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Abstract. A maximal repetition is a non-extendable (with the same period) periodic
segment in a string, in which the period repeats at least twice. In this paper we study
problems related to the structure of maximal repetitions in standard Sturmian words
and present the formulas for the sum of their exponents. Moreover, we show how to
compute the sum of exponents of maximal repetitions in any standard Sturmian word
in linear time with respect to the (total) size of its compressed representation. The
presented formulas and algorithm can be easily modified to obtain the total run length
of the word.
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1 Introduction

Problems related to repetitions are fundamental in combinatorics on words and many
practical applications: data compression, computational biology, pattern-matching
and so on, see for instance [6], [7], [10], [11], [14] and references therein. The most
important type of repetitions are maximal repetitions, i.e. non-extendable (with the
same period) periodic segments in a string, in which the period repeats at least twice.
This paper complements the work [2], where the exact formula for the number of runs
in standard Sturmian words was presented. We investigate here the structure of runs
in standard Sturmian words in more details to obtain a formula for the sum of their
exponents. We show also an algorithm, derived from our formula, which computes
the sum of exponents of maximal repetitions in any standard word in linear time
with respect to the (total) size of its compressed representation (i.e. the directive
sequence).

Throughout the paper we use the standard notions of combinatorics on words. In
particular, words are finite sequences over a finite set Σ of letters, called the alphabet.
For a word w = w1w2 · · ·wn, by wi we denote its i-th letter, by w[i..j] the subword
wiwi+1 · · ·wj, by |w| its length and by |w|a the number of letters a occurring in w.
The number i is a period of the word w if wj = wi+j for all i with i+ j ≤ |w|. The
minimal period of w is denoted by period(w). We say that a word w is periodic if

period(w) ≤ |w|
2
. A word w is said to be primitive if w is not of the form zk, where z

is a nonempty word and k ≥ 2 is a natural number.

A maximal repetition (a run, in short) in a word w is an interval α = [i..j], such
that w[i..j] = ukv (k ≥ 2) is a nonempty periodic subword of w, where u is of
the minimal length and v is a proper prefix (possibly empty) of u, that can not be
extended (neither w[i− 1..j] nor w[i..j+1] is a run with the period |u|). The factor v

is called the remainder of α and the number k + |v|
|u|

is called the exponent of α. The
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sum of exponents of all runs in w is denoted by σ(w). Note that the exponent of a
run is a rational number, hence the value of σ(w) does not have to be integer.

A run α can be properly included as an interval in another run β, but in this case
period(α) < period(β). The value of the run α = [i..j] is the factor val(α) = w[i..j].
When it makes no ambiguity we identify sometimes a run with its value and the period
of the run α = [i..j] with the subword w[i..period(w)], called also the generator of
the repetition. The meaning will always be clear from the context. Observe that
two different runs could correspond to the identical subwords, if we disregard their
positions. Hence, runs are also called the maximal positioned repetitions.
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Figure 1. The structure of maximal repetitions for the example binary word.

Example 1.
Let w = ababaabababaabababaabababaababaab be a binary word.
There are 5 runs with the period a and the exponent 2:

w[5..6] = a2, w[12..13] = a2, w[19..20] = a2, w[26..27] = a2, w[31..32] = a2,

5 runs with the period ab and the exponents respectively 21
2
and 31

2
:

w[1..5] = (ab)2a, w[6..12] = (ab)3a, w[13..19] = (ab)3a,

w[20..26] = (ab)3a, w[27..31] = (ab)2a,

4 runs with the period aba and the exponent 2:

w[3..8] = (aba)2, w[10..15] = (aba)2, w[17..22] = (aba)2, w[24..29] = (aba)2,

4 runs with the period ababa and the exponents respectively 2 and 22
5
:

w[1..10] = (ababa)2, w[8..17] = (ababa)2,

w[15..24] = (ababa)2, w[22..33] = (ababa)2ab,

and 1 run with the period ababaab and the exponent 43
7
: w[1..31] = (ababaab)4aba.

