
Improved and Self-Tuned Occurrence Heuristics⋆

Domenico Cantone and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone,faro}@dmi.unict.it

Abstract. In this note we present three efficient variations of the occurrence heuristic,
adopted by many exact string matching algorithms and firstly introduced in the well-
known Boyer-Moore algorithm. Our first heuristic, called improved-occurrence heuristic,
is a simple improvement of the rule introduced by Sunday in his Quick-Search algo-
rithm. Our second heuristic, called worst-occurrence heuristic, achieves its speed-up
by selecting the relative position which yields the largest average advancement. Fi-
nally, our third heuristic, called jumping-occurrence heuristic, uses two characters for
computing the next shift, whose distance allows one to maximize the average advance-
ment. The worst-occurrence and jumping-occurrence heuristics tune their parameters
according to the text characters’ distribution. Experimental results show that the new
proposed heuristics achieve very good results on average, especially in the case of small
alphabets.

Keywords: string matching, experimental algorithms, text-processing, occurrence
heuristics, frequency of characters, tuned-search approach

1 Introduction

Given a text t and a pattern p over some alphabet Σ, the string matching problem
consists in finding all occurrences of the pattern p in the text t. In a computational
model in which the matching algorithm is restricted to read all the characters of the
text one by one, the optimal complexity is O(n). However, in several practical cases
it is not necessary to read all text characters, achieving sublinear performances on
average. The optimal average complexity is O(n/m log σ) [18] and it is interesting to
note that many of such algorithms have an even worse O(nm)-time complexity in the
worst-case [9,4,5,6,10,11,12].

This is the case for the celebrated Boyer-Moore (BM) algorithm [2], the progeni-
tor of several algorithmic variants which aim at efficiently computing shift increments
close to optimal. The Boyer-Moore algorithm computes shift increments as the max-
imum value suggested by the good-suffix heuristic and the occurrence heuristic, pro-
vided that both of them are applicable. However, many subsequent efficient variants
of the Boyer-Moore algorithm just dropped the good-suffix heuristic and based the
calculation of the shift increments only on variants of the occurrence heuristic. Some
of such variants are still considered among the most efficient algorithms in practical
cases (see [9]).

The occurrence heuristic uses a single character for shifting. Specifically, it states
that when a mismatch is found at a given position j of the text, then the pattern
can be safely shifted in such a way that its rightmost occurrence of the mismatching
character in the text, if present, is aligned with the relative position j in the text.

⋆ This work has been partially supported by project PRISMA PON04a2 A/F funded by the Italian
Ministry of University within PON 2007-2013 framework.

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics, pp. 92–106.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 93

In this paper we present three improvements of the occurrence heuristic which turn
out to be more efficient in practical cases, especially in the case of small alphabets.
In particular, we will introduce the following heuristics:

1. the improved-occurrence heuristic, which is based on the match of the rightmost
character of the pattern with the corresponding character in the text;

2. the worst-occurrence heuristic, which selects a relative position yielding the largest
average advancement according to the text characters’ distribution;

3. the jumping-occurrence heuristic, which uses two characters for computing the
shift advancements in the searching phase. The relative distance between the two
characters is computed so as to maximize the average shift advancements, based
on the text characters’ distribution.

The paper is organized as follows. Some useful notations and terminology are pre-
liminarily recalled in Section 2. Then, in Section 3 we briefly revise the occurrence
heuristic and some of its variants. In Section 4 we present the first of our proposed
occurrence heuristics, namely the improved-occurrence heuristic, and in Sections 5
and 6 we introduce the worst-occurrence and the jumping-occurrence heuristics, re-
spectively. Finally, in Section 7 we present and comment on experimental results on
the performance of our proposed heuristics in comparison with the best known algo-
rithms present in literature based on the occurrence heuristic. Finally, we draw our
conclusions in Section 8.

2 Notations and Terminology

A string p of length |p| = m ≥ 0 over a finite alphabet Σ is represented as a finite
array p[0 ..m − 1]. By p[i] we denote the (i + 1)-st character of p, for 0 ≤ i < m.
Likewise, by p[i .. j] we denote the substring of p contained between the (i+1)-st and
the (j + 1)-st characters of p, where 0 ≤ i ≤ j < m.

Let t be a text of length n and let p be a pattern of length m. If the character p[0]
is aligned with the character t[s] of the text, so that p[i] is aligned with t[s + i], for
0 ≤ i ≤ m− 1, we say that the pattern p has shift s in t. In this case, the substring
t[s .. s +m − 1] is called the current window of the text. If t[s .. s +m − 1] = p, we
say that the shift s is valid. Then the string matching problem consists in finding all
valid shifts of p in t, for given pattern p and text t.

In general, most string matching algorithms work as follows. They scan the text
by sliding a text window whose size is generally equal to m. For each text window, its
characters are compared with the corresponding characters of the pattern or suitable
transitions are performed on some kind of automaton (this specific phase is called a
matching attempt). After a complete match of the pattern is found or a mismatch is
detected, the current window is shifted to the right by a certain number of positions.
This phase is usually referred to as the sliding window mechanism. When the search
starts, the left end of the text and of the current window are aligned. Subsequently,
the sliding window mechanism is repeated until the right end of the window goes past
the right end of the text. Each matching attempt can be naturally associated with
the position s in the text where the current window t[s .. s+m− 1] is positioned.

