
Deciding the Density Type

of a Given Regular Language⋆

Stavros Konstantinidis and Joshua Young

Department of Mathematics and Computing Science,
Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3 Canada

s.konstantinidis@smu.ca, jyo04@hotmail.com

Abstract. In this paper, the density of a language is the function that returns, for
each n, the number of words in the language of length n. We consider the question of
deciding whether the density of a given regular language L is exponential or polynomial.
This question can be answered in linear time when L is given via a DFA. When L is
given via an NFA, we show that L has exponential density if and only if the NFA
has a strongly connected component (SCC) in which two equal length walks from the
same state have different labels. This characterization leads to a simple quadratic time
algorithm. However, a more elegant approach produces a linear time algorithm whose
proof of correctness involves the theorem of Fine and Wilf and the greatest common
divisor (gcd) of the lengths of all cycles in the SCC. We have implemented both the
quadratic and linear time algorithms using the FAdo library for automata, and present
results of a few test cases.

Keywords: algorithm, automaton, complexity, density, strongly connected compo-
nents, regular language

1 Introduction

Following [11], we define the density of a language L to be the function that returns,
for every nonnegative integer n, the number of words in L of length n. This concept
is of central importance in language theory. In particular, [11] and [9] characterize
regular languages of exponential density, where the characterization of [9] leads to a
linear time algorithm for deciding whether a regular language is of exponential density
when L is given via a deterministic finite automaton (DFA). This characterization is
very simple: the DFA has a state that belongs to two different cycles—we note that
the same idea was used in [3] in the context of encoding data into DNA languages
that are described via certain DFAs.

Here, we consider the question of characterizing regular languages of exponential
density when they are given via nondeterministic finite automata (NFAs). Our char-
acterization is that the NFA has a strongly connected component (SCC) containing
two walks of the same length, starting at the same state, and having different labels.
This characterization leads to two algorithms: (i) a ‘direct’ quadratic time algorithm
and (ii) an ‘elegant’ linear time algorithm that uses breadth first search (BFS) and
the greatest common divisor (gcd) of the lengths of all cycles in the SCC. The proof
of correctness involves a few technical facts about walk lengths in (directed) graphs,
and a simple generalization of the theorem of Fine and Wilf [2].

The paper is organized as follows. Section 2 contains the basic notation and termi-
nology about regular languages, automata and graphs. In Section 3, we consider the
question of whether a given regular language L is of exponential density and present

⋆ Research supported by NSERC.

Stavros Konstantinidis, Joshua Young: Deciding the Density Type of a Given Regular Language, pp. 21–34.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

22 Proceedings of the Prague Stringology Conference 2013

our characterization and the quadratic time algorithm. In Section 4, we present the
linear time algorithm, and in Section 5 the correctness of this algorithm. In Section 6,
we discuss our implementation using the FAdo library for automata [6], and results
of a few test cases.

2 Basic Notation and Background

We begin this section with notation and concepts on words and languages, and then
on finite automata. We use [8] as a general reference.

2.1 Sets, Words, Languages

We write N and N0 for the sets of positive integers and nonnegative integers, respec-
tively. For a set S, we denote by |S| the cardinality of S. We consider an arbitrary
alphabet Σ containing at least two symbols. As usual, the set of all words over Σ is
denoted by Σ∗. We write λ for the empty word and Σ+ for the set of all nonempty
words. The length of a word w is the number of alphabet symbols occurring in w and
is denoted by |w|. For an integer n ≥ 0, the expression (w)n is the word consisting
of n copies of w. A prefix (resp. suffix) of a word w is any word u such that w = ux
(resp. w = xu) for some word x. We write Prefix(w) for the set of all prefixes of w.

A language is any set of words. A word w is called an L-word if w ∈ L. As usual,
for any integer n ≥ 0, if L is a language then Ln is the language whose words consist
of any n concatenated words from L. In particular Σn is the set of all words of length
n. Also, L∗ is the union of Ln, for all n ≥ 0, and L+ = L∗ − {λ}. A language C is
called a block code if all C-words are of the same length. When there is no risk of
confusion, a singleton language {w} is written as w.

A nonempty word w is called periodic with a period of length g ∈ N, if there is a
word v of length g such that w ∈ Prefix(v∗). For example, abbabba is periodic with a
period of length 3, as it belongs to Prefix((abb)∗). A (right) infinite word is a sequence
a : N → Σ. It is called periodic with a period of length g ∈ N, if there is g ∈ N such
that a(i+ g) = a(i), for all i ∈ N. In this case, following [2], we write

a = (v)ω,

where v is the word a(1) · · · a(g).
The density of a language L is the function dL that maps every nonnegative integer

n to dL(n) = the number of L-words of length n. We say that a regular language L has
exponential density if the density of L is not polynomially upper-bounded—see below
for the definition of regular language. This definition is justified by a result of [11]
stating that the density of any regular language is either polynomially upper-bounded
or has a subsequence of order Ω(2n).

