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Abstract. A palindrome is a symmetric string, phrase, number, or other sequence of
units sequence that reads the same forward and backward.
We present an algorithm for maximal palindromic factorization of a finite string by
adapting an Gusfield algorithm [15] for detecting all occurrences of maximal palin-
dromes in a string in linear time to the length of the given string then using the
breadth first search (BFS) to find the maximal palindromic factorization set.
A factorization F of s with respect to S refers to a decomposition of s such that
s = si1si2 · · · siℓ where sij ∈ S and ℓ is minimum. In this context the set S is referred
to as the factorization set. In this paper, we tackle the following problem. Given a
string s, find the maximal palindromic factorization of s, that is a factorization of s
where the factorization set is the set of all center-distinct maximal palindromes of a
string s MP(s).
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1 Introduction

A palindrome is a symmetric word that reads the same backward and forward. The
detection of palindromes is a classical and well-studied problem in computer science,
language theory and algorithm design with a lot of variants arising out of different
practical scenarios. String and sequence algorithms related to palindromes have long
drawn attention of stringology researchers [1,12,17,22,25,26,27,29]. Interestingly, in
the seminal Knuth-Morris-Pratt paper presenting the well-known string matching al-
gorithm [19], a problem related to palindrome recognition was also considered. In word
combinatorics, for example, studies have investigated the inhabitation of palindromes
in Fibonacci words or Sturmian words in general [10], [11], [14].

Manacher discovered an on-line sequential algorithm that finds all initial palin-
dromes in a string [25]. A string X[1 . . . n] is said to have an initial palindrome of
length k if the prefix S[1 . . . k] is a palindrome. Gusfield gave a linear-time algorithm
to find all maximal palindromes (a notion we define shortly) in a string [16]. Porto
and Barbosa gave an algorithm to find all approximate palindromes in a string [29].
Matsubara et al. solved in [27] the problem of finding all palindromes in SLP (Straight
Line Programs)-compressed strings. Additionally, a number of problems on variants
of palindromes have also been investigated in the literature [17,4,22]. Very recently,
I et al. [18] worked on pattern matching problems and Chowdhury et al. [6] studied
the longest common subsequence problem involving palindromes.

In this paper, we present a linear-time algorithm for computing the maximal palin-
dromic factorization (MPF) of a string, that is the smallest set (minimum number
of palindromic factors), such that the string is covered by that set of factors with no
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overlaps. This problem was very recently posed as an open problem in Stringology
at [30].

Generic factorization process plays an important role in String Algorithms. The
obvious advantage of such process is that when processing a string online, the work
done on an element of the factorization can usually be skipped because already done
on its previous occurrence [8]. A typical application of this concept resides in algo-
rithms to compute repetitions in strings, such as Kolpakov and Kucherov algorithm
for reporting all maximal repetitions [21], Lyndon factorization [28], have been ap-
plied in: string matching [9,2], the Burrows-Wheeler Transform [3] and LempelZiv
factorization [32] have been applied in: data compression [7,13] and indeed it seems
to be the only technique that leads to linear-time algorithms independently of the
alphabet size [8]. Words with palindromic structure are important in DNA and RNA
sequences, Biologists believe that palindromes play an important role in regulation
of gene activity and other cell processes because these are often observed near pro-
moters, introns and specific untranslated regions. Palindromic structure in DNA and
RNA sequences reflects the capacity of molecules to fold [20], i.e. to form double-
stranded stems, which insures a stable state of those molecules with low free energy.
Identifying palindromes could help in advancing the understanding of genomic insta-
bility [5], [24], [31]. Finding common palindromes in two gene sequences can be an
important criterion to compare them, and also to find common relationships between
them. However, in those applications, the reversal of palindromes should be combined
with the complementarity concept on nucleotides, where c is complementary to g and
a is complementary to t (or to u, in case of RNA). Moreover, gapped palindromes are
biologically meaningful, i.e. contain a spacer between left and right copies (see [20]).
Therefore, detecting palindromes in DNA sequences is one of the challenging prob-
lems in computational biology. Researchers have also shown that based on palindrome
frequency, DNA sequences can be discriminated to the level of species of origin [23].
So, finding common palindromes in two DNA sequences can be an important criterion
to compare them, and also to find common relationships between them.
The rest of the paper is organized as follows. In Section 2 we give some definitions
and introduce the notations used in the rest of the paper. In Section 3, we describe
our algorithm for computing the maximal palindromic factorization of a given string.
Finally, We will prove correctness of the algorithm and analyze its running time in
Section 4 and we briefly conclude in Section 5 with some future proposals.