94 Proceedings of the Prague Stringology Conference 2013

3 The Occurrence Heuristic and Some of its Variants

The well-known occurrence heuristic was introduced for the first time in [2] as one of
the shift rules used by the Boyer-Moore algorithm. The work in [17,8] provides a uni-
form framework for describing all safe shifts provided by the Boyer-Moore-type pat-
tern matching algorithms. Specifically, during a matching attempt the Boyer-Moore
algorithm scans the current window (of the text) from right to left and, at the end
of the matching phase, it computes the shift increment as the largest value given by
the good-suffix and the occurrence heuristics.

The occurrence heuristic states that if c = t[s + i] 6= p[i] is the first mismatching
character (with 0 ≤ i ≤ m−1), while scanning p and t (with shift s) from right to left,
then p can be safely shifted in such a way that its rightmost occurrence of c, if present,
is aligned with position (s+i) in t (provided that such an occurrence lies in p[0 .. i−1],
otherwise the occurrence heuristic has no effect). In the case in which c does not occur
in p, then p can be safely shifted just past position (s+i) in t. More formally, the shift
increment suggested by the occurrence heuristic is given by (bc

p
(t[s+ i])+ i−m+1),

where, for c ∈ Σ, bc
p
(c) =

Def
min({k | 0 ≤ k ≤ m− 1 and p[m− k − 1] = c} ∪ {m}) .

Observe that the table bcp of the occurrence heuristic, for a given a pattern p of
length m, can be computed in O(m+ σ) time and O(σ) space, where σ is the size of
the alphabet Σ.

Due to the simplicity and ease of implementation of the occurrence heuristic, some
variants of the Boyer-Moore algorithm were based just on it, dropping the good-
suffix heuristic. For instance, Horspool [13] suggested the following simplification of
the original Boyer-Moore algorithm, which performs better in practical cases. He just
dropped the good-suffix heuristic and proposed to compute shift advancements in such
a way that the rightmost character t[s+m− 1] of the current window is aligned with
its rightmost occurrence on p[0 ..m− 2], if present; otherwise the pattern is advanced
just past the window. This amounts to advance the shift by hbcp(t[s+m−1]) positions,
where hbcp(c) =Def

min({k | 1 ≤ k ≤ m− 1 and p[m− k − 1] = c} ∪ {m}) .

The Quick-Search algorithm, presented in [16], also uses a modification of the
original occurrence heuristic, much along the same lines of the Horspool algorithm.
Specifically, it is based on the following observation: when a mismatching character
is encountered, the pattern is always shifted to the right by at least one character,
but never by more than m characters. Thus, the character t[s + m] is always in-
volved in testing for the next alignment. So, one can apply the bad character rule to
t[s+m], rather than to the mismatching character, possibly obtaining larger shift ad-
vancements. This corresponds to advance the shift by qbcp(t[s+m]) positions, where
qbcp(c) =Def

min({k | 1 ≤ k ≤ m− 1 and p[m− k] = c} ∪ {m+ 1}) .

Other efficient variants of the Boyer-Moore algorithm extend the previous algo-
rithms in that their occurrence heuristics use two characters rather than just one. For
instance the Zhu-Takaoka algorithm [19] extends the Horspool algorithm by using
the last two characters t[s+m− 2] and t[s+m− 1] in place of only t[s+m− 1]. A
more effective algorithm, due to Berry and Ravindran [1], extends the Quick-Search
algorithm in a similar manner, by using the characters t[s +m] and t[s +m + 1] in
place of only t[s+m]. It is to be noticed, though, that the precomputation of the table
used by an occurrence heuristic based on two text characters requires O(σ2)-space
and O(m+ σ2)-time complexity.

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 95

4 A Simple Improved Occurrence Heuristic

For a given shift s, the Horspool and the Quick-Search algorithms compute their shift
advancements by applying the occurrence heuristic on a fixed position s + q of the
text, with q = m−1 and q = m, respectively. We refer to the value q as the occurrence
relative position.

In favorable conditions, it may be possible to use an occurrence relative position
q > m, which may lead to even larger advancements, provided that no matching can
ever possibly be skipped. In such a situation, we say that the occurrence relative
position q is safe (for shifting).

To this purpose, we begin by introducing the generalized occurrence function
gbc

p
(i, c). Suppose the pattern p has shift s in the text t. For a given occurrence

relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i, t[s + i]) is the shift advancement such that

the character t[s+ i] is aligned with its rightmost occurrence in p[0 .. min(i,m)− 1],
if present; otherwise gbcp(i, t[s + i]) evaluates to i + 1 (this corresponds to advance
the pattern just past position s+ i of the text). This amounts to putting

gbc
p
(i, c) =

Def
min({i− k | 0 ≤ k < min(i,m) and p[k] = c} ∪ {i+ 1}),

for c ∈ Σ and i ≥ 0.1 Plainly, gbc
p
(i, c) ≥ 1 always holds. Additionally, the shift

rules of the Horspool and Quick-Search algorithms can be expressed in terms of
the generalized occurrence function just defined by hbcp(c) = gbc

p
(m − 1, c) and

qbcp(c) = gbc
p
(m, c), respectively, for c ∈ Σ.