2.2 Automata, graphs, cycles

A complete deterministic finite automaton (complete DFA, for short) is a quintuple

M = (Σ,K, δ, s, F)

such that K is the nonempty set of states, s is the start state, F is the set of final
states and δ : K × Σ → K is the transition function, which can be extended as

S. Konstantinidis, J. Young: Deciding the Density Type of a Given Regular Language 23

δ : K × Σ∗ → K in the usual way. If the function δ is partial, then M is not
complete—we simply call it a DFA. A nondeterministic finite automaton (NFA) is a
quintuple

M = (Σ,K, T, s, F)

such that K, s, F are as in the case of a deterministic automaton, and T is the finite
set of transitions, which are triples of the form (p, σ, q) with σ ∈ Σ and p, q ∈ K. In
this case, we say that the transition is going out of the state p. A DFA is a special
type of an NFA where (p, σ, q) ∈ T exactly when δ(p, σ) = q.

The NFA M can be viewed as a directed labeled graph having K as the set of
vertices and any triple (p, σ, q) as a labeled arc exactly when (p, σ, q) is a transition
in T . A walk in M is a sequence

(p0, σ1, p1, . . . , σn, pn) (1)

such that (pi−1, σi, pi) is a transition ofM , for each i = 1, . . . , n. In this case, the word
σ1 · · · σn is called the label of the walk. As usual, the language L(M) accepted by M
is the set of all labels that appear in walks as above such that p0 is the start state and
pn is a final state. These languages constitute the class of regular languages—see [12]
for more information on regular languages.

The NFA M is called trim if every state of M occurs in some path from the start
state to a final state. The size of M is |K| + |T |, that is the number of states plus
the number of transitions in M . We note that if M is trim then |K| ≤ |T | + 1 and,
therefore, the size of M is dominated by the number of transitions in M . A state in
an automaton is called a fork state if there are at least two transitions going out of
that state.

A path in the NFA M is a walk in which no state appears twice. A closed walk in
M is any walk as in (1) where pn = p0. A cycle in the NFA is a closed walk in which
only the first and last states are equal—hence, in (1) the pi’s would be unique, for
i = 1, . . . , n. The special cycle (p), where p is any state, is called trivial. A strongly
connected component (SCC), with respect to some NFAM , is a set C of states that is
maximal with the property that there is a walk in M between any pair of states in C.
The component C is called nontrivial if there is at least one transition between two
states in C. For the sake of simplicity, we shall say that a component C ‘contains ’ a
transition (or a walk) to mean that the NFA in which C exists contains that transition
(or walk) with all states involved belonging to C.

3 Characterizing Exponential Density

In this section we consider the following problem.

(P0) Given a regular language L, decide whether L is of exponential density.

In [9] (see also [10]) the author gives a very simple criterion for testing this property for
a regular language L: it has exponential density if and only if any trim deterministic
automaton accepting L has a state that belongs to two different cycles. Here we
consider the case where the language is given via a nondeterministic automaton. We
show that L has an exponential density if and only if any trim nondeterministic
automaton accepting L has a SCC containing two walks of the same length, starting
at the same state, and whose labels are different. For example, in Fig. 1, if σ = a,
then the SCC has two walks from p to 3 of length 6 with different labels:

24 Proceedings of the Prague Stringology Conference 2013

p 1
a

3
b

2

a

4
b

b

5
a

σ a

6

aσ

Figure 1. A strongly connected component C with a chosen state
p, which is used as a start state of walks in C.

(p, a, 1, b, 3, a, 6, σ, p, a, 1, b, 3) and (p, a, 2, b, 4, a, 5, σ, 3, a, 5, σ, 3).

Using a ‘direct’ algorithm, our test can be performed in quadratic time. Note that,
when the automaton is deterministic, our test is equivalent to whether a SCC contains
a fork state (this is of course equivalent to the test of [9]) and can be performed in
linear time. The rest of this section deals with the formalities of the above statements.

Theorem 1. Let L be a regular language. The following statements are equivalent.

EXP: L has exponential density.
BL2: There are two words x, y and a two-element code C whose two words have equal

lengths such that xC∗y ⊆ L.
SCC: For every trim NFA A accepting L, there exists a strongly connected component

in A containing two walks of the same length, starting at the same state, and whose
labels are different.