Altogether we have 19 runs and sum of their exponents equals 4923
70
≈ 49.3286, see

Figure 1 for comparison.
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In 1999 Kolpakov and Kucherov showed that the number of runs in a word is
linear with respect to its length (see [13]). The stronger property of runs is that the
sum of their exponents is also linear with respect to the length of the word. Kolpakov
and Kucherov conjectured that for all w we have σ(w) ≤ 2 · |w|. In 2012 Crochemore
with coauthors contradicted this conjecture and showed that the upper bound for
σ(w) is 2.035 · |w| ≤ σ(w) ≤ 4.1 · |w|. In this paper we investigate this problem in very
special class of strings – the standard Sturmian words. We present compact formulas
for the sum of runs exponents and an algorithm for its efficient computation.

Recently a new measure of a string periodicity was proposed by Glen and Simpson
(see [12]). The total run length (TRL) of a word w is the sum of the lengths of all runs
in w. Since this notion is similar to the sum of exponents of maximal repetitions, our
formulas and algorithm could be easily adopted to compute also the total run length
of any standard Sturmian word.

The paper is organized as follows. In section 2 we introduce the definition of
standard Sturmian words and some of their basic properties. Next, in section 3 we
study the structure of repetitions in standard Sturmian words and present a few
facts necessary in further investigation. Finally, we show an prove the formulas for
the sum of exponents of maximal repetitions together with an algorithm for its fast
computation. Some useful applets related to problems considered in this paper can
be found on the web site:

http://www.mat.umk.pl/~martinp/stringology/applets/

2 Standard Sturmian words

Standard Sturmian words (standard words in short) are one of the most investigated
class of strings in combinatorics on words, see for instance [1], [3], [4], [5], [15], [17], [18]
and references therein. They have very compact representations in terms of sequences
of integers, which has many algorithmic consequences.

The directive sequence is the integer sequence: γ = (γ0, γ1, . . . , γn), where γ0 ≥ 0
and γi > 0 for i = 1, 2, . . . , n. The standard word corresponding to γ, denoted by
Sw(γ), is described by the recurrences of the form:

x−1 = b, x0 = a, . . . , xn = (xn−1)
γn−1xn−2, xn+1 = (xn)

γnxn−1, (1)

where Sw(γ) = xn+1. For simplicity we denote qi = |xi|.

Example 2.
Consider the directive sequence γ = (1, 2, 1, 3, 1). We have Sw(γ) = x5, where:

x−1 = b q−1 = 1

x0 = a q0 = 1

x1 = (x0)
1 · x−1 = a · b q1 = 2

x2 = (x1)
2 · x0 = ab · ab · a q2 = 5

x3 = (x2)
1 · x1 = ababa · ab q3 = 7

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa q4 = 26

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab q5 = 33
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The sequence of words {xi}
n+1
i=0 is called the standard sequence. Every word occurring

in a standard sequence is a standard word, and every standard word occurs in some
standard sequence. We assume that the standard word given by the empty directive
sequence is a and Sw(0) = b.

Observe that for even n > 0 the standard word xn has the suffix ba, and for odd
n > 0 it has the suffix ab. Moreover, for γ0 > 0 we have standard words starting
with the letter a and for γ0 = 0 we have standard words starting with the letter b. In
fact the word Sw(0, γ1, . . . , γn) can be obtained from Sw(γ1, . . . , γn) by switching the
letters a and b. Without loss of generality we consider here standard words starting
with the letter a, therefore we assume γ0 > 0. Words starting with the letter b can
be considered similarly.

Remark 3.
The special kind of standard words are well known Fibonacci words. They are formed
by repeated concatenation in the same way that the Fibonacci numbers are formed
by repeated addition. By definition Fibonacci words are standard words given by
directive sequences of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds
to a sequence of n ones).

The number N = |Sw(γ)| is the (real) size of the word, while (n + 1) = |γ| can be
thought as its compressed size. Observe that, by the definition of standard words,
N is exponential with respect to n. Moreover, each directive sequence corresponds to
a grammar-based compression, which consists in describing a given word by a context-
free grammar G generating this (single) word. The size of the grammar G is the total
length of all productions of G. In our case the size of the considered grammar is
proportional to the length of the directive sequence.

2.1 Morphic reduction of standard words

The recurrent definition of standard words from equation (1) leads to their simple
characterization by a composition of morphisms. Let γ = (γ0, γ1, . . . , γn) be a directive
sequence. We associate with γ a sequence of morphisms {hi}

n
i=0, defined as:

hi :




a −→ aγib

b −→ a
for 0 ≤ i ≤ n. (2)

The following fact describes another simple method of standard word generation.
It can be proven by a simple induction, see [2] for more details.