We will define our improved occurrence heuristic (IOH) in terms of the generalized
occurrence function gbcp(i, c). Let again s be the shift of the current text window.
We distinguish the following two cases:

Case p[m− 1] = t[s+m− 1] :
Let i0 be the rightmost position in the substring p[0 ..m − 2] such that p[i0] =
p[m − 1], provided that p[m − 1] occur in p[0 ..m − 2]; otherwise let i0 be −1.
Then the occurrence relative position q1 = 2m− i0−2 is safe for shifting, since no
occurrence of the character p[m− 1] exists from position i0 +1 to position m− 2.
More formally, q1 can be defined as

q1 =Def
min({2m− i− 2 | p[i] = p[m− 1] and 0 ≤ i ≤ m− 2} ∪ {2m− 1}) .

Case p[m− 1] 6= t[s+m− 1] :
In this case, let i0 be the rightmost position in p[0 ..m−2] such that p[i0] 6= p[m−1],
provided that p[0 ..m−2] contain some character distinct from p[m−1], otherwise
let i0 be −1. Then the occurrence relative position q2 = 2m − i0 − 2 is safe for
shifting, since no character different from p[m − 1] exists from position i0 + 1 to
position m− 2. More formally, q2 is defined as

q2 =Def
min({2m− i− 2 | p[i] 6= p[m− 1] and 0 ≤ i ≤ m− 2} ∪ {2m− 1}) .

The two occurrence relative positions q1 and q2 are then used by our heuristic IOH
to calculate the shift advancements during the searching phase of the algorithm Im-
provedOccurrenceMatcher in Figure 1, based on the following two occurrence
functions

ibc1p(c) =Def
gbc

p
(q1, c) , ibc2p(c) =Def

gbc
p
(q2, c) .

These are computed by procedure PrecomputeIOH, shown in Figure 1, in O(m+σ)
time and O(σ) space.

1 A restricted variant of the generalized occurrence function gbcp was presented in [7].

96 Proceedings of the Prague Stringology Conference 2013

PrecomputeIOH(p,m, step)
1. for each c ∈ Σ do

2. ibc[c]← step + 1
3. for i← 0 to m− 1 do

4. ibc[p[i]]← step − i

5. return ibc

ImprovedOccurrenceMatcher(p,m, t, n)
1. step1 ← step2 ← 2m− 1
2. for i← 0 to m− 2 do

3. if p[i] = p[m− 1] then
4. then step1 ← 2m− i− 2
5. else step2 ← 2m− i− 2
6. ibc1 ← PrecomputeIOH(p,m, step1)
7. ibc2 ← PrecomputeIOH(p,m, step2)
8. s← 0
9. while (s ≤ n−m) do

10. if (p[m− 1] = t[s+m− 1]) then

11. i← 0
12. while (i < m and p[i] = t[s+ i]) do

13. i← i+ 1
14. if (i = m) then Output(s)
15. s← s+ ibc1[t[s+ step1]]
16. else s← s+ ibc2[t[s+ step2]]

Figure 1. A string matching algorithm based on the heuristic IOH.

5 A Self-Tuned Occurrence Heuristic

For a pattern p of length m, a text t, and a shift s, the heuristic IOH presented in the
previous section computes shift advancements using the rule ibc1p or ibc2p, based on
two different relative positions, according to whether the last character of the pattern
pmatches its corresponding text character t[s+m−1] or not. Differently, the Horspool
and the Quick-Search algorithms compute their shift advancements by applying the
occurrence heuristic on a fixed position s + q of the text, with q equal, respectively,
to m− 1 and to m. In this section we will show that, given a pattern p and a text t
with known character distribution, we can compute efficiently an occurrence relative
position, to be called worst-occurrence relative position, which ensures the largest
shift advancement on the average. The worst-occurrence heuristic (WOH) is then the
corresponding occurrence heuristic based on the worst-occurrence relative position.

5.1 Finding the worst-occurrence relative position

Again, let t and p be respectively a text and a pattern over a common alphabet Σ
and let f : Σ → [0, 1] be the relative frequency function of the characters of t, so that∑

c∈Σ f(c) = 1 holds.
For a given occurrence relative position 0 ≤ i ≤ m, the average shift advancement

of the generalized occurrence function gbc
p
is given by the function

adv p,f(i) =Def

∑

c∈Σ

f(c) · gbc
p
(i, c) . (1)

We then define the worst-occurrence relative position q∗ as the smallest position 0 ≤
q ≤ m which maximizes adv p,f(q), i.e.,

q∗ =
Def

min{q | 0 ≤ q ≤ m and adv p,f(q) = max
0≤i≤m

adv p,f(i)} .

Procedure FindWorstOccurrence in Figure 2 computes efficiently the position
q∗, by exploiting the recurrence

adv p,f(i) =

{
1 if i = 0
adv p,f(i− 1)− f(p[i− 1]) · gbc

p
(i− 1, p[i− 1]) + 1 if 1 ≤ i ≤ m

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 97

FindWorstOccurrence(p,m,Σ, f)
1. for each c ∈ Σ do

2. lp[c]← −1
3. adv ← 1
4. max ← 1
5. q ← 0
6. for i← 1 to m do

7. gbc ← i− lp[p[i− 1]]− 1
8. adv ← adv − f(p[i− 1]) · gbc + 1
9. lp[p[i− 1]]← i− 1

10. if (adv > max) then

11. max ← adv

12. q ← i

13. return q

PrecomputeWOH(p,m, q)
1. for each c ∈ Σ do

2. wo[c]← q + 1
3. for i← 0 to q − 1 do

4. wo[p[i]]← q − i

5. return wo

WorstOccurrenceMatcher(p,m, t, n)
1. q ← FindWorstOccurrence(p,m,Σ, f)
2. wo← PrecomputeWOH(p,m, q)
3. s← 0
4. while (s ≤ n−m) do

5. i← 0
6. while (i < m and p[i] = t[s+ i]) do

7. i← i+ 1
8. if (i = m) then Output(s)
9. s← s+ wo[t[s+ q]]

Figure 2. The procedure FindWorstOccurrence, the procedure PrecomputeWOH and the
algorithm WorstOccurrenceMatcher.

for the calculation of the function adv p,f (lines 3 and 8), which, in turn, is based on
the recurrence

gbc
p
(i, c) =

{
1 if i = 0 or c = p[i− 1]
gbc

p
(i− 1, c) + 1 otherwise,

for 0 ≤ i ≤ m and c ∈ Σ.