Proof. We prove the following sequence of statements:
BL2 → EXP, SCC → BL2, EXP → SCC.

Part BL2 → EXP: Let C = {z1, z2} and consider, for every n ≥ 0, all words in L
of length |x|+ |y|+ ℓn, where ℓ is the length of z1 and z2. As xC

ny ⊆ L, there are at
least 2n such words and, therefore, L must have exponential density.

Part SCC → BL2: Assume there is a state p in some SCC C, and two walks in C
starting at p, ending at some states q1 and q2, and having two different labels u1, u2
of the same length. Then, there must be two walks in C, one from q1 to p and the
second from q2 to p with some labels v1, v2, respectively. Then there are two closed
walks in C with labels u1v1 and u2v2. Moreover, it follows that there are two closed
walks in C with labels z1 = u1v1u2v2 and z2 = u2v2u1v1, which are different and of
the same length, say ℓ. As the NFA A is trim, there are two paths, one from the start
state to p with some label x, and the other from p to a final state with some label y.
Let C = {z1, z2}. Then it follows that

xC∗y ⊆ L.

Part EXP → SCC: We use contraposition by assuming the negation of SCC and
showing that the density of L(A) is polynomially upper-bounded. So assume that

S. Konstantinidis, J. Young: Deciding the Density Type of a Given Regular Language 25

in every SCC of A, any two walks starting at the same state and having the same
length must have equal labels. This implies that there is no state having two outgoing
transitions with different labels. First we have the following claim.

Claim 1: The assumption implies that, in every SCC C, for every n ≥ 0, there are
at most |C| distinct walk labels of length n.

To see this, we first note that the claim is obvious if C is trivial. If C is nontrivial,
then for every state q in C and any integer n ≥ 0, there is at least one walk in C of
length n starting at state q. At the same time, the assumption implies that, for every
state q in C and integer n ≥ 0, there is at most one walk label of length n. Thus, for
every state q in C and any n ≥ 0, there is exactly one walk label of length n starting
at q, and the claim follows easily from this observation.

Next we show that the density of L(A) is polynomially upper-bounded using in-
duction on k, where k is the number of SCCs in A. For k = 1 this follows immediately
from Claim 1. Assume the statement holds when A has at most t SCCs, for some
t ≥ 1, and consider the case where A has k = t + 1 SCCs. As k ≥ 2, there must be
a strongly connected component D with no transitions going out of D—also, as A
is trim, D cannot contain the start state. Consider the set Ln of all words of length
n accepted by A. We shall show that |Ln| is of order O(nα), where α is a constant
integer independent of n. First note that

Ln =Mn ∪Kn,

where Mn is the set of words of length n accepted using walks containing no state in
D, and Kn is the set of words of length n accepted using walks ending in D. Let D̄
be the set of states not in D, and let q1, . . . , qr be all states in D̄ having transitions
going into D. Let N1, . . . , Nr be the languages accepted by the part of A that involves
no states from D and has as final states {q1}, . . . , {qr}, respectively. Let N

′

1, . . . , N
′

r

be the languages accepted starting, respectively, from the states q1, . . . , qr and then
using only states in D, where the final states of A that are in D are used as final
states. Then, it follows that

Kn = (N1N
′

1 ∪ · · · ∪NrN
′

r) ∩Σ
n

and then
Ln =Mn ∪ (N1N

′

1 ∩Σ
n) ∪ · · · ∪ (NrN

′

r ∩Σ
n).

By the induction hypothesis, |Mn| = O(nc), for some constant c. Now for each term
NiN

′

i ∩Σ
n we have

NiN
′

i ∩Σ
n =

n⋃

j=0

(Ni ∩Σ
j)(N ′

i ∩Σ
n−j).

Again, as Ni is accepted by an NFA having at most t SCCs we have that |Ni ∩Σ
j| =

O(jci), for some constant ci. Also, by Claim 1, |N ′

i ∩ Σn−j| = O(1). With these
observations, it follows that

|NiN
′

i ∩Σ
n| = O((n+ 1)× nci) = O(n1+ci) and |Ln| = O(nα),

where α = max(c, 1 + c1, . . . , 1 + cr) and, therefore, L(A) is polynomially upper-
bounded.

