
Finding Distinct Subpalindromes Online

Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur

Institute of Mathematics and Computer Science, Ural Federal University,
Ekaterinburg, Russia

dkosolobov@mail.ru, mikhail.rubinchik@gmail.com, arseny.shur@usu.ru

Abstract. We exhibit an online algorithm finding all distinct palindromes inside a
given string in time Θ(n log |Σ|) over an ordered alphabet and in time Θ(n|Σ|) over an
unordered alphabet. Using a reduction from a dictionary-like data structure, we prove
the optimality of this algorithm in the comparison-based computation model.

Keywords: stringology, counting palindromes, subpalindromes, palindromic closure,
online algorithm

1 Introduction

A palindrome is a string that is equal to its reversal. Palindromes are among the
most interesting text regularities. During the last few decades, many algorithmic and
combinatorial problems concerning palindromes were considered. For example, in the
field of combinatorics on words the well-known Sturmian words are characterized by
their palindromic complexity ([2], [4]). The rich words are studied in [5] (a word w
with |w|+1 distinct subpalindromes is called rich). The class of rich words includes
the episturmian words introduced in [3].

Among the algorithmic problems about palindromes, we should mention PAL-
STAR (check whether a word is a product of nontrivial palindromes), the problems
of splitting words into a given number of palindromes, and the problems of enumer-
ating palindromes occurring in a given word. Some results on these problems are
surveyed in [1]. In this paper, we solve one enumeration problem.

There is a well known online algorithm by Manacher [7] that finds all maximal
subpalindromes of a string in linear time and linear space (by a “subpalindrome” we
mean a substring that is a palindrome). It is known [3] that every string of length
n contains at most n+1 distinct subpalindromes, including the empty string. The
following question arises naturally: can one find all distinct subpalindromes of a string
in linear time and space? In [6], this question was answered in the affirmative, but
with an offline algorithm. The authors stated the existence of the corresponding online
algorithm as an open problem. Our main contribution is the following result.

Theorem 1. Let Σ be a finite unordered (resp., ordered) alphabet. There exists an
online algorithm which finds all distinct subpalindromes in a string over Σ in O(n|Σ|)
(resp., O(n log |Σ|)) time and linear space. This algorithm is optimal in the compar-
ison based computation model.

As a by-product, we get an online linear time and space algorithm that finds, for
all prefixes of a string, the lengths of their maximal suffix-palindromes and of their
palindromic closures.

Dmitry Kosolobov, Mikhail Rubinchik, Arseny M. Shur: Finding Distinct Subpalindromes Online, pp. 63–69.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

64 Proceedings of the Prague Stringology Conference 2013

2 Notation and Definitions

An alphabet Σ is a finite set of letters. A string w over Σ is a finite sequence of letters.
It is convenient to consider a string as a function w : {1, 2, . . . , l} → Σ. A period of
w is any period of this function. The number l is the length of w, denoted by |w|.
We write w[i] for the i-th letter of w and abbreviate w[i]w[i+1] · · ·w[j] by w[i..j]. A
substring of w is any string u such that u = w[i..j] for some i and j. Each occurrence
of the substring u in w is determined by its position i. If i = 1 (resp. j = |w|), then u
is a prefix (resp. suffix) of w. A prefix (resp. suffix) of a string w is called proper if it is
not equal to w. The string w[|w|]w[|w|−1] · · ·w[1] is the reversal of w, denoted by←−w .
A string is a palindrome if it coincides with its reversal. A palindrome of even (resp.
odd) length is referred to as an even (resp. odd) palindrome. If a substring, a prefix or
a suffix of a string is a palindrome, we call it a subpalindrome, a prefix-palindrome, or
a suffix-palindrome, respectively. The palindromic closure of a string w is the shortest
palindrome w′ such that w is a prefix of w′.

Let w[i..j] be a subpalindrome of w. The number ⌊(i+j)/2⌋ is the center of w[i..j],
and the number ⌊(j−i+1)/2⌋ is the radius of w[i..j]. Thus, a single letter and the
empty string are palindromes of radius 0. Note that the center of the empty subpalin-
drome is the previous position of the string.

By an online algorithm for an algorithmic problem concerning strings we mean
an algorithm that processes the input string w sequentially from left to right, and
answers the problem for each prefix w[1..j] of w after processing the letter w[j].

3 Distinct subpalindromes

3.1 Suffix-Palindromes and Palindromic Closure

The problem of finding the lengths of palindromic closures for all prefixes of a string
is closely related to the problem of finding all distinct subpalindromes of this string.
It was conjectured in [6] that there exists an online linear time algorithm for the
former problem.