Notice that the entries of the generalized occurrence function gbc
p
present in the

above recurrence relation for adv p,f are only of the form gbc
p
(j, p[j]). These can be

expressed readily in terms of the last-position functions lpi

p
: Σ → {−1, 0, . . . ,m−1},

defined (for i = 0, 1, . . . ,m) by

lpi

p
(c) =

Def
max({j | 0 ≤ j < i and p[j] = c} ∪ {−1}) ,

i.e., lpi

p
(c) is the rightmost position of c in p[0 .. i − 1], if c is present in p[0 .. i − 1],

otherwise lpi

p
(c) is −1. In fact, we have

gbc
p
(i, p[i]) = i− lpi

p
(p[i]) ,

for 0 ≤ i ≤ m− 1 (cf. line 7 of the for-loop).

The last-position functions can efficiently be computed during a left to right scan-
ning of the pattern. These are maintained as a single array lp of size σ by the procedure
FindWorstOccurrence. The array lp is initialized at lines 1-2 and subsequently
updated at line 9 of the for-loop, by resorting to the recursive relation

lpi

p
(c) =

−1 if i = 0
i− 1 if i > 0 ∧ c = p[i− 1]
lpi−1

p
(c) if i > 0 ∧ c 6= p[i− 1].

It is easy to oberve that the procedure FindWorstOccurrence has an overall
O(m+ σ)-time and O(σ)-space complexity.

98 Proceedings of the Prague Stringology Conference 2013

5.2 The worst-occurrence heuristic

The worst-occurrence heuristic uses the position q∗ computed by the procedure Find-
WorstOccurrence to calculate shift advancements during the searching phase in
such a way that the character t[s + q∗] is aligned with its rightmost occurrence on
p[0 .. q∗ − 1], if present; otherwise the pattern is advanced just past position s+ q∗ of
the text. This corresponds to advance the shift by wop(t[s+ q∗]) positions, where

wop(c) =Def
min({i | 1 ≤ i ≤ q∗ and p[q∗ − i] = c} ∪ {q∗ + 1}) .

Observe that, for q∗ = 0, the advancement is equal to 1. The resulting algorithm
can be immediately translated into programming code (see Figure 2 for a simple
implementation). The procedure PrecomputeWOH, shown in Figure 2, computes
the table which implements the worst-occurrence heuristic in O(m + σ) time and
O(σ) space.

5.3 Finding the relative frequency of characters

The frequency of characters in texts has often been used in string matching algorithms
for speeding up the searching process [16,1,15]. Such an approach is particularly use-
ful when one is searching texts in natural languages, whose character distributions
are well studied, and therefore known in advance. However, also in the case of texts in
natural languages, the exact character distribution can not be predicted, since char-
acter frequencies may depend both on the writer and on the subject. The situation
may become even worse in the case of other types of sequences. In such contexts, dif-
ferent approaches can be adopted for retrieving good approximations of the frequency
of characters in order to apply accurately the worst-occurrence heuristic presented
above. Here we propose some of them.

(i) In a preprocessing phase, compute the character frequencies of an initial segment
of the text (say of no more than γ characters).

(ii) Run the first γ iterations of the algorithm WorstOccurrenceMatcher, as-
suming a priori a default distribution of characters (e.g., the uniform distribution).
At the same time, compute the relative frequency of the first γ characters and then
recompute the occurrence heuristic according to the estimated frequency.

(iii) While running the algorithm WorstOccurrenceMatcher, keep updating the
relative frequencies of the characters. At regular intervals (say of γ characters), or
when the difference between the current relative frequencies and the one used in
the worst-occurrence heuristic exceeds a threshold, recompute the heuristic.

From our tests, it turns out that when the distribution of characters does not vary
very much along the text, a good approximation of the frequencies can be computed
even for quite small values of γ in the case of strategies (i) and (ii). For instance, in
our experiments reported in Section 7 we used the value γ = 100, in combination with
strategy (i). When the character frequencies tend to vary very much along the text
(for instance, in the case of multi-language texts or in musical sequences), strategy
(iii) might be preferable. However, one must keep in mind that the overhead can
sensibly affect the algorithm performance.

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 99

6 A Jumping-Occurrence Heuristic

We recall that, for a pattern p of length m, the occurrence heuristics of the Zhu-
Takaoka [19] and the Berry-Ravindran [1] algorithms are based on two consecutive
characters, starting at positions m−2 and m, respectively. In both cases, the distance
between the two characters involved in the occurrence heuristics is 1. We refer to such
a distance as the occurrence jump distance.