26 Proceedings of the Prague Stringology Conference 2013

Now we use the previous theorem to devise a ‘direct’ quadratic time algorithm
for deciding the density type of a given NFA language. We shall use a folklore prod-
uct construction for labeled graphs. In particular, for any directed labeled graph
G = (V,E), the graph G2 has vertices all pairs in V × V and arcs all triples of the
form ((p1, p2), (a1, a2), (q1, q2)) such that (p1, a1, q1) and (p2, a2, q2) are arcs in E. It
is evident that for any walk in G2 there are two corresponding walks in G of the
same length and, conversely, for any two walks in G of the same length there is a
corresponding walk in G2. For a walk P in G2, the first (resp. second) corresponding
walk is made simply by the sequence of arcs formed by the first (resp. second) SCCs
in the sequence of arcs in P . Thus, if

P = ((s0, t0), (a1, b1), (s1, t1), . . . , (an, bn), (sn, tn)),

then the first corresponding walk is (s0, a1, s1, . . . , an, sn).

Corollary 2. There is a quadratic time algorithm for deciding the density type of a
given regular language.

Proof. The required decision algorithm is as follows.

algorithm ExpDensityQT(p)
01. Make the NFA A trim
02. Compute the SCCs of A
03. FOUND = false
04. for each SCC G and while not FOUND

05. Compute G2

06. Compute the set Q1 of vertices (p1, p2) in G
2 such that

there is an arc ((p1, p2), (a1, a2), (q1, q2)) with a1 6= a2
07. Compute the set Q2 of vertices in G2 of the form (t, t)
08. if (there is a walk from Q2 to Q1) then FOUND = true

09. if (FOUND) return TRUE, else return FALSE

For the correctness of the algorithm we note that, at the last step, FOUND is
true if and only if condition SCC of Lemma 1 is true. Indeed, if there is a walk in G2

from some (t, t) to some (p1, p2) ∈ Q1 then there is also a walk from (t, t) to some
(q1, q2) where the last arc in the walk is ((p1, p2), (a1, a2), (q1, q2)) with a1 6= a2; hence,
there must be two equal length walks in G starting at t and having different labels.
Conversely, if there are two walks in G of the same length, starting at some state t
and having different labels, then there are also two such walks differing on their last
symbols, which implies that the algorithm will set FOUND to true when it processes
the SCC G.

For the time complexity of the algorithm, first we note that Step 1 can be per-
formed in linear time and then Step 2 also in linear time [4]. Now let n be the size of
A, let k be the number of strongly connected components in the trimmed A, and let
ni be the size of the SCC i. Then n1+ · · ·+nk = O(n). The i-th iteration of the loop
requires time O(n2

i) to construct the product of the i-th SCC, which is of size O(n2
i),

and then the next two steps are linear with respect to n2
i . Also linear is the last step

in the loop via a breadth-first search algorithm. So in the worst case the algorithm
requires time O(n2

1 + · · ·+ n2
k).

S. Konstantinidis, J. Young: Deciding the Density Type of a Given Regular Language 27

4 Deciding the density type in linear time: the algorithm

In this section we consider a fixed SCC C (of some NFA) containing an arbitrarily
chosen state p, which we consider fixed, and we show that the question of exponential
density for C can be decided in linear time. We use the following terminology—see
Fig. 1 and the example 3 further below.

– gcd(C) denotes the greatest common divisor of the lengths of all cycles in C.
– We say that a state q in C occurs at level i, for some i ∈ N0 (when starting at
state p), if there is a walk of length i from p to q.

– For each i ∈ N, Ap(i) denotes the set of symbols at level i, that is, all symbols σ
such that there is a transition (q, σ, r) in C and state q occurs at level i− 1.

algorithm BFS(p)
01. for each state q, set LEVp(q) =?
02. for each i ∈ {1, . . . , N}, set bp(i) =?

(Note: N = the number of states in the SCC)
03. Initialize a queue Q to consist of p
04. set LEVp(p) = 0
05. while (Q is not empty)

06. remove q, the first state in Q
07. for each transition (q, σ, r)

08. set j = LEVp(q)
09. if bp(j + 1) 6=? and bp(j + 1) 6= σ, return λ
10. set bp(j + 1) = σ
11. if (LEVp(r) =?)

set LEVp(r) = j + 1
append r to Q

12. Let k be the last index such that bp(k) 6=?
13. return the word bp(1) · · ·bp(k)

Figure 2. This algorithm is a method of an object C of type “strongly connected component”
containing a state p. The algorithm adds each state to the queue exactly once, and processes
all transitions going out of that state. For each state q, LEVp(q) is the first level at which q

is encountered—this is given initially the special value ‘?’ indicating that q has not yet been
encountered. Each bp(i) is the symbol found at level i (starting from state p at level 0).
The algorithm returns the empty word λ if it finds a level i at which two different symbols
occur, or it returns the word made by concatenating the unique symbols found at all the
levels visited.