Let v be the maximal suffix-palindrome of w = uv. It is easy to see that the
palindromic closure of w equals to the string uv←−u . An offline algorithm for finding
the maximal suffix-palindromes for each prefix of the string can be found, e. g., in [1,
Ch. 8]. Our online algorithm is a modification of Manacher’s algorithm (see [7]).

We construct a data structure based on Manacher’s algorithm. Let ∆ be a boolean
flag (needed to distinguish between odd and even palindromes). The data structure,
denoted by man, contains a string text and supports the procedure man.AddLetter(c)
adding a letter to the end of text. The function man.MaxPal returns the length of
maximal odd/even (according to ∆ = 0/1) suffix-palindrome of text.

Our data structure uses the following internal variables:
n, which is the length of text;
i, which is the center of the maximal odd/even (according to ∆ = 0/1) suffix-
palindrome of text;
Rad, which is an array of integers such that for any j < i the value Rad[j] is equal
to the radius of the maximal odd/even (according to ∆ = 0/1) subpalindrome with
the center j. The main property of Rad is expressed in the following lemma (see [1,
Lemma 8.1]).

D. Kosolobov et al.: Finding Distinct Subpalindromes Online 65

Lemma 2. Let k be an integer, 1 ≤ k ≤ Rad[i].
(1) If Rad[i−k] < Rad[i]− k then Rad[i+k] = Rad[i−k];
(2) if Rad[i−k] > Rad[i]− k then Rad[i+k] = Rad[i]− k.

At the beginning, Rad is filled with zeros, n = 1, i = 2, text = “$”, where $ is a
special letter that does not appear in the input string1.

1: procedure man.AddLetter(c)
2: s← i−Rad[i] +∆ ⊲ position of the max suf-pal of text[1..n]
3: text[n+ 1]← c
4: while i+Rad[i] 6 n do
5: Rad[i]← min(Rad[s+n−i−∆], n− i) ⊲ this is Rad[i] in text[1..n]
6: if i+Rad[i] = n and text[i−Rad[i]−1+∆] = c then
7: Rad[i]← Rad[i] + 1 ⊲ extending the max suf-pal
8: break ⊲ max suf-pal of text[1..n+1] found

9: i← i+ 1 ⊲ next candidate for the center of max suf-pal

10: n← n+ 1
11: function man.MaxPal

12: return 2Rad[i] + 1−∆

Theorem 3. There exists an online linear time and space algorithm that finds the
lengths of the maximal suffix-palindromes of all prefixes of a string.

Proof. From the correctness of Manacher’s algorithm (see [7]) and Lemma 2 it follows
that the function man.MaxPal correctly returns the length of the maximal odd/even
suffix palindrome of the processed string. For a string of length n, we call the proce-
dure man.AddLetter n times with the parameter ∆ = 0 and n times with ∆ = 1. If
one call of the procedure uses k iterations of the loop in the lines 4–9, then the value
of i increases by k−1. Hence, the loop is used at most 4n times in total. Apart from
this loop, man.AddLetter performs a constant number of operations. This gives us
the required O(n) time bound.

Corollary 4. There exists an online linear time and space algorithm that finds the
lengths of palindromic closured of all prefixes of a string.

Example 5. Let w = abadaadcaa and consider the state of the data structure man
after the sequence of calls man.AddLetter(w[i]), i = 1, 2, . . . , 10.

text = $w;
Rad = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0) for ∆ = 0;
Rad = (0, 0, 0, 0, 2, 0, 0, 0, 1, 0) for ∆ = 1;

The calls to man.MaxPal after each call to man.AddLetter(w[i]) return consequently
the values 1, 1, 3, 1, 3, 1, 1, 1, 1, 1 for the case ∆ = 0 and 0, 0, 0, 0, 0, 2, 4, 0, 0, 2 for the
case ∆ = 1.

3.2 Distinct subpalindromes

We make use of the following

1 The strange-looking initial value of i provides the correct processing of the first letter after $ (the
while loop will be skipped and the correct values n = i = 2 for the next iteration will be obtained).

66 Proceedings of the Prague Stringology Conference 2013

Lemma 6 ([6]). Each subpalindrome of a string is the maximal suffix-palindrome of
some prefix of this string.

This lemma implies that the online algorithm designed in Sect. 3.1 finds all sub-
palindromes of a string. To find all distinct subpalindromes, we have to verify whether
the maximal suffix-palindrome of a string has another occurrence in this string. Note
that the direct comparison of substrings for this purpose leads to at least quadratic
overall time. Instead, we will use a version of suffix tree known as Ukkonen’s tree. To
introduce it, we need some definitions.

A trie is a rooted labelled tree in which every edge is labelled with a letter such
that all edges leading from a vertex to its children have different labels. Each vertex
of the trie is associated with the string labelling the path from the root to this vertex.
A trie can be “compressed” as follows: any non-branching descending path is replaced
by a single edge labelled by the string equal to the label of this path. The result of
this procedure is called a compressed trie. For a set S of strings, the compressed trie
of S is defined by the following two properties: (i) for each string of S, there is a
vertex associated it and (ii) the trie has the minimal number of vertices among all
compressed tries with property (i).