It may be possible that other occurrence jump distances generate larger shift
advancements. We will show in this section how, given a pattern p and a text t with
known character distribution, we can compute efficiently an optimal occurrence jump
distance which ensures the largest shift advancements on the average. The jumping-
occurrence heuristic will be then the occurrence heuristic based on two characters
with optimal occurrence jump distance.

6.1 Finding the optimal occurrence jump distance

Again, let p be a pattern of length m. To begin with, we introduce the generalized
double occurrence function gbc2

p
(i, j, c1, c2) relative to p, with 0 ≤ i ≤ m, 1 ≤ j ≤

m and c1, c2 ∈ Σ, intended to calculate the largest safe shift advancement for p
compatible with the constraints t[s+ i] = c1 and t[s+ i+ j] = c2, when p has shift s
with respect to a text t. Thus, we put:

gbc2

p
(i, j, c1, c2) =Def

min({i− k |m− j ≤ k < i ∧ p[k] = c1}

∪ {i− k | 0 ≤ k < min(m− j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪ {i+ j − k | 0 ≤ k < j ∧ p[k] = c2}

∪ {i+ j + 1}) . (2)

Plainly, gbc2

p
(i, j, c1, c2) ≥ 1 always holds and it can easily be checked that

gbc
p
(i, c1) < i+ j −m+ 1 =⇒ gbc2

p
(i, j, c1, c2) = gbc

p
(i, c1) . (3)

Additionally, the shift rules of the Zhu-Takaoka and Berry-Ravindran algorithms can
be expressed in terms of the generalized double occurrence function as, respectively,
gbc2

p
(m− 2, 1, c1, c2) and gbc2

p
(m, 1, c1, c2).

In the following we will refer to the parameters i and j of gbc2

p
as the relative

occurrence position and the occurrence jump distance, respectively. For fixed values
of the relative occurrence position and the occurrence jump distance, the generalized
double occurrence function can be computed in O(σ2 +mσ) time and O(σ2) space.

Let us fix, momentarily, the relative occurrence position i to m − 1 and let f :
Σ → [0, 1] be the relative frequency of the characters in the text t. For a given
1 ≤ ℓ ≤ m, the probability that the generalized occurrence function gbc

p
yields

a shift advancement of length at least ℓ when inspecting the character at relative
position m− 1 is

Pr{gbc
p
(m− 1, c) ≥ ℓ | c ∈ Σ} =

∑

c∈Σ
gbcp(m−1,c)≥ℓ

f(c) .

Example 1. Let p = ACGAACT be a pattern of m = 7 characters over the alphabet
Σ = {A,C,G,T} of four elements with a relative frequency f such that f(A) =
0.3, f(C) = 0.1, f(G) = 0.4 and f(T) = 0.2. The shift advancements given by

100 Proceedings of the Prague Stringology Conference 2013

each character at the relative occurrence position m − 1 = 6 are gbc
p
(6,A) = 2,

gbc
p
(6,C) = 1, gbc

p
(6,G) = 4, and gbc

p
(6,T) = 7, respectively. Thus, adv p,f(6) = 3.7.

The probabilities to have a shift advancement of length at least ℓ, for 1 ≤ ℓ ≤ 8,
are given by the following values

Pr{gbc6c ≥ 1 | c ∈ Σ} = f(A) + f(C) + f(G) + f(T) = 1; Pr{gbc6c ≥ 5 | c ∈ Σ} = f(T) = 0.2
Pr{gbc6c ≥ 2 | c ∈ Σ} = f(A) + f(G) + f(T) = 0.9; Pr{gbc6c ≥ 6 | c ∈ Σ} = f(T) = 0.2
Pr{gbc6c ≥ 3 | c ∈ Σ} = f(G) + f(T) = 0.6; Pr{gbc6c ≥ 7 | c ∈ Σ} = f(T) = 0.2
Pr{gbc6c ≥ 4 | c ∈ Σ} = f(G) + f(T) = 0.6; Pr{gbc6c ≥ 8 | c ∈ Σ} = 0 .

Let j be a fixed relative jump distance to be used by the generalized double
occurrence function gbc2

p
with relative occurrence position m − 1. In order for the

character t[s +m − 1 + j], at the relative position m − 1 + j, to be involved in the
computation of the shift advancement by the function gbc2

p
, we must have

gbc
p
(m− 1, t[s+m− 1]) ≥ j

(cf. (3)). Thus, for a fixed bound 0 ≤ β ≤ 1, the computation of the shift advancement
will involve the second character with a probability of at least β if and only if its jump
distance j satisfies

Pr{gbc
p
(m− 1, c) ≥ j | c ∈ Σ} ≥ β .

This suggests to use the following relative jump distance

j∗
β
=

Def
max

{
ℓ | 1 ≤ ℓ ≤ m and Pr

{
gbcm− 1c ≥ ℓ | c ∈ Σ

}
≥ β

}

in the jumping-occurrence heuristic to be presented in the next section, at least in the
case in which the relative occurrence position i is m− 1. Plainly, the same argument
can be generalized to any relative occurrence position.

In Example 1, if we set the bound β = 0.5, we obtain a relative jump distance
j∗
0.5

= 4. In other words, for the relative jump distance j∗
0.5

= 4, the character t[s+10]
will be involved in the computation of the shift advancement in at least 50% of the
times, whereas in the remaining cases only the first character t[s+6] will be involved.
In practical cases we set β = 0.9. This will yield, in Example 1, a relative jump
distance j∗

0.9
= 2.