Lemma 4 (see [2]).
For 0 ≤ i ≤ n the morphism hi transforms a standard word into another standard
word, and we have:

Sw(γn) = hn(a),

Sw(γi, γi+1, . . . , γn) = hi

(
Sw(γi+1, γi+2, . . . , γn)

)
.

As a direct corollary to Lemma 4 we have that for γ = (γ0, γ1, . . . , γn):

Sw(γ0, γ1, . . . , γn) = h0 ◦ h1 ◦ · · · ◦ hn(a). (3)
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Moreover, the inverse morphism h−1
i can be seen as a reduction of a standard word

w(i) = Sw(γi, . . . , γn) to w(i+1) = Sw(γi+1, . . . , γn).

Recall that |w|a denotes the number of occurrences of the letter a in the word w.
In the rest of this paper, for γ = (γ0, . . . , γn) and 0 ≤ k ≤ n, we use the following
notation:

Nγ(k) = |Sw(γk, γk+1, . . . , γn)|a, (4)

which enables us to simplify the formulas for the sum of runs exponents. Observe
that equations (2) and (4) imply:

Nγ(k) = γk ·Nγ(k + 1) +Nγ(k + 2). (5)

Example 5.
Consider a directive sequence γ = (1, 2, 1, 3, 1). We have (compare with Example 2):

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab Nγ(0) = 19,

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba Nγ(1) = 14,

Sw(1, 3, 1) = abababaab Nγ(2) = 5,

Sw(3, 1) = aaaba Nγ(3) = 4,

Sw(1) = ab Nγ(4) = 1,

Sw(ε) = a Nγ(5) = 1.

As a straightforward corollary to equations (2), (4) and (5) we have:

Corollary 6.
The number of letters b in a word Sw(γi, . . . , γn) equals Nγ(i+ 1).

2.2 The m-partition of a standard word

The concept of the m-partition of a standard word is crucial in the maximal repeti-
tions structure investigation. It allows us to divide the set of all runs in a standard
word to disjoint sets depending on the length of their periods and simplify the consid-
ered problems. The following fact is a direct consequence of the recurrent definition
of standard words.

Proposition 7.
Every standard word Sw(γ0, . . . , γn) can be represented as a sequence of concatenated
words xm and xm−1, and has the form:

(i) xα1

m xm−1 x
α2

m xm−1 · · · x
αs

m xm−1 xm or (ii) xβ1

m xm−1 x
β2

m xm−1 · · · x
βs

m xm−1,

where αk, βk ∈ {γm, γm + 1}, 0 ≤ m ≤ n, and xm are as in equation (1).

Such a decomposition of a standard word w is called the m-partition of w. The block
xm is called the repeating block and xm−1 – the single block. Recall that for m > 0
the last two letters of xm are ab for an odd m and ba for an even m. Therefore the
m-partition of xn+1 = Sw(γ0, . . . , γn) is of the form (i) if m has the same parity as
(n+ 1), and of the form (ii) otherwise (see Example 9 and Figure 2).

Note that the 0-partition of a standard word is its decomposition into letters.
Moreover, Proposition 7, Lemma 4 and equation (3) imply the following fact.
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Figure 2. The m-partition of the word Sw(1, 2, 1, 3, 1) for 1 ≤ m ≤ 4.

Proposition 8.
The structure of occurrences of the block xm (respectively xm−1) in the m-partition of
Sw(γ0, . . . , γn) corresponds to the structure of occurrences of the letter a (respectively
letter b) in Sw(γm, . . . , γn).

Example 9.
Consider a standard word Sw(1, 2, 1, 3, 1). Its m-partitions (for 1 ≤ m ≤ 4) together
with its corresponding morphic reductions are depicted in the table below. See also
Figure 2 for comparison.

m m-partition Sw(γm, . . . , γn)

1 ab·ab·a·ab·ab·ab·a·ab·ab·ab·a·ab·ab·ab·a·ab·ab·a·ab aabaaabaaabaaabaaba

2 ababa·ab·ababa·ab·ababa·ab·ababa·ababa·ab abababaab

3 ababaab·ababaab·ababaab·ababa·ababaab aaaba

4 ababaabababaabababaabababa·ababaab ab

3 The structure of maximal repetitions in standard words

The aim of this section is the presentation of some technical facts used further to prove
the correctness of formulas for the sum of runs exponents. We start with recalling
some technical facts presented in [8] and [9] related to the structure of factors in
standard words.