By Theorem 1, C has exponential density if and only if there is a level i such that
Ap(i) contains more than one symbol. To test this condition, we first use the breadth
first search algorithm BFS(p) shown in Fig. 2. The expressions LEVp(q) and bp(i)
are explained in that figure. In particular, LEVp(q) is the length of the shortest path
from p to q, and bp(i) is the symbol at level i, as found by BFS(p). Then,

bp(i) ∈ Ap(i).

We shall show (see Theorem 5) that there is a level i0 such that Ap(i0) contains more
than one symbol, if and only if, either that level is found by BFS(p), or the word bp

is not periodic with a period of length gcd(C). This is the main idea for the algorithm
deciding exponential density in linear time. This algorithm is shown in Fig 3.

28 Proceedings of the Prague Stringology Conference 2013

algorithm ExpDensity(p)
1. Let bp = BFS(p)
2. if (bp = λ) return TRUE
3. Let g = the gcd of the cycles in the SCC
4. Let v = bp(1) · · ·bp(g)
5. if (bp /∈ Prefix(v∗)) return TRUE
6. else return FALSE

Figure 3. This linear-time algorithm is a method of an object C of
type “strongly connected component” containing a state p.

Example 3. For the SCC C in Fig. 1, we have that gcd(C) = 2. The state 4 occurs
at levels 2, 8, 10, 12, The set Ap(4) consists of σ. The algorithm BFS(p) will find
that

bp(1) = bp(3) = a, bp(2) = b, bp(4) = σ.

If σ = a, then Ap(6) = {a, b} and the density is exponential. In this case, the algorithm
in Fig. 3 computes bp = abaa, gcd(C) = 2, bp(1)bp(2) = ab, but abaa /∈ Prefix((ab)∗).
On the other hand, if σ = b, then the density is not exponential.

Time complexity. The algorithm in Fig. 3 runs in linear time. Indeed, BFS(p) is
a linear time algorithm. The gcd g in Step 3 can be computed in linear time [1,5].
Finally, testing whether bp ∈ Prefix(v∗) in Step 5, can also be done in linear time, as
the length of bp is always less than the number of states in the SCC.

5 Correctness

In this section we establish the correctness of the linear-time algorithm—see Theo-
rem 5.

Notation. For any SCC C (of some NFA) containing a state p, we define the following
predicates and infinite word.

– (Uω): For all i ∈ N: |Ap(i)| = 1.
– (Ubfs): BFS(p) returns bp 6= λ.
– If (Uω) holds, then we define ap to be the infinite word made by the symbols in
Ap(1), Ap(2),

�

Example 4. In Fig. 1, (Uω) holds if σ = b. In this case, ap = (ab)ω.

Theorem 5. The linear time algorithm in Fig. 3 decides correctly the density type
of a given SCC, that is,

¬(Uω) ↔ ¬(Ubfs) ∨ bp /∈ Prefix((bp(1) · · ·bp(g))
∗),

or equivalently,

(Uω) ↔ (Ubfs) ∧ bp ∈ Prefix((bp(1) · · ·bp(g))
∗),

where g = gcd(C).

S. Konstantinidis, J. Young: Deciding the Density Type of a Given Regular Language 29

How the correctness proof is presented. The ‘if’ part is shown in Lemma 8.
This requires the first two statements of Lemma 7 about lengths of walks in C. The
‘only if’ part is shown in Lemma 10. This requires the last statement of Lemma 7
and Lemma 9, which is a simple generalization of the theorem of Fine and Wilf [2].
Next we give a notation on walks, paths and cycles in a SCC, which helps make the
presentation more rigorous.

Notation. For any states p, q in C, we use the following notation.

– [C]p→q
∗

: the set of all walks in C from p to q.
– [C]p→p

∗
: the set of all closed walks in C starting at state p.

– [C]p→q
0 : the set of all paths in C from p to q.

– [C]p→q
min : the set of all shortest paths in C from p to q.

– [C]q→q
0 : the set of all cycles in C from q to q.

– [C]p→p
1 : the set of all single closed walks in C starting at state p. These walks

start at p and end at p and they contain exactly one cycle starting at some state
q 6= p—see the example below.

�

Example 6. Consider the SCC in Fig. 1. The cycle (5, σ, 3, a, 5) belongs to [C]5→5
∗

and
(p, a, 1, b, 3, a, 6, σ, p) belongs to [C]p→p

∗
. The closed walk

ϕ = (p, a, 1, b, 3, a, 5, σ, 3, a, 6, σ, p)

is a single closed walk that belongs to [C]p→p
1 . Using the notation in the proof of

Lemma 7.3, ϕ contains exactly one cycle ϕ′′ = (3, a, 5, σ, 3). If ϕ′′ is removed from ϕ,
then the cycle ϕ′ = (p, a, 1, b, 3, a, 6, σ, p) is obtained.