6.2 The Jumping-Occurrence Heuristic

For a pattern p of length m, the jumping-occurrence heuristic makes use of the occur-
rence relative position q∗ returned by the procedure FindWorstOccurrence de-
scribed in Section 5.1. Such a position q∗ and the corresponding jump distance j∗

β
com-

puted by procedure FindJumpDistance are then used by the jumping-occurrence
heuristic to calculate shift advancements during the searching phase in such a way that
the characters t[s+q∗] and t[s+q∗+j∗

β
] are aligned with their rightmost occurrence in

p. In particular, this corresponds to advance the shift by jbc
p,β
(t[s+ q∗], t[s+ q∗− j∗

β
])

positions, where

jbc
p,β
(c1, c2) =Def

gbc2

p
(q∗, j∗

β
, c1, c2) .

The resulting algorithm is shown in Figure 3. The procedure PrecomputeJOH
computes the table which implements the jumping-occurrence heuristic in O(σ2+mσ)
time and O(σ2) space.

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 101

PrecomputeJOH(p,m, i, j)
1. for each a ∈ Σ do

2. for each b ∈ Σ do

3. jbc(a, b)← i+ 1 + j

4. for each a ∈ Σ do

5. for k ← 0 to j − 1 do

6. jbc(a, p[k])← i+ 1 + j − 1− k

7. for k ← 0 to i+ 1− j − 1 do

8. jbc(p[k], p[k + len])← i+ 1− 1− k

9. for k ← i+ 1− j to m− 1 do

10. for each a ∈ Σ do

11. jbc(p[k], a)← i+ 1− 1− j

FindJumpDistance(p,m, i,Σ, f, β)
1. for each c ∈ Σ do v[c]← 1
2. frq ← j ← 1
3. while (frq ≥ β and j ≤ i+ 1) do

4. if (v[p[i+ 1− j]] = 1) then

5. v[p[i+ 1− j]] = 0
6. frq ← frq − f(p[i+ 1− j])
7. j ← j + 1
8. return j − 1

JumpingOccurrenceMatcher(p,m, t, n)
1. i← FindWorstOccurrence(p,m,Σ, f)
2. j ← FindJumpDistance(p,m, i, Σ, f, 0.9)
3. jbc← PrecomputeJOH(p,m, i, j)
4. s← 0
5. while (s ≤ n−m) do

6. k ← 0
7. while (k < m and p[k] = t[s+ k]) do k ← k + 1
8. if (k = m) then Output(s)
9. s← s+ jbc(t[s+ i], t[s+ i+ j])

Figure 3. The procedure PrecomputeJOH (for computing the table implementing the jumping-
occurrence heuristic), the procedure FindJumpDistance (for computing the jump relative distance
for a pattern p and a relative frequency function f), and the algorithm JumpingOccurrence-
Matcher.

6.3 Approximating the Optimal Jump Distance

If one knows in advance the character distribution of a given text, procedure Find-
JumpDistance in Figure 3 provides an efficient way for computing the optimal jump
distance. Otherwise, one can adopt any of the three different approaches outlined in
Section 5.3 for computing an approximated character distribution, and then, based
on this, calculate the corresponding optimal occurrence relative position and jump
distance. A somewhat simplified approach, still based on the strategy (ii) presented
in Section 5.3, which bypasses the call to procedure FindJumpDistance, can be
summarized in the following steps:

– initialize to 0 an array scnt (shifts counter) of length m;

– compute the worst-occurrence heuristic and run the first γ iterations of the algo-
rithm by using such a rule for shifting; in the meantime, count the shifts of length
ℓ occurring in this phase, for each length ℓ = 1, . . . ,m, by updating accordingly
the entries of the array scnt ;

– compute an approximation of the value j∗
β
by putting

j̃∗
β
=

Def
min

{
j

∣∣∣∣∣
1

γ

j∑

i=1

scnt [i] ≥ β

}
;

– compute the jumping-occurrence heuristic, based on the value j̃∗
β
, and resume the

search from the last shift position which has been checked, using such a rule for
shifting.

It turns out that a good approximation of the optimal jump distance can be
obtained even with small values of the parameter γ.

102 Proceedings of the Prague Stringology Conference 2013

7 Experimental Results

We evaluated experimentally the impact of our proposed variants of the occurrence
heuristics (in combination with their corresponding matchers):

– Improved-Occurrence Matcher (in short, IOM), described in Section 4,
– Worst-Occurrence Matcher (in short, WOM), described in Section 5.2,
– Jumping-Occurrence Matcher (in short, JOM), described in Section 6.2,

by testing them against the following algorithms based on the best known implemen-
tations of the occurrence heuristic:2

– Horspool algorithm (in short, HOR), which uses a single character occurrence
heuristic and whose advancements are computed by gbcp(m− 1, t[s+m− 1]);

– Quick Search algorithm (in short, QS), which uses a single character occurrence
heuristic and whose advancements are computed by gbcp(m, t[s+m]);

– Smith algorithm (SMITH), which uses a single character heuristic, whose advance-
ments are computed by max(gbcp(m, t[s+m]), gbcp(m− 1, t[s+m− 1]));

– Berry-Ravindran algorithm (in short, BR), which uses two characters for shifting
and whose advancements are computed by gbc2p(m, 1, t[s+m], t[s+m+ 1]);

– Zhu-Takaoka algorithm (in short, ZT), which uses two characters for shifting and
whose advancements are computed by gbc2p(m, 1, t[s+m− 2], t[s+m− 1]).