Lemma 10 (see [9]).
Let γ = (γ0, . . . , γn) be a directive sequence. For every 0 ≤ k ≤ n and every 1 ≤ i ≤ γk
the word (xk)

ixk−1 is primitive (i.e. is not of the form zs, where z is nonempty and
s ≥ 2 is a natural number).

Lemma 11 (See [8]).
Let w = Sw(γ0, . . . , γn) be a standard word and let y ∈ {a, b} be a letter. For each
occurrence of y · xi in w, y is the last letter of the block xi−1 or xi of the i-partition
of w. Moreover, the type of this block is uniquely determined by y.

The following lemma is a key tool in the study of the runs structure in standard
words. It is a version of Theorem 1 in [9] using a slightly different notation.

Lemma 12 (Structural Lemma).
The period of each maximal repetition in a standard word Sw(γ0, γ1, . . . , γn) is of the
form xi or (xi)

jxi−1, where 0 ≤ i ≤ n, 0 < j < γi and xi’s are as in equation (1).
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To prove the above lemma it is sufficient to show that no factor of a standard word
Sw(γ0, . . . , γn) that does not satisfy the condition given there could be the generator
of some repetition, see the proof of Theorem 1 in [9] for more details.

Let us denote by ŵ the word w with two last letters removed and by w̃ the
word w with two last letters exchanged. The following fact can be proven by a simple
induction, see for instance [15].

Lemma 13.
Let xi be as in equation (1) and i > 1. Then:

1. We have xi−1 · xi = xi · x̃i−1,

2. The longest prefix of xi−1 ·xi with the period of the length qi is of the form xi · x̂i−1.

Example 14.
Recall the word Sw(1, 2, 1, 3, 1) from Example 2, where x3 = ababaab, x2 = ababa.
Then we have x̃2 = abaab, x̂2 = aba and

x2 · x3 = ababa · ababaab = ababaab · abaab = x3 · x̃2.

Moreover, the longest prefix of x2 · x3 with the period of the length q2 is of the form:

︸ ︷︷ ︸
x3·x̂2

x2︷ ︸︸ ︷
a b a b a

x3︷ ︸︸ ︷
a b a b a b a

Observe that by equation (1) we have

Sw(γ0, . . . , γn, 1) = (xn)
γn · xn−1 · xn and Sw(γ0, . . . , γn + 1) = (xn)

γn · xn · xn−1.

Therefore, as a straightforward corollary to the first point of Lemma 13 we get:

Corollary 15.
Standard words Sw(γ0, . . . , γn, 1) and Sw(γ0, . . . , γn + 1) differ only in the order of
the last two letters.

See Figure 3 for an illustration of this fact. To properly count the exponents of
runs in standard words we need also the following fact.

Proposition 16.
Let w = Sw(γ0, . . . , γn) be a standard word and 2 ≤ i ≤ n− 2. If xi−1 is the last block
of the i-partition of w, then it is preceded by (xi)

γi+1.

Proof.
Let w = Sw(γ0, . . . , γn) be a standard word and 2 ≤ i ≤ n − 2. By equation (1)
we have xi = Sw(γ0, . . . , γi) and xi−1 = Sw(γ0, . . . , γi−1). Recall that xi ends with
ba for even i > 0 (i.e. for the odd length of a directive sequence) and with ab for
odd i > 0 (i.e. for the even length of a directive sequence). Consider that w has
the suffix (xi)

αxi−1. Then n and i have the same parity and the number n −m + 1
is odd, hence the word w(m) = Sw(γm, . . . , γn) ends with ab. More precisely, due to
Proposition 8, w(m) ends with aαb. By Lemma 4, the suffix aγib of w(m) corresponds
to the last letter a of w(m+1) = Sw(γm+1, . . . , γn). Since n−m+2 is even and w(m+1)

ends with ba, due to Lemma 4 the suffix aγib of w(m) have to be preceded by a single
occurrence of a. Therefore, we have α = γi + 1 and this completes the proof. ⊓⊔
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4 The sum of exponents of maximal repetitions

In this section we present and prove formulas for the the sum of exponents of maximal
repetitions in any standard word, that depend only on its compressed representation
– the directive sequence. The following zero-one functions for testing the parity of a
nonnegative integer i will be useful to simplify those formulas:

even(i) =

{
1 for even i

0 for odd i
and odd(i) =

{
1 for odd i

0 for even i
.

