely long.

Note that if the pattern as a whole occurs in the text, the output is the occurrences
of the pattern. Thus Longest Prefix Matching is a generalization of standard exact
string matching. String matching algorithms based on matching pattern prefixes such
as Knuth–Morris–Pratt (KMP) [17] can be easily modified to perform Longest Prefix
Matching, while others such as Boyer–Moore [1] cannot. However, when the pattern
is very long, the space requirement of the data structures built during KMP prepro-
cessing can become a problem. Among the constant extra space algorithms that we
are aware of, Crochemore’s algorithm [2] is the only one based on matching pattern
prefixes. Thus it is the basis of our solution to the Longest Prefix Matching prob-
lem. Crochemore’s algorithm, and particularly its analysis, is quite complicated. Our
first contribution is a simplified version of the algorithm that retains the linear time
complexity and constant extra space usage. We then generalize the simple version to
solve the Longest Prefix Matching problem in the same time and space complexity.

Even Crochemore’s algorithm needs fast access to the full pattern, but in the exter-
nal memory context the pattern length may even exceed the size of the available mem-
ory. To deal with this case, we split the pattern into blocks Y = Y[0..M)Y[M..2M) . . .
that are small enough to fit in memory. We start with longest prefix matching for
the first block. If the full block occurs in the text, we then process the second block
but considering only occurrences that start where an occurrence of the previous block
ends. We continue to process further blocks in the same way as long as necessary.
The matching problem for the second and further blocks can be formulated as the
following general problem:

Definition 2. Given two strings, a text and a pattern, and an ascending sequence of

text positions, the Sparse Longest Prefix Matching problem is to find the length of

the longest prefix of the pattern that occurs in the text starting at one of the specified

positions and to report all such occurrences.

We generalize Crochemore’s algorithm to solve this problem too.

170 Proceedings of the Prague Stringology Conference 2013

2 Preliminaries

Strings. Consider a string X = X[0..n− 1] = X[0]X[1] · · ·X[n− 1] of |X| = n symbols
drawn from an ordered alphabet Σ of size σ. For i = 0, . . . , n − 1 we write Xi to
denote the suffix of X of length n− i, that is Xi = X[i..n−1] = X[i]X[i+1] · · ·X[n−1].
The lexicographically maximal among all suffixes of X is denoted MS(X). By lcp(X,Y)
we denote the length of the longest common prefix of X and Y. A string Y is said to
be a border of X if Y is both a prefix and a suffix of X. A string is called border-free

if it has no borders, except itself and the empty string.

Periods. A positive integer p is called a period of X if X[i] = X[i + p] for any i ∈
[0..n − p). The shortest period of X is denoted per(X). We say that X is k-periodic
if per(X) ≤ |X|/k. Throughout we use a classic result about periodicity due to Fine
and Wilf [7].

Lemma 1 (Weak Periodicity Lemma) If a string X has periods p and q that sat-

isfy p+ q ≤ |X| then X also has period gcd(p, q).

3 Simplified Crochemore’s Algorithm

Crochemore’s algorithm resembles in many ways the famous Morris-Pratt [19] (MP
in short) algorithm1. At a generic step it attempts to match the pattern Y against the
suffix Xi of the text by computing ℓ = lcp(Xi,Y) and checking whether ℓ = m. After
that it determines the next position i+ q in the text at which the pattern may occur.
The value of ℓ is then either set to zero or - if partial information about lcp(Xi+q,Y)
is known - to a positive value in order to speed up the next lcp query. Note that
any shift length q satisfying q ≤ per(Y[0..ℓ)) is safe, i.e., prevents from missing an
occurrence of Y due to the following fact.

Observation 2 Assume Xi[0..ℓ) = Y[0..ℓ). Then for any k ∈ [1..per(Y[0..ℓ))) it holds
lcp(Xi+k,Y) = lcp(Yk,Y) < ℓ− k.