Our implementation of the WOM algorithm computes the frequency of characters
in the searched text by using the strategy (i) described in Section 5.3, with the
parameter γ = 100, whereas our implementation of the JOM algorithm is based on
the approach described in Section 6.3, with the same parameter γ = 100.

All algorithms have been implemented in the C programming language and have
been compiled with the GNU C Compiler, using the optimization options -O3. All
experiments have been executed locally on a MacBook Pro with 4 Cores, a 2 GHz
Intel Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of L2 Cache, and 6 MB
of Cache L3. They have been evaluated in terms of the average shift advancements
and running times, including any preprocessing time, measured with a hardware cycle
counter available on modern CPUs. The tests have been run on text buffers over small
and large alphabets. However we report in this paper only experimental results rela-
tive to small alphabets, since the gain in running time obtained when searching texts
over large alphabets is negligible. In particular, we report experimental evaluations on
a random sequence over an alphabet of 2 characters, a genome sequence, and a protein
sequence, all sequences of 4MB. All sequences, provided by the Smart research tool,3

are available online for download. Patterns of length m were randomly extracted from
the sequences, with m ranging over the set of values {2i | 1 ≤ i ≤ 12}. For each case,
the mean over the running times, expressed in hundredths of seconds, of 500 runs has
been reported. Figure 4 shows the running times of the Jumping-Occurrence Matcher
with different values of the parameter β, whereas Figure 5 reports the running times
of the algorithms HOR, QS, SMITH, BR, ZT, and the matchers IOM, WOM, and JOM,
implementing our new proposed occurrence heuristics. The running times in Figure 5
of the JOM algorithm refer to an implementation with the parameter β = 0.9.

2 For each algorithm we indicate the corresponding function used for shifting when the pattern of
length m is aligned with the text at a given shift s.

3 The Smart tool is available online at http://www.dmi.unict.it/~faro/smart/

http://www.dmi.unict.it/~faro/smart/

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 103

101

102

103

0,6
0,7

0,8
0,9

10

20

m
β

R
u
n
n
in
g
T
im

es

Running Times on a Random Binary Sequence

101

102

103
0,6

0,7
0,8

0,9

4

6

8

10

m
β

Running Times on a Genome Sequence

Figure 4. Running times of the Jumping-Occurrence Matcher for different values of the parameter
β and pattern length m.

Running Times Evaluation

The experimental results in Figure 4 show that the choice of β = 0.9 is the best one
for the jumping-occurrence heuristic in most cases. The gain in performance is more
evident in the case of small alphabets or in the case of long patterns. In this latter
case, the JOM algorithm with β = 0.9 is up to 50% faster. It is to be noticed, though,
that in the case of large alphabets the improvement in running times is negligible.

From the experimental data in Figure 5, it follows that our proposed occurrence
heuristics obtain always the best results. In particular the JOM algorithm is always
the best choice for large alphabets. However, its speed-up is almost negligible in
the case of large alphabets and long patterns, whereas it becomes more evident for
very small alphabets, exhibiting a speed-up of more than 50% with respect to the best
known algorithms. The IOM algorithm shows a very good behavior for short patterns.
In fact, it turns out that it is the best solution in the case of short patterns and small
alphabets, where it is more than 20% faster than other algorithms based on single
character heuristics. However, its performance degrades as the length of the pattern
increases. The WOM algorithm turns out to the best algorithm when the pattern is
not short. Among the algorithms based on a single character occurrence heuristic, it
shows an extremely fast behavior and for long patterns it is up to 50% faster than
previous existing solutions. It is to be noticed that its running times are very close to
those obtained by the JOM algorithm, which, however, is based on a two-characters
heuristic.

Stability Evaluation

It is also useful to find out how accurately repeatable the results are. If only average
running times are considered, some important details may be hidden. The Smart tool
computes the stability of an algorithm as the standard deviation of the running times
of the tests. The standard deviation measures the amplitude of the variation from the
average, i.e., the mean of the running times. A low standard deviation indicates that
the running times tend to be very close to the mean, underlying a high stability of the
algorithm. On the other hand, a high standard deviation indicates that the running
times are spread out over a large range of values, thus indicating a low stability.

104 Proceedings of the Prague Stringology Conference 2013

100 101 102 103

10

20

30

R
u
n
n
in
g
T
im

es
Running Times on a Random Binary Sequence

HOR

QS

SMITH

IOM

WOM

BR

ZT

JOM

100 101 102 103

5

10

15

R
u
n
n
in
g
T
im

es

Running Times on a Genome Sequence

101 102 103

3

4

5

Running Times on a Protein Sequence

Figure 5. Running times obtained by comparing several efficient algorithms based on the occurrence
heuristic shifting strategy. The x-axis represent length of patterns.

Figure 6 reports the standard deviation of the running times observed in our tests.
It turns out that the WOM and the JOM heuristics are sensibly more stable than the
remaining algorithms, especially in the case of long patterns and small alphabets.

While standard algorithms based on the one-character occurrence heuristic (as,
for instance, HOR, QS and SMITH) become less stable as the length of the pattern
increases, in some cases the algorithms based on our proposed occurrence heuristics
show an opposite behavior, i.e., they become more stable as the length of the pattern
increases. In particular, the IOM algorithm turns out to be the more stable algorithm
in the case of short patterns, but it becomes less stable for long patterns. The converse
behavior can be noticed in the case of the WOM algorithm, though we notice that
the improvement in stability becomes negligible in the case of large alphabets.