Moreover, we define an auxilary function ∆n : N→ N:

∆n(i) = |n− i+ 1| mod 2.

In other words, ∆n(i) = 1 if and only if the numbers n and i have the same parity,
and ∆n(i) = 0 otherwise. Recall also that for simplicity we denote |xi| = qi.

The main idea of the computation of the sum of runs exponents in a standard
word w is the partition of the set of all maximal repetitions in w into separate cat-
egories depending on the length of their periods. Runs in w with the period of the
form xi and (xi)

kxi−1 (for 1 < k < γi), where xi are as in equation (1), are called the
runs of type i. We study runs of each type separately.

Let σi(γ) denotes the sum of exponents of type i runs. Then the sum of exponents
of all runs in Sw(γ) can be computed using the following theorem.

Theorem 17.
Let γ = (γ0, . . . , γn) be a directive sequence. The sum of exponents of runs in Sw(γ)
is given as:

σ(γ) =
n∑

i=1

σi(γ).

The detailed computation of σi(γ) for each 0 ≤ i ≤ n is provided below.

4.1 The general case

We start with an investigation of a general case, i.e. maximal repetitions of the type i
for 2 ≤ i ≤ n− 1. First, we consider runs with the period of the form xi.

Lemma 18.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. For 2 ≤ i ≤ n− 1 the sum of exponents of runs with the period xi in w equals:

σ′
i(γ) = Nγ(i+ 1) ·

(
γi + 1 +

qi−1 − 2

qi

)
+
(
Nγ(i+ 2)− 1

)
+∆n(i)

2

qi
. (6)

Proof.
Let us denote

w = Sw(γ0, . . . , γn), w(i) = Sw(γi, . . . , γn) and w(i+1) = Sw(γi+1, . . . , γn).

Due to Lemma 11, each maximal repetition with the period xi in w is aligned to the
i-partition of w, hence it corresponds to a block (xi)

αxi−1, where α ∈ {γi, γi + 1}.
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Each internal block of this form is followed by a subsequent xi. Due to Lemma 13,
the longest prefix of xi−1xi with the period xi equals xi · x̂i−1. Therefore, the period of
the considered run repeats α+1 times and its fractional part has the length qi−1− 2.

Consider the i-partition of w. By Proposition 8 occurrences of xi correspond to
occurrences of a in w(i) and occurrences of xi−1 correspond to occurrences of b in w(i).
Therefore, a block (xi)

αxi−1 correspond to the block aαb in w(i). Moreover, due to
Lemma 4, each block of the form aγi+1b in w(i) corresponds to the letter a preceded
by the letter b in w(i+1) and each block of the form aγib in w(i) corresponds to the
letter a not preceded by the letter b in w(i+1).

The rightmost occurrence of (xi)
αxi−1 have to be considered separately. Due

to Proposition 7, if i and n have different parity the i-partition of w ends with
(xi)

αxi−1xi. In this case the period of the considered repeats α + 1 times and its
fractional part has the length qi−1 − 2. On the other hand, if i and n have the same
parity, the i-partition of w ends with (xi)

αxi−1. Due to Proposition 16, α = γi + 1.
Moreover, since xi−1 is a prefix of xi, the fractional part of considered run consists of
the whole word xi and has the length qi−1.

Summing up, in the computation of the sum of runs exponents, we count γi+1+
qi−1−2

qi
for each occurrence of a in w(i+1), namely Nγ(i+1) times, and an additional 1

for each b in w(i+1) (except the rightmost one), namely Nγ(i + 2)− 1 times. Finally,
we must take care of the remainder of the rightmost run with period xi and we obtain
the statement of the lemma. See Figure 3 for the illustration of type-2 runs structure
in example words and two possible remainders of the rightmost run. ⊓⊔
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Figure 3. The structure of runs with the period x2 in a standard word Sw(2, 1, 3, 1, 1) (1) compared
to Sw(2, 1, 3, 2) (2).