A (compressed) suffix tree is the compressed trie of the set of all suffixes of a string.
Ukkonen’s tree is the data structure ukk containing a string and the suffix tree of this
string (labels are stored as pairs of positions in the string). Ukkonen’s tree allows one
to add a letter to the end of the string (procedure ukk.addLetter(c)), updating the
suffix tree. We also need the following parameter: the length of the minimal suffix
of the processed string such that this suffix occurs in this string only once (function
ukk.minUniqueSuff). Let us recall some implementation details of Ukkonen’s tree for
the efficient implementation of ukk.minUniqueSuff.

The update of Ukkonen’s tree is based on the system of suffix links. Such a link
connects a vertex associated with a word v to the vertex associated with the longest
proper suffix of v. These links are also defined for “implicit” vertices (the vertices that
are not in the compressed trie, but present in the corresponding trie). In particular,
Ukkonen’s tree supports the triple (v, e, i) such that

(1) v is a vertex (associated with some string s′) of the current suffix tree,
(2) e is an edge (labelled by some string s) between v and its child,
(3) i is an integer between 0 and |s|,

with the property that s′s[1..i] is the longest suffix of the processed string that occurs
in this string at least twice. This triple is crucial for fast update of Ukkonen’s tree
(for further details, see [8]).

Lemma 7 ([8]). The procedure ukk.addLetter(c) performs n calls using O(n) space
and O(n log |Σ|) (resp., O(n|Σ|)) time in the case of ordered (resp., unordered) al-
phabet.

We modify Ukkonen’s tree, associating with each vertex u an additional field
u.depth to store the length of the string associated with u. Maintaining this field
requires a constant number of operations at the moment when u is created. Thus,
this update adds O(n) time and O(n) space to the total cost of maintaining Ukkonen’s
tree. Thus, Lemma 7 holds for the modified Ukkonen’s tree as well. It remains to note
that ukk.minUniqueSuff = v.depth + i+ 1.

Proof (Theorem 1: existence). The following algorithm solves the problem and has
the required complexity. The algorithm uses data structures man and ukk, process-
ing the same input string w. The next (say, nth) symbol of w is added to both

D. Kosolobov et al.: Finding Distinct Subpalindromes Online 67

structures through the procedures man.AddLetter and ukk.AddLetter. After this, we
call man.MaxPal to get the length of the maximal palindromic suffix of w[1..n] and
ukk.MinUniqueSuff to get the length of the shortest suffix of w[1..n] that never oc-
curred in w before. The inequality man.MaxPal ≥ ukk.MinUniqueSuff means the
detection of a new palindrome; we get its first and last positions from the struc-
ture man and output them. In the case of the opposite inequality, there is no new
palindrome, and we output “—”.

The required time and space bounds follow from Theorem 3 and Lemma 7.

Example 8. Consider the string w = abadaadcaa again. We get the following results
for i = 1, 2, . . . , 10:

man.MaxPal : 1 1 3 1 3 2 4 1 1 2
ukk.MinUniqueSuff : 1 1 2 1 2 2 3 1 2 3
output : 1−1 2−2 1−3 4−4 3−5 5−6 4−7 8−8 — —

3.3 Lower bounds

Recall that a dictionary is a data structure D containing some set of elements and
designed for the fast implementation of basic operations like checking the membership
of an element in the set, deleting an existing element, or adding a new element. Below
we consider an insert-only dictionary over a set S. In each moment, such a dictionary
D contains a subset of S and supports only the operation insqry(x). This operation
checks whether the element x ∈ S is already in the dictionary; if no, it adds x to the
dictionary.

Lemma 9. Suppose that the alphabet Σ consists of indivisible elements, n ≥ |Σ|, and
the insert-only dictionary D over Σ is initially empty. Then the sequence of n calls
of insqry requires, in the worst case, Ω(n log |Σ|) time if Σ is ordered and Ω(n|Σ|)
if Σ is unordered.