Lemma 7. Let C be any SCC (of some NFA) containing the states p and q.

1. The lengths of all closed walks in [C]p→p
∗

are zero modulo gcd(C), that is, for every
closed walk ϕ ∈ [C]p→p

∗
, |ϕ| ≡ 0 (mod gcd(C)).

2. The lengths of all walks in [C]p→q
∗

are equivalent modulo gcd(C), that is, for all
walks ϕ, ψ ∈ [C]p→q

∗
, |ϕ| ≡ |ψ| (mod gcd(C)).

3. The greatest common divisor of the lengths of all cycles and single closed walks
starting at p is equal to gcd(C), that is,

gcd{|ϕ| : ϕ ∈ [C]p→p
0 ∪ [C]p→p

1 } = gcd(C).

Proof. For the first statement, let ψ be any cycle starting at p. By definition of gcd(C),
|ψ| ≡ 0 (mod gcd(C)). Now consider any closed walk ϕ ∈ [C]p→p

∗
. If ϕ is a cycle, then

the claim holds. Else, ϕ contains at least one cycle. If we remove each cycle occurring
in ϕ, then we shall obtain a cycle ψ such that |ψ| ≡ |ϕ| (mod gcd(C)), as each cycle
has a length that is a multiple of gcd(C). Hence, |ϕ| ≡ 0 (mod gcd(C)), as required.

For the second statement, it is sufficient to show that, for every ϕ ∈ [C]p→q
∗

, we
have |ϕ| ≡ |ψ| (mod gcd(C)), where ψ is any shortest path from p to q. Let θ be
any shortest path from q to p, and let ϕ′ and ψ′ be the closed walks obtained by
concatenating the paths ϕ, θ and ψ, θ (respectively). Then, |ϕ| − |ψ| = |ϕ′| − |ψ′|,
which is 0 modulo gcd(C), by the first statement.

For the third statement, we first define, for each ϕ ∈ [C]p→p
1 , two cycles ϕ′ ∈ [C]p→p

0

and ϕ′′ ∈ [C]q→q
0 , where q is the only state, other than p, that appears twice in ϕ. The

cycle ϕ′′ is simply the cycle occurring inside ϕ and the cycle ϕ′ is produced when ϕ′′

30 Proceedings of the Prague Stringology Conference 2013

is removed from ϕ—see Example 6. Thus, |ϕ| = |ϕ′| + |ϕ′′|. Now let {ϕi}
m
i=1 be an

enumeration of all single closed walks in [C]p→p
1 . Each ϕi contains a cycle ϕ′′

i . In fact,
by definition of [C]p→p

1 , the set {ϕ′′

i }
m
i=1 consists of all cycles in C starting at a state

other than p. Thus,

gcd(C) = gcd({|ϕ′′

i |}
m
i=1 ∪X),

where X = {|ψ| : ψ ∈ [C]p→p
0 }. Now let Y = {|ϕ| : ϕ ∈ [C]p→p

1 }. Using basic properties
of the gcd function [7], we have that

gcd(X ∪ Y) = gcd(gcd(X), gcd(Y)) = gcd(gcd(X), gcd(Y − {|ϕ1|}), |ϕ1| − |ϕ′

1|)},

as |ϕ′

1| ∈ X. Thus,

gcd(X ∪ Y) = gcd(gcd(X), gcd(Y − {|ϕ1|}), |ϕ
′′

1|).

This process can be repeated another m− 1 times to obtain that

gcd(X ∪ Y) = gcd(gcd(X), ∅, gcd{|ϕ′′

i |}
m
i=1) = gcd(X ∪ {|ϕ′′

i |}
m
i=1),

as required.

Lemma 8. Assume that, in the BFS(p) algorithm, (Ubfs) holds and we have bp ∈
Prefix((bp(1) · · ·bp(g))

∗), where g = gcd(C). Then, the following statements hold true.

1. For any states q and q′ and shortest paths ψ ∈ [C]p→q
min and ψ′ ∈ [C]p→q′

min , if ψ and
ψ′ are of different lengths and there are transitions (q, σ, r) and (q′, σ′, r′) with
σ 6= σ′, then |ψ| 6≡ |ψ′| (mod g)

2. The predicate (Uω) holds.

Proof. For the first statement, as ψ and ψ′ are shortest paths from p, BFS(p) assigns
the levels |ψ|, |ψ′| to LEVp(q),LEVp(q

′), respectively. Also, when q and q′ are removed
from the queue, the symbols σ and σ′ are assigned to bp(|ψ| + 1) and bp(|ψ

′| + 1),
respectively. Finally, as bp ∈ Prefix((bp(1) · · ·bp(g))

∗) and σ 6= σ′, the lengths |ψ|
and |ψ′| cannot be equivalent (mod g).