Observe that the maximal repetitions with the period of the form (xi)
kxi−1, where

1 ≤ k < γi, appear only for γi > 1. The sum of exponents of such runs is given by
the following fact.

Lemma 19.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. For 1 ≤ i ≤ n− 1 the sum of exponents of runs in w with the period (xi)

kxi−1,
where 1 ≤ k < γi, equals:

σ′′
i (γ) =

(
Nγ(i+ 1)− 1

)
·
γi−1∑

k=1

(
2 +

qi − 2

k · qi + qi−1

)
. (7)
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Proof.
Let w = Sw(γ0, . . . , γn) and u = (xi)

kxi−1, where 1 ≤ k < γi. Due to Lemma 11, each
occurrence of u is aligned to the i-partition of w. Consider a repetition of the form
um in w and denote it as u(1)u(2) · · · u(m). Observe that each u(2), . . . , u(m) have to
be preceded by the suffix of u, namely xi−1. Since each two consecutive occurrences
of xi−1 in the i-partition of w are separated by at least γi occurrences of xi and
k < γi, the factor u cannot have more than two consecutive occurrences. Therefore,
the considered run with the period u has the form u(1)

· u(2) · v, where v is a prefix of u.

The suffix xi−1 of u(2) starts at the beginning of an xi block followed by xi−1,
which appears either as block of the i-partition of w or as a prefix of a subsequent
block xi. Due to Lemma 13, the considered factor has the form xi · xi−1 = xi−1 · x̃i.
Therefore, the fractional part of the considered run has the length qi − 2.

Observe, that occurrences of u(1) in w are aligned with occurrences of xi−1 in the
i-partition of w. Therefore, each such occurrence of xi−1 (except the rightmost one)
corresponds to γi−1 runs with a period (xi)

kxi−1, for 1 ≤ k < γi. Due to Proposition 8,
each occurrence of xi−1 in the i-partition of w corresponds to an occurrence of b in
Sw(γi, . . . , γn). Summing up exponents of all γi − 1 runs for each b in Sw(γi, . . . , γn)
(except the rightmost one), namely Nγ(i+1)−1 occurrences, we obtain the statement
of the lemma. See Figure 4 for an illustration of the structure of runs of this type. ⊓⊔

①✶ ①✶①✷①✷①✷①✷ ①✷ ①✷ ①✷ ①✷ ①✷
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Figure 4. The structure of runs with the period (x2)
kx1 (1 ≤ k ≤ 3) in Sw(2, 1, 4, 2).

The complete formula for the sum of exponents of all type-i runs can be obtained
by combining the formulas from Lemma 18 and Lemma 19.

Lemma 20.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. For 2 ≤ i ≤ n− 1 the sum of exponents of type i runs in w equals:

σi(γ) =Nγ(i+ 1) ·

(
γi + 1 +

qi−1 − 2

qi

)
+
(
Nγ(i+ 2)− 1

)
+∆n(i)

2

qi

+
(
Nγ(i+ 1)− 1

)
·
γi−1∑

k=1

(
2 +

qi

k · qi + qi−1

)
.

(8)

4.2 Boundary cases

For a standard word Sw(γ0, . . . , γn) runs of types 0, 1 and n have to be investigated
differently. We start with the analyze of runs of type 0, i.e. the runs with the period
of the form a.

Lemma 21 (Type 0).
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
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word. The sum of exponents of type 0 runs in w equals:

σ0(γ) =




2
(
Nγ(2)− odd(n)

)
for γ0 = 1

γ0Nγ(1) +Nγ(2)− odd(n) for γ0 > 1
. (9)

Proof.
Each standard word consists of blocks of repeated occurrences of the letter a separated
by single occurrences of the letter b. The length of the blocks of the form a · · · a
depends on the value of γ0.

First assume that γ0 = 1. In this case the word Sw(γ0, . . . , γn) consists of the
blocks of two types: ab or aab and only the blocks of the second type include the runs
with the period a and exponent 2. Due to Lemma 4, every such run in Sw(γ0, . . . , γn)
corresponds to the letter b followed by the letter a in Sw(γ1, . . . , γn). Hence, the
number of such runs equals the number of blocks ba in Sw(γ1, . . . , γn).