The main difference between MP and Crochemore’s algorithm is the choice of
shift length q and how it is computed. MP precomputes and stores per(Y[0..i)) for
all i ∈ [1..m], and always sets q = per(Y[0..ℓ)) (or q = 1 if ℓ = 0). Crochemore’s
algorithm uses only O(1) extra space in addition to the text and the pattern (which
are treated as read-only) thus cannot afford to store these values. Instead, as the
computation of lcp(Xi,Y) is taking place, it is simultaneously computing the lexico-
graphically maximal suffix (together with its shortest period) of the growing pattern
prefix that matches the text.

Fig. 1 shows an algorithm, called UpdateMS, that updates the maximal suffix
computation when the prefix match is extended by one character. It is based on
properties of maximal suffixes observed by Duval [4] and detailed in the following
theorem.

1 We point out that the original Crochemore’s algorithm performs slightly more complicated shifts
than MP making it closer to KMP [17] algorithm.

J. Kärkkäinen et al.: Crochemore’s String Matching Algorithm: Simplification, . . . 171

Function UpdateMS(Y, ℓ, s, p)

Input: a string Y and integers ℓ, s, p such that
MS(Y[0..ℓ)) = Y[s..ℓ) and p = per(Y[s..ℓ)).

Output: a triple (ℓ+ 1, s, p) such that
MS(Y[0..ℓ+ 1)) = Y[s..ℓ+ 1) and p = per(Y[s..ℓ+ 1)).

1: if ℓ = 0 then

2: return (1, 0, 1)
3: i← ℓ
4: while i < ℓ+ 1 do

// MS(Y[0..i)) = Y[s..i) and p = per(Y[s..i))
// A = Y[s..s+ p) and B = Y[i− (i− s) mod p..i)

5: if Y[i− p] > Y[i] then // Theorem 3, case (3)
6: i← i− (i− s) mod p
7: s← i
8: p← 1
9: elsif Y[i− p] < Y[i] then // Theorem 3, case (2)
10: p← i− s+ 1
11: i← i+ 1
12: return (ℓ+ 1, s, p)

Figure 1. A procedure extending the matching pattern prefix by one letter simultaneously updating
its maximal suffix and associated shortest period.

Theorem 3 Let Y = PAkB where M := MS(Y) = AkB and |B| < |A| = p :=
per(MS(Y)). Suppose a ∈ Σ is such that Ba is a prefix of A and b is an arbitrary

character. Then Mb := MS(Yb) and pb := per(Mb) satisfy

Mb = Mb and pb = p if a = b (1)

Mb = Mb and pb = |Mb| if a < b (2)

Mb = MS(Bb) if a > b (3)

A key to easily proving this theorem is a simple fact about maximal suffixes:

Lemma 4 Let Y = PAkB, where MS(Y) = AkB and |B| < |A| = per(MS(Y)). The
string A is border-free.

Observe that each step of the while loop on line 4 in UpdateMS increases the value
of the non-decreasing expression i + s. The final and initial values of i differ exactly
by one. Hence we can make the following observation.

Observation 5 The cost of UpdateMS is O(∆s).

The key property of maximal suffixes is the connection between per(Y[0..ℓ)) and
per(MS(Y[0..ℓ))). In certain (easy to recognize) situations the two values are equal.
We will now give a precise description of this connection.

We point out that a superset of the properties stated next is proven in [2]. However,
our version of the algorithm requires a smaller number of (slightly simpler, both in
terms of the claim and the proof) formal statements and we leave the proofs to present
the algorithm description standalone.

172 Proceedings of the Prague Stringology Conference 2013

Algorithm Match(X, n,Y,m)

Input: strings X[0..n) (text) and Y[0..m) (pattern).
Output: the set S = {i ∈ [0..n) | X[i..i+m) = Y}.
1: S ← ∅
2: i← ℓ← p← s← 0
3: while i < n do

4: while i+ ℓ < n and ℓ < m and X[i+ ℓ] = Y[ℓ] do
5: (ℓ, s, p)← UpdateMS(Y, ℓ, s, p)

// ℓ = lcp(Xi,Y)
6: if ℓ = m then

7: S ← S ∪ {i}
// MS(Y[0..ℓ)) = Y[s..ℓ) and p = per(Y[s..ℓ))

8: if p ≤ ℓ/3 and Y[0..s) = Y[p..p+ s) then // per(Y[0..ℓ)) = p
9: i← i+ p
10: ℓ← ℓ− p
11: else // per(Y[0..ℓ)) > ℓ/3
12: i← i+ ⌊ℓ/3⌋+ 1
13: (ℓ, s, p)← (0, 0, 0)
14: return S

Figure 2. The main procedure of the simplified Crochemore’s algorithm.