Proof. Let Σ = {a1 < a2 < · · · < am} be an ordered alphabet. Assume that on some
stage all letters with even numbers are in the dictionary, while all elements with odd
numbers are not. Consider the next operation. In the comparison-based computation
model, a query “x ∈ D?” is answered by some decision tree; each node of this tree is
marked by the condition “x < ai” for some i. To distinguish between ai and ai+1, the
tree should contain the nodes for both ai and ai+1. Now note that for any i, exactly
one of the letters ai and ai+1 belongs to D. So, to answer correctly all possible queries
“x ∈ D?” the decision tree should have nodes for all letters. Then the depth of this
tree is Ω(logm). Therefore, for some element x = a2i the number of comparisons
needed to prove that x ∈ D is Ω(logm). After processing x, the content of the
dictionary remains unchanged. The decision tree can change, but it does not matter:
we again choose the next letter to be the one having an even number and requiring
Ω(logm) comparisons to prove its membership in D. Thus, our “bad” sequence of
calls is as follows: it starts with insqry(a2), . . . , insqry(a2⌊m/2⌋), and continues with
the “worst” letter, described above, on each next step. Even if the first ⌊m/2⌋ calls
can be performed in O(1) time each, the overall time is Ω(n logm), as required.

In the case of unordered alphabet all conditions in the decision tree have the form
“x = ai”. It is clear that if the dictionary contains ⌊m/2⌋ elements, the maximal
number of comparisons equals ⌊m/2⌋ as well. Choosing the bad sequence of calls in
the same way as for the ordered alphabet, we arrive at the required bound Ω(nm).

68 Proceedings of the Prague Stringology Conference 2013

Before finishing the proof of Theorem 1 we mention the following lemma. Its proof
is obvious.

Lemma 10. Suppose that a, b are two different letters and w = abx1abx2 · · · abxn

is a string such that each xi is a letter different from a and b. Then all nonempty
subpalindromes of w are single letters.

Proof (Proof of Theorem 1: lower bounds). We prove the required lower bounds re-
ducing the problem of maintaining an insert-only dictionary to counting distinct
palindromes in a string. Assume that we have a black box algorithm that processes
an input string letter by letter and outputs, after each step, the number of distinct
palindromes in the string read so far. The time complexity of this algorithm depends
on the length n of the string at least linearly, and a linear in n algorithm does exist,
as we have proved in the Sect. 3.2. Thus, we can assume that the considered black
box algorithm works in time O(n · f(m)), where m is the size of the alphabet of the
processed string and the function f(m) is non-decreasing.

The insert-only dictionary over a set Σ of size m > 1 can be maintained as
follows. We pick up two letters a, b ∈ Σ and mark their presence in the dictionary
using two boolean variables, za and zb. All other letters are processed with the aid
of the mentioned black box. Let us describe how to process a sequence of n calls
insqry(x1), . . . , insqry(xn) starting from the empty dictionary.

For each call, we first compare the current letter xi to a and b. If xi = a, then za
is the answer to the query “xi ∈ D?”; after answering the query we set za = 1. The
case xi = b is managed in the same way.

If xi /∈ {a, b}, we feed the black box with a, b, and xi (in this order). Then we
get the output of the black box and check whether the number of distinct subpalin-
dromes in its input string increased. By Lemma 10, the increase happens if and only
if xi appears in the input string of the black box for the first time. Thus, we can
immediately answer the query “xi ∈ D?”, and, moreover, xi is now in the dictionary.

The described algorithm performs the sequence of calls insqry(x1), . . . , insqry(xn)
in time O(n) plus the time used by the blackbox to process a string of length ≤ 3n
over Σ. Hence, the overall time bound is O(n · f(m)). In view of Lemma 9 we obtain
f(m) = Ω(logm) (resp., f(m) = Ω(m)) in the case of ordered (resp., unordered)
alphabet Σ. The required lower bounds are proved.

4 Conclusion

Our approach shows that it is hardly possible to design a linear time and space online
algorithm for the discussed problem even in stronger natural computation models such
as the word-RAM model or cellprobe model. The reason is the resource restrictions of
dictionaries. However, up to the moment we have proved no nontrivial lower bounds
for the insert-only dictionary in more sophisticated models than the comparison based
model.

References

1. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing Co. Pte.
Ltd., 2002.

2. A. de Luca: Sturmian words: structure, combinatorics and their arithmetics. Theoret. Comput.
Sci., 183 1997, pp. 45–82.

D. Kosolobov et al.: Finding Distinct Subpalindromes Online 69

3. X. Droubay, J. Justin, and G. Pirillo: Episturmian words and some constructions of de

luca and rauzy. Theoret. Comput. Sci., 255 2001, pp. 539–553.
4. X. Droubay and G. Pirillo: Palindromes and sturmian words. Theoret. Comput. Sci., 223

1999, pp. 73–85.
5. A. Glen, J. Justin, S. Widmer, and L. Zamboni: Palindromic richness. European Journal

of Combinatorics, 30 2009, pp. 510–531.
6. R. Groult, E. Prieur, and G. Richomme: Counting distinct palindromes in a word in linear

time. Inform. Process. Lett., 110 2010, pp. 908–912.
7. G. Manacher: A new linear-time on-line algorithm finding the smallest initial palindrome of a

string. J. ACM, 22(3) 1975, pp. 346–351.
8. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.