Recall that for an even length of the directive sequence |(γ1, . . . , γn)| (n is even) the
word Sw(γ1, . . . , γn) ends with ba and in this case the number of runs with the period a

in Sw(γ1, . . . , γn) equals the number of the letters b in Sw(γ1, . . . , γn), namely Nγ(2).
On the other hand, for an odd length of the directive sequence |(γ1, . . . , γn)| (n is odd)
the word Sw(γ1, . . . , γn) ends with ab and the last letter b does not correspond to a run
in Sw(γ0, . . . , γn). In this case, the number of runs with the period a in Sw(γ0, . . . , γn)
is one less than the number of the letters b in Sw(γ1, . . . , γn), namely Nγ(2)−1. Hence,
in this case the sum of type-0 runs exponents equals

σ0(γ) = 2
(
Nγ(2)− odd(n)

)
.

Assume now that γ0 > 1. Every run with the period a in Sw(γ0, . . . , γn) equals
aγ0 or aγ0+1 and is followed by the single letter b. Due to Lemma 4, every such run
in Sw(γ0, . . . , γn) corresponds to the letter a in Sw(γ1, . . . , γn). Hence in this case we
have Nγ(1) runs with the period a.

By Lemma 4 each occurrence of a in Sw(γ1, . . . , γn) preceded by b produces a run
aγ0+1 in Sw(γ0, . . . , γn), and each occurrence of a in Sw(γ1, . . . , γn) not preceded by b

produces a run aγ0 in Sw(γ0, . . . , γn). Therefore, in computation of the sum of runs
exponents, we count γ0 for each a in Sw(γ1, . . . , γn) and an additional 1 for each b.
As in the previous case, for odd n, the rightmost b does not correspond to a run
in Sw(γ1, . . . , γn). Therefore, in this case the sum of type-0 runs exponents equals

σ0(γ) = γ0Nγ(1) +Nγ(2)− odd(n).

⊓⊔

The next boundary case, strongly related to the case considered above, is the sum
of exponents of runs with the period of the form x1.

Lemma 22 (Type 1).
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. The sum of exponents of runs with the period x1 in w equals:

σ′
1(γ) =





(
Nγ(3)− 1

)
·

(
2 +

γ0

γ0 + 1

)
+ odd(n) ·

(
2 +

1

γ0 + 1

)
for γ1 = 1

Nγ(2) ·

(
γ1 +

γ0

γ0 + 1

)
+
(
Nγ(3)− 1

)
+ odd(n) ·

γ0 − 1

γ0 + 1
for γ1 > 1

.

(10)
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Proof.
Let w = Sw(γ0, . . . , γn). By definition we have x1 = aγ0b. Therefore, the remainder
of each internal run with the period x1 has the length γ0.

Consider the 1-partition of w. By Lemma 4 occurrences of blocks of the form aγ0b

correspond to occurrences of letters a in Sw(γ1, . . . , γn) and occurrences of blocks of
the form a to occurrences of letters b in Sw(γ1, . . . , γn). Therefore, following simi-
lar argumentation as in proof of Lemma 21, we obtain the formula for the sum of
exponents of internal runs with the period x1 in w.

Let us now consider the rightmost run with the period x1 in w. If n is even, w
ends with a ·aγ0b and this occurrence of x1 does not correspond to a run in w. On the
other hand, if n is odd, due to Proposition 16 w ends with (aγ0b)γ1+1a. Such a suffix
corresponds to a run with the total part of exponent equal γ1+1 and the remainder a,
and we should include it in our formula. ⊓⊔

The sum of exponents of runs with the period (x1)
kx0 for 1 ≤ k < γ1 follows from

Lemma 19. As a final step of investigation we count the sum of exponents of type-n
runs.

Lemma 23 (Type n).
Let w = Sw(γ0, . . . , γn) be a standard word. The sum of exponents of runs of type n

in w is given by the formula:

σn(γ) =





0 for γn = 1

γn +
qn−1

qn
for γn > 1

(11)

Proof.
We have w = (xn)

γnxn−1. Therefore, for γn = 1 there is no run of type n in w. On
the other hand, for γn > 1, w contains only one run of type n. Its generator – xn –
repeats undivided γn times. Moreover, since xn−1 is a prefix of xn, the total exponent
of α equals γn +

qn−1

qn
. ⊓⊔

Now we can combine the formulas from equations (6), (7), (9), (10) and (11) and
obtain the formula from Theorem 17.