2 Notation and terminology

A string or sequence is a succession of zero or more symbols from an alphabet Σ of
cardinality σ, where σ expresses the number of distinct characters in the alphabet.
The empty string is the empty sequence (of zero length) and is denoted by ǫ. The
set of all strings over the alphabet Σ including ǫ is denoted by Σ∗. The set of all
non-empty strings over the alphabet Σ is denoted by Σ+. Σ∗ = Σ+ ∪ ǫ. A string s of
length |s| = n is represented by s[1 . . . n]. The i-th symbol of s is denoted by s[i]. A
string y is a factor of s if s = xyz for x, z ∈ Σ∗; it is a prefix of s if x is empty and a
suffix of s if z is empty. We denote by s[i . . . j] the factor of s that starts at position i

and ends at position j. We denote by s̃ the reversal of s, i.e., s̃ = s[n] s[n−1] · · · s[1].
A palindrome is a symmetric string that reads the same forward and backward.

More formally, s is called a palindrome if and only if s = s̃. The empty string ǫ

is assumed to be a palindrome. Also note that a single character is a palindrome
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by definition. The following is another (equivalent) definition of a palindrome which
indicates that palindrome can be of both odd and even length. A string s is a palin-
drome if s = xax̃ where x is a string and a is either a single character or the empty
string ǫ. Clearly, if a is a single character, then s is a palindrome having odd length;
otherwise, it is of even length.

The radius of a palindrome s is |s|
2
. In the context of a string, if we have a substring

that is a palindrome, we often call it a palindromic substring. Given a string s of length
n, suppose s[i . . . j],with 1 ≤ i ≤ j ≤ n is a palindrome, i.e., s[i . . . j] is a palindromic
substring of s. Then, the center of the palindromic substring s[i . . . j] is ⌊ i+j

2
⌋. A

palindromic substring s[i . . . j] is called the maximal palindrome at the center ⌊ i+j

2
⌋

if no other palindromes at the center ⌊ i+j

2
⌋ have a larger radius than s[i . . . j], i.e., if

s[i − 1] 6= s[j + 1], where i = 1, or j = n. A maximal palindrome s[i . . . j] is called
a suffix (prefix) palindrome of s if and only if j = n (i = 1). We denote by (c, r)s
the maximal maximal palindromic factor of a string s whose center is c and radius
is r; we usually drop the subscript and use (c, r) when the string s is clear from the
context. The set of all center-distinct maximal palindromes of a string s is denoted by
MP(s). Further, for the string s, we denote the set of all prefix palindromes (suffix
palindromes) as PP(s) (SP(s)). We use the following result from [25,16].

Theorem 1 ([25,16]). For any string s of length n, MP(s) can be computed in
O(n) time.

In what follows, we assume that the elements of MP(s) are sorted in increasing
order of centers c. Actually, the algorithm of [25] computes the elements of MP(s)
in this order. Clearly, the set PP(s) and SP(s) can be computed easily during the
computation of MP(s).

Suppose, we are given a set of strings S = {s1, s2, . . . , sk}, such that si is a
substring of s and 1 ≤ i ≤ k. A factorization F of s with respect to S refers to a
decomposition of s such that s = si1si2 · · · siℓ where sij ∈ S and ℓ is minimum. In
this context the set S is referred to as the factorization set. In this paper, we tackle
the following problem.

Problem 2. (Maximal Palindromic Factorization (MPF)) Given a string s, find the
maximal palindromic factorization of s, that is a factorization of s where the factor-
ization set is MP(s).

3 The Algorithm

In this section we present an algorithm to compute the maximal palindromic fac-
torization of a given string s. We first present some notions required to present our
algorithm. First of all, recall that we use MP(s) to denote the set of center dis-
tinct maximal palindromes of s. We further extend this notation as follows. We use
MP(s)[i], where 1 ≤ i ≤ n to denote the set of maximal palindromes with center i.

Proposition 3. The position i could be the center of at most two maximal palin-
dromic factors, therefore; MP(s)[i] contains at most two elements, where 1 ≤ i ≤ n,
hence; there are at most 2n elements in MP(s).