For the second statement, assume for the sake of contradiction that there is a level
ℓ and two different symbols σ, σ′ in Ap(ℓ). Then, there are two transitions of the form
(q, σ, r) and (q′, σ′, r′) such that q, q′ are at level ℓ− 1. Moreover, there are two walks
ϕ and ϕ′ of length ℓ− 1 in [C]p→q

∗
and [C]p→q′

∗
, respectively. Let ψ, ψ′ be the shortest

paths of BFS(p) to q, q′ (respectively). By Lemma 7.2, we have

|ϕ| ≡ |ψ| (mod g) and |ϕ′| ≡ |ψ′| (mod g)

On the other hand, the first statement implies |ψ| 6≡ |ψ′| (mod g). Therefore, |ϕ| 6≡
|ϕ′| (mod g), which contradicts |ϕ| = |ϕ′| = ℓ− 1. Hence (Uω) holds.

Lemma 9. For any positive integer m and for any words u1, . . . , um,

if uω1 = · · · = uωm, then u1, . . . , um ∈ u∗,

for some word u of length gcd{|u1|, . . . , |um|}.

S. Konstantinidis, J. Young: Deciding the Density Type of a Given Regular Language 31

Proof. We use induction on m. The base case of m = 1 is trivial. Assume the claim
holds for some m ≥ 1, and consider

uω1 = · · · = uωm = uωm+1.

By induction hypothesis, there is a word u such that ui ∈ u∗, for i ∈ {1, . . . ,m},
and |u| = gcd{|u1|, . . . , |um|}. As u

ω
m = uω = uωm+1, the theorem of Fine and Wilf [2]

implies that u, um+1 ∈ v∗, for some word v of length gcd{|u|, |um+1|}, which is equal
to gcd{|u1|, . . . , |um|, |um+1|}, by the properties of the function gcd [7].

Lemma 10. Let g = gcd(C). The following statements hold.

1. (Uω) → (Ubfs) ∧ (bp ∈ Prefix(ap))
2. (Uω) → ap = (bp(1) · · ·bp(g))

ω

3. (Uω) → bp ∈ Prefix((bp(1) · · ·bp(g))
∗)

Proof. For the first statement, if (Uω) holds, then BFS(p) cannot find at Step 09 a
level with two symbols; hence, bp 6= λ. Also, (Uω) implies that ap is well defined and,
as bp(i) ∈ Ap(i), for all symbols in bp, we have that bp is a prefix of ap.

For the second statement, (Uω) implies that there is exactly one symbol at level i,
in any path of length i from p. Then, it follows that ap is well defined and ap = (w̄ϕ)

ω,
for every closed walk ϕ starting at p, where w̄ϕ denotes the label of the path ϕ. In
particular, ap = (w̄ϕ)

ω, for every ϕ ∈ [C]p→p
0 ∪ [C]p→p

1 . Then, Lemma 9 and Lemma 7.3
imply that w̄ϕ ∈ u∗ for some word u of length g. Thus, ap = uω and, as bp is a prefix
of ap, we have that u = bp(1) · · ·bp(g), as required.

The third statement follows from the previous one and the fact that bp is a prefix
of ap.

6 Implementation and testing

We have implemented both the quadratic and linear time algorithms using the FAdo
library for automata [6], which is well maintained and provides several useful tools
for manipulating automata. In doing so, we have also implemented a Python method

stronglyConnectedComponents(A)

receiving a parameter A, which is an NFA object with respect to FAdo, and returns a
list of the SCCs of A, where each SCC is a list of states in A.

For computing the quantity gcd(C), one can use the depth first search (DFS) based
algorithm in [1], or the breadth first search (BFS) based algorithm in [5]—in fact [5]
discusses both the BFS and DFS based algorithms. In our implementation, we have
adjusted the BFS algorithm in Fig 2 to compute the required gcd(C), in addition to
the word bp(1) · · ·bp(k).

Our implementation confirms the theoretical result that indeed the linear time
algorithm is much faster. We have used as test cases four sequences of SCCs, which
are described in Fig. 4. Each of these SCCs is implemented as an object of type NFA
and is constructed using NFA methods such as

addState() and addTransition().