Lemma 6 Let Y = PAkB where MS(Y) = AkB and |B| < |A| = p := per(MS(Y)).
Then:

1. |P| < per(Y)
2. per(Y) = per(MS(Y)) iff P is a suffix of A

3. if Y is 3-periodic then per(Y) = per(MS(Y))

Proof. Let p′ = per(Y).
1. Otherwise AkB occurs in Y p′ positions earlier, thus is not a maximal suffix.
2. A prefix of Y of length |P| + p′ has a border of length |P|. If p′ = p position

|P|+ p coincides with the end of A.
The opposite implication follows from the definition of a period.
3. Clearly p ≤ p′ as AkB is a factor of Y. Suppose p < p′ and observe that AkB has

periods p and p′. Moreover, 3p′ ≤ |Y| and |P| < p′ imply |AkB| > 2p′ > p + p′ hence
from Lemma 1 AkB has also period p′′ := gcd(p, p′). But AkB contains an occurrence
of Y[0..p′) as a factor thus Y[0..p′) has period p′′ < p′ and so (since p′′ | p′) the whole
Y as well, contradicting the definition of p′.

We immediately obtain the following result (for Y as in Lemma 6).

Corollary 7 Y is 3-periodic iff p ≤ |Y|/3 and P is a suffix of A.

The pseudo-code of the matching procedure is given in Fig. 2. After computing
ℓ = lcp(Xi,Y) we test if Y[0..ℓ) is 3-periodic using Corollary 7. If it is not, we can
safely set q := ⌊ℓ/3⌋ and ℓ := 0. Otherwise, from Lemma 6, we know that p :=
per(MS(Y[0..ℓ))) = per(Y[0..ℓ)) thus we set q := p and decrease the match length
ℓ by p, because the definition of the period implies that we can skip the first ℓ − p
characters when computing lcp(Xi+p,Y).

However, now the problem is obtaining the starting position of the maximal suffix
of Y[0..ℓ − p) and its shortest period. As explained in the next Lemma, it turns out

J. Kärkkäinen et al.: Crochemore’s String Matching Algorithm: Simplification, . . . 173

that both the starting position and the shortest period of the new maximal suffix
stay the same.

This is in contrast with the original Crochemore’s algorithm, where 3 cases are
considered when performing the shift, each with more involved formulas expressing
maximal possible shifts. It results in a tight upper bound on the number of compar-
isons, but at the cost of intricate complexity analysis and the need for more formal
statements.

Lemma 8 Assume Y is a 3-periodic string of length ℓ. Let MS(Y) = Ys and per(Ys) =
p. Then for Y′ := Y[0..ℓ− p) we have MS(Y′) = Y′

s and per(Y′

s) = p.

Proof. Suppose MS(Y′) = Y′

s′ for s′ 6= s. The only case that does not immediately
yields Ys′ > Ys (contradicting MS(Y) = Ys) is when s′ < s and Y′

s is a prefix of Y′

s′ .
It is also its suffix, thus Y′

s′ has a period s− s′. It also has period p and inequalities
|Y′| ≥ 2p, s′ < s < p (recall Lemma 6(1)) imply |Y′

s′ | ≥ 2p − s′ > p + (s − s′), thus
from Lemma 1 Y′

s′ has period p′ := gcd(p, s− s′) < p. But Y′

s′ contains an occurrence
of Y[0..p) hence Y[0..p) must also have period p′, and since p′ | p the whole Y as well,
a contradiction.

Clearly per(Y′

s) ≤ p, as Y′

s is a factor of Y. It cannot be p′ := per(Y′

s) < p because
then Y′

s[p
′..p) is a border of Ys[0..p) which is impossible by Lemma 4.