On the other hand, we use MPL(s)[i] to denote the set of the lengths of all
maximal palindromes ending at position i,where 1 ≤ i ≤ n in s.
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MPL(s)[i] = {2ℓ− 1 |s[i− ℓ+ 1 . . . i+ ℓ− 1] ∈ MP(s)}

∪ {2ℓ′ |s[i− ℓ′ . . . i+ ℓ′ − 1] ∈ MP(s)} (1)

where 1 ≤ i ≤ n, with 2ℓ and 2ℓ′+1 are the lengths of the odd and even palindromic
factors respectively.

Proposition 4. The set MPL(s) (Equation 1) can be computed in linear time from
the set MP(s).

Now we define the list U(s) such that for each 1 ≤ i ≤ n, U(s)[i] stores the
position j such that j + 1 is the starting position of a maximal palindromic factors
ending at i and j is the end of another maximal palindromic substring.

Clearly, this can be easily computed once we have MPL(s) computed.

U [i][j] = i−MPL(s)[i][j] (2)

One can observe, from 3, that the setsMPL(s) and U(s) contain at most 2n elements.

Given the list U(s) for a string s, we define a directed graph Gs = (V , E) as follows.
We have V = {i | 1 ≤ i ≤ n} and E = {(i, j) | j ∈ U(s)[i]}. Note that (i, j) is a
directed edge where the direction is from i to j. Now we can present the steps of our
algorithm for computing the maximal palindromic factorization of a given string s of
length n. The steps are as follows.

MPF Algorithm: Maximal Palindromic Factorization Algorithm
Input: A String s of length n

Output: Maximal Palindromic Factorization of s

1: Compute the set of maximal palindromes MP(s) and
identify the set of prefix palindromes PP(s).

2: Compute the list MPL(s).
3: Compute the list U(s).
4: Construct the graph Gs = (V , E).
5: Do a breadth first search on Gs assuming the vertex n as the source.
6: Identify the shortest path P ≡ n  v such that v is the end position of a

palindrome belonging to PP(s). Suppose P ≡ 〈n = pk, pk−1, . . . , p2, p1 = v〉.
7: Return s = s[1..p1] s[p1 + 1..p2] · · · s[pk−1 + 1..pk].

4 Analysis

We now have the following theorem which proves the correctness of MPF Algorithm.

Theorem 5 (Correctness and Running time). Given a string s of length n,
MPF Algorithm correctly computes the maximal palindromic factorization of s in
O(n) time.

Proof. Correctness:
We first focus on an edge (i, j) ∈ E of the graph Gs constructed at Step 4 of the
algorithm. By definition, this means the following:
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1. There is a maximal palindrome pali having length ℓi (say) ending at position i.
2. There is a maximal palindrome palj having length ℓj (say) ending at position j.
3. i > j.
4. i− ℓi = j.

Since, by definition, each directed edge (i, j) ∈ E is such that i > j, so, for a path
P ≡ 〈pk, pk−1, . . . , p2, p1〉 in Gs, we always have pk > pk−1 > · · · > p1. A path
P ≡ 〈pk, pk−1, . . . , p2, p1〉 can be seen as corresponding to a substring of s formed
by concatenation of maximal palindromes as follows. Each edge (pi, pi−1) ∈ P corre-
sponds to a palindromic substring s[pi−1]s[pi−1 + 1]s[pi−1 + 2] · · · s[pi].

Hence, following the definition of the edges, it is clear that any path would cor-
respond to a substring of s formed by concatenation of consecutive palindromic sub-
strings.

In Step 5, a breadth first tree is constructed from Gs considering the vertex n

as the source. A breadth first tree gives the shortest path from the source (in this
case, n) to any other node. Now, in Step 6, MPF Algorithm identifies the set of
shortest paths (say, SPath) between n and j such that j corresponds to a maximal
palindromic prefix of s. Now the maximum palindromic factorization must contain
exactly one palindrome from PP(s) and exactly one palindrome from SP(s), where
ℓ is minimum. Hence, it is easy to realize that the shortest one among the paths
in SPath corresponds to the maximal palindromic factorization. This completes the
correctness proof.
Running time:
In Step 1 the computation of MP(s) can be done using the algorithm of [25] in O(n)
time. Also, PP(s) and SP(s) can be computed easily while computing MP(s). The
computation of MPL(s) and U(s) in Step 2 and Step 3 can be done in linear time
once MP(s) is computed.