When the answer is FALSE, the linear time algorithm will perform a complete
BFS and then all tests in Fig. 3 to find out that bp is nonempty and periodic with
a period of length g. When the answer is TRUE, it is possible that the linear time

32 Proceedings of the Prague Stringology Conference 2013

C3σ
i =

(aab)i

(aab)i+1

(aab)i+1(aaσ)

p

C7σ
i =

(va)i

(va)i+1

(va)i+1(vσ)

p

Figure 4. Four sequences of SCCs. On the left, for σ = a, b, we
have the SCCs C3a

i and C3b
i . On the right, for σ = a, b, we have

the SCCs C7a
i and C7b

i with v = aabbab. Each SCC has three cy-
cles starting at p with labels as shown in the figure. For example,
for each i ∈ N, the SCC C3a

i has three cycles with labels (aab)i,
(aab)i+1, (aab)i+1(aaa). If σ = a the density is exponential.

algorithm will finish quickly when BFS(p) finds in Step 09 two different symbols
occurring at the same level. However, we have chosen the particular test SCCs such
that when the answer is TRUE, the linear time algorithm will still perform a complete
BFS and then find out that bp is non-periodic only when it scans the last symbol σ
of the longest cycle in the SCC.

Each of the four figures in the Appendix concerns one of the two algorithms and
a certain sequence Cxσ

i of SCCs, and shows a graph with the execution time of the
algorithm T (i) vs the value of the parameter i.

References

1. E. Arkin, C. Papadimitriou, and M. Yannakakis: Modularity of cycles and paths in graphs.
Journal of the ACM, 38 1991, pp. 255–274.

2. C. Choffrut and J. Karhumäki: Combinatorics on words, in Rozenberg and Salomaa [8],
pp. 329–438.

3. B. Cui and S. Konstantinidis: DNA coding using the subword closure operation, in Proceed-
ings of 13th Inter. Meeting on DNA Computing 2007, vol. 4848 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2008, pp. 284–289.

4. S. Dasgupta, C. Papadimitriou, and U. Vazirani: Algorithms, McGraw-Hill, 2006.
5. J. Jarvis and D. Shier: Graph-theoretic analysis of finite Markov chains, in Applied Mathe-

matical Modeling: a multidisciplinary approach, Chapman & Hall / CRC press, 2000, pp. 271–
289.

6. R. Reis and N. Moreira: FAdo: Tools for language models manipulation, http://www.dcc.
fc.up.pt/~rvr/FAdoDoc/index.html. Accessed in March 2013.

7. K. Rosen: Greatest common divisors, in Handbook of Discrete and Combinatorial Mathematics,
CRC Press, Berlin, 2000.

8. G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, Vol. I, Springer-Verlag,
1997.

9. A. Shur: Combinatorial complexity of rational languages. Discr. Anal. and Oper. Research,
Ser. 1, 12(2) 2005, pp. 78–99.

10. A. Shur: Factorial languages of low combinatorial complexity, in In Proceedings of 19th Inter.
Conf. on Developments in Language Theory. Lecture Notes in Computer Science, Vol. 4036,
Springer-Verlag, Berlin, 2006, pp. 397–407.

11. A. Szilard, S. Yu, K. Zhang, and J. Shallit: Characterizing regular languages with poly-

nomial densities, in Proceedings of 7th Inter. Symposium on Mathematical Foundation of Com-
puter Science, vol. 629 of Lecture Notes in Computer Science, Springer-Verlag, London, UK,
1992, pp. 494–503.

12. S. Yu: Regular languages, in Rozenberg and Salomaa [8], pp. 41–110.

http://www.dcc.fc.up.pt/~rvr/FAdoDoc/index.html
http://www.dcc.fc.up.pt/~rvr/FAdoDoc/index.html

S. Konstantinidis, J. Young: Deciding the Density Type of a Given Regular Language 33

Appendix

This appendix consists of four graphs showing execution times of the quadratic and
linear times algorithms as explained in section 6.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Size of Cycles

GCD Algorithm, Exponential Density, GCD=3

Figure 5. Execution time Tlt(i) of the linear time algorithm on C3a
i , for

various values of i. The density type is exponential.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Size of Cycles

Product Construction Algorithm, Exponential Density, GCD=3

Figure 6. Execution time Tqt(i) of the quadratic time algorithm on C3a
i ,

for various values of i. The density type is exponential.

34 Proceedings of the Prague Stringology Conference 2013

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Size of Cycles

GCD Algorithm, Not Exponential Density, GCD=7

Figure 7. Execution time Tlt(i) of the linear time algorithm on C7a
i , for

various values of i. The density type is not exponential.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Size of Cycles

Product Construction Algorithm, Not Exponential Density, GCD=7

Figure 8. Execution time Tqt(i) of the quadratic time algorithm on C7a
i ,

for various values of i. The density type is not exponential.