Theorem 9 Match runs in O(n+m) time and uses O(1) extra space.

Proof. Clearly only a constant number of integer variables are used throughout the
computation and neither the text nor the pattern are modified.

Each step of the while loop in line 3 increases the value of the non-decreasing
expression 3i+ ℓ, thus it is executed at most 3n+m = O(n+m) times.

The total cost of UpdateMS is bounded by the total increase of s (Observation 5).
The maximal value of s is m− 1 and it can only decrease in line 13. But since s < ℓ
and the decrease is always followed by increasing i by ⌊ℓ/3⌋+ 1 > s/3, s can overall
increase by at most 3n+m = O(n+m).

Finally, we divide the checks Y[0..s) = Y[p..p+s) into two groups. If the condition
in line 8 evaluates to true we have s < per(Y[0..ℓ)) = p (see Lemma 6) and i is imme-
diately increased by p (line 9), thus the total cost of such checks is O(n). Otherwise
i is incremented by ⌊ℓ/3⌋+ 1 > s/3 (line 12). The maximal value of i is n, thus such
checks overall cost at most is 3n = O(n).

4 Extensions

4.1 Longest Prefix Matching

We search a pattern Y inside X and keep track of the length ℓmax of the longest match-
ing prefix of Y found so far. The pseudo-code, which is a straightforward modification
of the Match procedure is given in Fig. 3. During the computation we maintain a set
of text positions S such that j ∈ S iff lcp(Xj,Y) = ℓmax.

174 Proceedings of the Prague Stringology Conference 2013

Algorithm LongestPrefixMatch(X, n,Y,m)

Input: strings X[0..n) (text) and Y[0..m) (pattern).
Output: ℓmax = maxi∈[0..n) lcp(Xi,Y) and S = {j ∈ [0..n) | lcp(Xj ,Y) = ℓmax}.
1: S ← ∅
2: i← p← s← ℓ← ℓmax ← 0
3: while i < n do

4: while i+ ℓ < n and ℓ < m and X[i+ ℓ] = Y[ℓ] do
5: (ℓ, s, p)← UpdateMS(Y, ℓ, s, p)
6: if ℓ > ℓmax then

7: S ← {i}
8: ℓmax ← ℓ
9: elsif ℓ = ℓmax then

10: S ← S ∪ {i}
11: if p ≤ ℓ/3 and Y[0..s) = Y[p..p+ s) then
12: i← i+ p; ℓ← ℓ− p
13: else

14: i← i+ ⌊ℓ/3⌋+ 1; (ℓ, s, p)← (0, 0, 0)
15: return (ℓmax,S)

Figure 3. The basic algorithm solving Longest Prefix Matching problem.

Theorem 10 The algorithm LongestPrefixMatch solves the Longest Prefix Match-

ing problem in linear time.

Proof. The time complexity follows from Theorem 9.
To prove its correctness, observe that after line 10 we have ℓmax ≥ ℓ. The shift

that follows is not longer than per(Y[0..ℓ)), so from Observation 2 all positions j that
we skip satisfy lcp(Xj,Y) < ℓ ≤ ℓmax, i.e., we only omit the candidates for ℓmax that
would not change its value nor end up in S.

Note that the peak size of set S can be much larger than the final output. For
instance when X = aqb and Y = ab the size of S reaches q− 1 but the final S satisfies
|S| = 1.

It is possible to get rid of this overhead as follows. First run LongestPrefixMatch

but only record the length ℓmax. Then, in the second run, collect exclusively the
elements on the final set S, which can now be easily recognized. We have proved the
following

Theorem 11 It is possible to solve the Longest Prefix Matching problem in linear

time and using only constant extra space in addition to the input and the output.

4.2 Sparse Longest Prefix Matching

Let P be the ascending sequence of text positions given in addition to the text X and
the pattern Y. In order to solve the sparse variant of the problem, we proceed exactly
the same as in the basic version, but only execute lines 4-10 if i ∈ P . We call this
modified algorithm SparseLongestPrefixMatch.