4.3 Algorithm

The formulas from equations (6), (7), (9), (10) and (11) lead to simple and efficient
algorithm for computation of the sum of runs exponents in any standard word. Its
time complexity depends only on the coefficients of the directive sequence, which is
the compressed representation of a considered word.

Theorem 24.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ) be a standard word. The
sum of exponents of maximal repetitions in w can be computed in time O(‖γ‖), where
‖γ‖ = γ0 + γ1 + · · ·+ γn.

Proof.
Observe that, by equations (6), (7), (9), (10) and (11), the value of each formula σi(γ)
depends only on coefficients of γ and the values of Nγ(i+ 1), Nγ(i+ 2), qi and qi−1.
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Therefore, we can iterate through all types of runs from 0 to n computing the value
of σi(γ) and simultaneously updating the values of Nγ(i+ 1), Nγ(i+ 2), qi and qi−1.
See Algorithm 1 for details.

The main loop of presented algorithm (lines 8-13) performs n+ 1 iterations. The
most time consuming part of each iteration is the computation of the sum of exponents
of maximal repetitions with the period (xi)

kxi−1 (line 10), namely the component

γi−1∑

k=1

(
2 +

qi − 2

k · qi + qi−1

)
.

It can be done in O(γi) time. Hence, the time complexity of the whole algorithm is
O(‖γ‖), where ‖γ‖ = γ0 + γ1 + · · ·+ γn. ⊓⊔

Algorithm 1: Sum-Of-Exponents
(
Sw(γ)

)

Input: γ = (γ0, . . . , γn)
Output: σ(γ)

1 result ←− 0;
2 Nγ(n+ 1) ←− 1;
3 Nγ(n+ 2) ←− 0;
4 q0 ←− 1;
5 q−1 ←− 1;

6 for i := 1 to n do

7 (qi+1, qi) ←− (γi · qi, qi);

8 for i := n downto 0 do

9 compute σ′

i(γ); // runs with period xi;

10 compute σ′′

i (γ); // runs with period (xi)
kxi−1;

11 result ←− result+σ′

i(γ)+σ′′

i (γ);
12 (qi, qi−1) ←− (qi−1, qi − γi−1 · qi−1);
13 (Nγ(i), Nγ(i+ 1)) ←− (γi ·Nγ(i) +Nγ(i+ 1), Nγ(i));

14 return result;

Final remarks

The aim of this paper was to study problems related to repetitions in standard Stur-
mian words – one of the most thoroughly investigated class of strings in combinatorics
of words. We presented the formulas for the sum of exponents of maximal repetitions
in any standard word Sw(γ0, . . . , γn) that depend only on its compressed represen-
tation (the directive sequence). We proposed also an algorithm based on those for-
mulas that computes the sum of runs exponents in any standard word in linear time
with respect to the (total) size of the directive sequence, i.e. in time O(‖γ‖), where
‖γ‖ = γ0 + γ1 + · · ·+ γn.

The notion of total run length (TRL) proposed in [12] can be considered similarly.
To obtain the formulas for the total run length of a standard word we can use modified
formulas for the sum of runs exponents. We only needed to multiply the total part of
each exponent by the length of related period (either qi or k · qi + qi−1) and remove
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the denominator from its fractional part. The described change could be also taken
into account in the presented algorithm.

In the case of the total run length computation, the component

γi−1∑

k=1

(
2 +

qi − 2

k · qi + qi−1

)

of equation 7 has the form

γi−1∑

k=1

(
(k + 1)qi + qi−1 − 2

)
.

The above formula is a sum of an arithmetic progression, hence it can be simplified
as

(γi − 1)
(γi + 2)qi + 2qi − 4

2
.

Therefore, in each iteration of the main loop of the modified algorithm, we have to
compute the value of a single arithmetic formula and update the values of Nγ(i+ 1),
Nγ(i + 2), qi and qi−1. This way we obtain the algorithm computing the total run
length of any standard word Sw(γ) in time O(|γ|), where |γ| denotes the length of
the directive sequence.
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