Now construction of the graph Gs is done in Step 4. There are in total n number
of vertices is Gs. The number of edges |E| of Gs depends on U(s). But it is easy to
realize that the summation of the number of elements in all the positions of U(s)
cannot exceed the total number of maximal palindromes. Now, since there can be at
most 2n+ 1 centers, there can be just as many maximal palindromes in s. Therefore
we have |E| = O(n).

Hence, the graph construction (Step 4) as well as the breadth first search (Step 5)
can be done in O(|V| + |E|) = O(n) time. Finally, the identification of the desired
path in Step 6 can also be done easily if we do some simple bookkeeping during the
breadth first search because we already have computed the sets PP(s) and SP(s) in
Step 1. Hence the total running time of the algorithm is O(n). And this completes
the proof. ⊓⊔

4.1 An Illustrative Example

Suppose we are given a string s = abbcbbcbbbcbb. We will proceed as follows:
First we compute the set MP(s). For example, at position i = 9 there are 2

palindromes of lengthes 2 and 9 centered at position 9 of s.
Secondly, we compute the set MPL(s). For example, at position i = 9 there are

3 palindromes of lengthes 2, 5 and 8 ending at position 9 of s.
Finally, we compute U(s) (Table 1 shows full steps for s = abbcbbcbbbcbb).
Now, we can construct the graph Gs easily as shown in Figure 1. For example,

we can see that from vertex i = 9 we have 3 directed edges, namely, (9, 7), (9, 4) and
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(9, 1). Our desired shortest path is P = 〈13, 4, 3, 1〉 (corresponding edges are shown
as dashed edges). So, the maximal palindromic factorization of s = abbcbbcbbbcbb is
as follows:

s[1..1]s[2..3]s[4..4]s[5..13] = a bb c bbcbbbcbb .

i MP[i] MPL[i] U [i]

1 MP[1] = {(1, 1)} MPL[1] = {1} U [1] = {0}

2 MP[2] = {(2, 2)} MPL[2] = {.} U [2] = {.}

3 MP[3] = {(3, 1)} MPL[3] = {2} U [3] = {1}

4 MP[4] = {(4, 5)} MPL[4] = {.} U [4] = {.}

5 MP[5] = {(5, 8)} MPL[5] = {.} U [5] = {.}

6 MP[6] = {(6, 1)} MPL[6] = {5} U [6] = {1}

7 MP[7] = {(7, 5)} MPL[7] = {.} U [7] = {.}

8 MP[8] = {(8, 2)} MPL[8] = {.} U [8] = {.}

9 MP[9] = {(9, 2)(9, 9)} MPL[9] = {2, 5, 8} U [9] = {7, 4, 1}

10 MP[10] = {(10, 1)} MPL[10] = {2} U [10] = {8}

11 MP[11] = {(11, 5)} MPL[11] = {.} U [11] = {.}

12 MP[12] = {(12, 2)} MPL[12] = {.} U [12] = {.}

13 MP[13] = {(13, 1)} MPL[13] = {1, 2, 5, 9} U [13] = {12, 11, 8, 4)}

Table 1. Steps for computing U(s) and MPL(s) for s = abbcbbcbbbcbb

13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1. The graph Gs for s = abbcbbcbbbcbb
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5 Conclusion

In this paper, we answer a recent question raised during StringMasters, Verona, Italy -
2013: does there exist an algorithm to compute the maximal palindromic factorization
of a finite string? Namely, given a finite string, find the smallest set (minimum number
of palindromic factors), such that the string is covered by that set of factors with no
overlaps. We answer the previous question affirmatively by providing a linear-time
algorithm that computes the maximal palindromic factorization (MPF) of a string
(the algorithms is evaluated with respect to the length of the given string).

An immediate target will be extending the algorithm presented in 3 to biological
palindromes, where the word reversal is defined in conjunction with the complemen-
tarity of nucleotide letters: c ↔ g and a ↔ t (or a ↔ u, in case of RNA). The
proposed algorithm can be extended to find maximal distinct palindromic factoriza-
tion set. We will focus on this problem in a future work. Also we will work on studying
palindromic cover of string and how can it be modeled using graphs.
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