Theorem 12 The algorithm SparseLongestPrefixMatch solves the Sparse Longest

Prefix Matching problem in linear time.

J. Kärkkäinen et al.: Crochemore’s String Matching Algorithm: Simplification, . . . 175

Proof. The condition i ∈ P can be checked in constant time since i never decreases
and the elements of P are given in ascending order. The analysis from Theorem 9
applies to the rest of the algorithm.

In order to prove its correctness observe that whenever we are about to execute
lines 4-10 the condition ℓ ≤ ℓmax is satisfied, even if i 6∈ P . This is because ℓ increases
only for positions i ∈ P and any such increase is immediately recorded in lines 6-10.
Therefore the argument from Theorem 10 also applies here, i.e., the positions in the
text that are not inspected would never contribute to the answer.

An identical technique as for LongestPrefixMatch can be applied to reduce the
memory overhead caused by the large peak size of S yielding

Theorem 13 It is possible to solve the Sparse Longest Prefix Matching problem in

linear time and using only constant extra space in addition to the input and the output.

References

1. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 762–772.

2. M. Crochemore: String-matching on ordered alphabets. Theoretical Computer Science, 92
1992, pp. 33–47.

3. M. Crochemore and W. Rytter: Sqares, cubes, and time-space efficient string searching.
Algorithmica, 13(5) 1995, pp. 405–425.

4. J.-P. Duval: Factorizing words over an ordered alphabet. Journal of Algorithms, 4(4) 1983,
pp. 363–381.

5. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most

recent results. ACM Computing Surveys, 45(2) 2013, article 13.
6. P. Ferragina and G. Manzini: On compressing the textual web, in WSDM, ACM, 2010,

pp. 391–400.
7. N. J. Fine and H. S. Wilf: Uniqueness theorems for periodic functions. Proceedings of the

American Mathematical Society, 16(1) 1965, pp. 109–114.
8. T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi: A faster

grammar-based self-index, in LATA, vol. 7183 of LNCS, Springer, 2012, pp. 240–251.
9. T. Gagie, P. Gawrychowski, and S. J. Puglisi: Faster approximate pattern matching in

compressed repetitive texts, in ISAAC, vol. 7074 of LNCS, Springer, 2011, pp. 653–662.
10. Z. Galil and J. Seiferas: Time-space optimal string matching. Journal of Computer and

System Sciences, 26 1983, pp. 280–294.
11. Z. Galil and J. I. Seiferas: Saving space in fast string-matching. SIAM Journal on Com-

puting, 9(2) 1980, pp. 417–438.
12. C. Hoobin, S. J. Puglisi, and J. Zobel: Relative Lempel-Ziv factorization for efficient

storage and retrieval of web collections. Proceedings of the VLDB Endowment, 5(3) 2011,
pp. 265–273.

13. J. Kärkkäinen, D. Kempa, and S. J. Puglisi: Lempel-Ziv parsing in external memory.
Manuscript, http://arxiv.org/abs/1307.1428, 2013.

14. J. Kärkkäinen, D. Kempa, and S. J. Puglisi: Lightweight Lempel-Ziv parsing, in SEA,
vol. 7933 of LNCS, Springer, 2013, pp. 139–150.

15. J. Kärkkäinen, D. Kempa, and S. J. Puglisi: Linear time Lempel-Ziv factorization: Simple,

fast, small, in CPM, vol. 7922 of LNCS, Springer, 2013, pp. 189–200.
16. D. Kempa and S. J. Puglisi: Lempel-Ziv factorization: simple, fast, practical, in ALENEX,

SIAM, 2013, pp. 103–112.
17. D. Knuth, J. H. Morris, and V. Pratt: Fast pattern matching in strings. SIAM Journal

on Computing, 6(2) 1977, pp. 323–350.
18. S. Kreft and G. Navarro: Self-indexing based on LZ77, in CPM, vol. 6661 of LNCS, Springer,

2011, pp. 41–54.
19. J. H. Morris, Jr and V. R. Pratt: A linear pattern-matching algorithm, Report 40, Uni-

versity of California, Berkeley, 1970.
20. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, 23(3) 1977, pp. 337–343.