Flexibility Evaluation

Flexibility is an important attribute of various types of systems. In the field of string
matching, it refers to algorithms that can adapt when changes in the input data occur.
Thus a string matching algorithm can be considered flexible when, for instance, it
maintains good performance for both short and long patterns, or in the case of both
small and large alphabets. By analyzing the running times reported in Figure 5, it
turns out that the JOM algorithm is the more flexible one among the algorithms
which have been tested, as it shows very good performance for all the lengths of the
patterns and different sizes of the alphabet. The IOM algorithm turns out to be very
efficient only for short patterns (and in some cases it is even more efficient than the
JOM algorithm), but its performance degrades as the length of the pattern increases.

Domenico Cantone and Simone Faro: Improved and Self-Tuned Occurrence Heuristics 105

100 101 102 103
0

2

4

6

8

Standard Deviation on a Random Binary Sequence

HOR

QS

SMITH

IOM

WOM

BR

ZT

JOM

100 101 102 103

1

2

Standard Deviation on a Genome Sequence

101 102 103

0,1

0,2

0,3

0,4

Standard Deviation on a Protein Sequence

Figure 6. Standard Deviation of running times obtained by comparing several efficient algorithms
based on the occurrence heuristic shifting strategy. The x-axis represent length of patterns.

An opposite observation can be done for the WOM algorithm, which maintains good
performance only for medium and long patterns.

8 Conclusions

In this paper we have presented three new variations of the occurrence heuristic based
on a smart computation of the relative position of the character used for computing
the shift advancement. The proposed variations yield the largest average advance-
ment, according to the characters distribution in the text. We have also shown ex-
perimental evidence that the new variants of the occurrence heuristics achieve very
good results in practice, especially in the case of long patterns or small alphabets.
We plan to conduct a probabilistic and a combinatorial analysis of the new proposed
rules directed at giving theoretical support to the experimental evidence reported in
the present work.

106 Proceedings of the Prague Stringology Conference 2013

References

1. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results, in
Proceedings of the Prague Stringology Conference ’99, J. Holub and M. Šimánek, eds., Czech
Technical University, Prague, Czech Republic, 1999, pp. 16–28, Collaborative Report DC–99–05.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

3. D. Cantone and S. Faro: Fast-search algorithms: New efficient variants of the Boyer-Moore
pattern-matching algorithm. Journal of Automata, Languages and Combinatorics, 10(5/6) 2005,
pp. 589–608.

4. D. Cantone, S. Faro, and E. Giaquinta: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach, in Combinatorial Pattern Matching, 21st Annual
Symposium, CPM 2010, vol. 6129 of Lecture Notes in Computer Science, Springer, 2010, pp. 288–
298.

5. D. Cantone, S. Faro, and E. Giaquinta: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach. Inf. Comput., 213 2012, pp. 3–12.

6. D. Cantone, S. Faro, and E. Giaquinta: On the bit-parallel simulation of the nondeter-
ministic aho-corasick and suffix automata for a set of patterns. J. Discrete Algorithms, 11 2012,
pp. 25–36.

7. D. Cantone and S. Faro: On tuning the bad-character rule: the worst-character rule, Tech.
Rep. arXiv:1012.1338v1, CoRR at arXiv.org - Cornell University Library, December 2010, Avail-
able at http://arxiv.org/abs/1012.1338.

8. L. Cleophas, B. Watson, and G. Zwaan: A new taxonomy of sublinear right-to-left scanning
keyword pattern matching algorithms. Sci. Comput. Program., 75(11) Nov. 2010, pp. 1095–1112.

9. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, p. 13.

10. S. Faro and M. O. Külekci: Fast multiple string matching using streaming SIMD extensions
technology, in String Processing and Information Retrieval - 19th International Symposium,
SPIRE 2012, vol. 7608 of Lecture Notes in Computer Science, Springer, 2012, pp. 217–228.

11. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, SIAM, 2013,
pp. 113–121.

12. S. Faro, and E. Pappalardo: Ant-CSP: An Ant Colony Optimization Algorithm for the
Closest String Problem, in SOFSEM 2010: Theory and Practice of Computer Science, 36th
Conference on Current Trends in Theory and Practice of Computer Science, vol. 5901 of Lecture
Notes in Computer Science, Springer, 2010, pp. 360–281.

13. R. N. Horspool: Practical fast searching in strings. Softw. Pract. Exp., 10(6) 1980, pp. 501–
506.

14. A. Hume and D. M. Sunday: Fast string searching. Softw. Pract. Exp., 21(11) 1991, pp. 1221–
1248.

15. M. E. Nebel: Fast string matching by using probabilities: on an optimal mismatch variant of
Horspool’s algorithm. Theor. Comput. Sci., 359(1) 2006, pp. 329–343.

16. D. M. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) 1990, pp. 132–
142.

17. B. Watson: Taxonomies and toolkits of regular language algorithms, Phd. Thesis., Faculty of
Computing Science, Eindhoven University of Technology, 1995.

18. A. C. Yao: The complexity of pattern matching for a random string. SIAM J. Comput., 8(3)
1979, pp. 368–387.

19. R. F. Zhu and T. Takaoka: On improving the average case of the Boyer-Moore string
matching algorithm. J. Inf. Process., 10(3) 1988, pp. 173–177.

