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Abstract. Inspired by failure functions found in classical pattern matching algorithms,
a failure deterministic finite automaton (FDFA) is defined as a formalism to recognise
a regular language. An algorithm, based on formal concept analysis, is proposed for de-
riving from a given deterministic finite automaton (DFA) a language-equivalent FDFA.
The FDFA’s transition diagram has fewer arcs than that of the DFA. A small mod-
ification to the classical DFA’s algorithm for recognising language elements yields a
corresponding algorithm for an FDFA.
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1 Introduction

It is well-known that there is a mapping between deterministic finite automata (DFAs)
and regular languages. Let L(D) ⊆ Σ∗ denote the regular language associated with
DFA D, the DFA being defined on an alphabet Σ and having δ as its transition
function. The transition function maps a state / symbol pair to a new state, i.e.
δ(q, a) = p where q, p ∈ Q, the DFA’s set of states, and a ∈ Σ.

Given an arbitrary finite-length string x ∈ Σ∗, there is a classical algorithm to
test whether x ∈ L(D). The algorithm uses δ to transition from state to state as it
processes x on a character by character basis. It starts from the DFA’s start state
and terminates once all characters in x have been processed. Only if a final state has
been reached at termination does the algorithm affirm that x ∈ L(D).

Such an algorithm takes time O(|x|), assuming that δ(q, a) is computed in con-
stant time. It uses O(|Σ| × |Q|) space, as δ has to be stored. Applications of the
algorithm vary widely, with the underlying DFA possibly involving millions of states
and transitions. Consequently, research efforts have been directed at improving on the
algorithm’s space or time efficiency. Examples include DFA minimisation [22], hard-
coding and cache manipulation [10], various automata transformations [6,3], various
strategies for storing sparse matrices [21,8], and other strategies to reduce represen-
tation sizes [5].

Here we focus on improving on space efficiency by relying on failure DFAs (FD-
FAs). The formalism derives from the failure functions found in classical pattern
matching algorithms [1,11,4]. Recall, for example, the Aho-Corasick algorithm [1]
which takes a finite set of patterns and identifies all their occurrences in a text. One
version uses a DFA, while a second version uses a trie DFA [9] with a so-called failure
function. The latter version removes arcs that do not contribute to the definition of
patterns, replacing them judiciously with arcs derived from a failure function. The
result is a trie DFA, decorated by various failure arcs. The standard acceptance al-
gorithm is adapted to use this automaton. The total number of trie and failure arcs
is significantly less than the number of arcs in the DFA version of the algorithm.
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Benchmarks reported in [22] suggest that the gain in space efficiency comes at the
cost of about 20% reduction in processing speed.

In addition to their use in the Knuth-Morris-Pratt and Aho-Corasick keyword
pattern matching algorithms, there has been some work in broadening the use of
failure functions, including:

– Kowaltowski, Lucchesi and Stolfi [16] present failure functions (and algorithms for
computing them) in the restricted case of acyclic automata – especially as used
in various natural language processing applications, such as spell-checking.

– Mohri [18] presents algorithms for the restricted case of constructing a failure
function and manipulating D such that the resulting FDFA accepts language
Σ∗ · L(D). The resulting compact representation is primarily useful in pattern
matching for the language D somewhere in an input string x, as the Σ∗ matches
the prefix of x before the match.

– Crochemore and Hancart [4] illustrate how failure arc placement can sometimes
be further optimised, but they do not give a general construction algorithm for
deriving an FDFA from a DFA.

Our work takes up the failure arc idea and generalises it. Below we describe an
ordered approach to deriving a language-equivalent FDFA from any complete DFA.
This generalisation brings several issues to the fore.

The starting point to address these issues is the provision of a formal definition of
an FDFA and its associated language. In terms of this definition, a DFA can be viewed
as a degenerate FDFA. The right language of an FDFA state is recursively defined,
and this provides a formal definition of an FDFA’s language. Starting with the DFA
(seen as a degenerate FDFA), we then show how to build incrementally a sequence
of language-equivalent FDFAs. At each increment a set of arcs is replaced with a
single failure arc while preserving the right languages of all states involved in such a
transformation. As a consequence, the language recognised by FDFAs produced from
transformation to the next remains invariant.

The matter of which set of arcs to select for transformation at each next iteration
step is non-trivial. In general, there will be many possibilities, different selections
leading to different FDFAs. One of the complications is that so-called divergent cycles
of failure arcs have to be avoided (although non-divergent cycles may be tolerated).

To ensure that all candidate arcs for transformation are identified, we turn to
formal concept analysis (FCA) – a domain of study in which a so-called (formal)
concept lattice identifies clusters of objects that share common attributes [2]. We
show how information about a complete DFA can be encapsulated in what we call a
state/out-transition concept lattice. The state/out-transition lattice isolates arc sets
that could potentially be replaced by failure arcs, and the arc redundancy measure
is used to prioritise which sets to first select for such replacement. In this sense,
we approximate a greedy algorithm. We also indicate how to proceed in order to
render the algorithm a strictly greedy one, at some cost to the algorithm’s efficiency.
Since the greediness does not guarantee optimality, finding an efficient algorithm for
deriving an arc-minimal language-preserving FDFA remains an open problem.

In summary, then, Section 2 provides the necessary formal material about FDFAs,
while Section 3 introduces the reader to the FCA theory about concept lattices that
is needed in this paper. Section 4 then shows how to build a state/out-transition
concept lattice from a DFA. It also provides an algorithm which uses such a lattice
to derive a language equivalent FDFA. Because the resulting FDFA retains all the
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original DFA states, the algorithm is characterised as a DFA-homomorphic algorithm.
In Section 5 we point to additional work on this theme that is currently on our
agenda. This includes algorithms under development which introduce failure arcs to
new states derived directly from the lattice. Because of this, these may be described
as lattice-homomorphic algorithms. However, full elaboration of these algorithms will
be provided in subsequent research contributions.

2 Failure Deterministic Finite Automata

In defining and discussing an FDFA below, we rely on the following conventions and
general notation.

– Where convenient, a function will be regarded as a set of pairs, the first element
being from its domain and the second from its range. A function which is not
guaranteed to be total but may be, is called a possibly partial function.

– The domain of any function f is denoted by dom f . If q /∈ dom f for the possibly
partial function f , then this is denoted by f(q) = ⊥.

– A DFA denoted by D = (Q,Σ, δ, F, s) is considered, where Q is the DFA’s set of
states; Σ is its alphabet; δ is the transition function mapping state / symbol pairs
to a new state; s is the start state; and F is the set of final states.

– We use Σq = {a : δ(q, a) 6= ⊥} to denote symbols labeling out-transitions of state
q, and /Σq for Σ \Σq. A complete DFA (sometimes called a total DFA, because δ
is a total function) is characterised by the fact that Σq = Σ for all q ∈ Q. Note
that any DFA can easily be converted to a language-equivalent complete DFA by
simply introducing an arc to a common sink state for every state q and symbol a
such that δ(q, a) = ⊥.

– We will also use the function head : Σ+ → Σ where head(av) = a; and the function
tail : Σ+ → Σ∗ where tail(av) = v.

– We define the extended transition function δ∗ : Q × Σ∗ → Q by δ∗(q, w) = q if
w = ε and by δ∗(q, w) = δ∗(δ(q, head(w)), tail(w)) otherwise.

– Given δ∗, the language of D is defined by L(D) = {w | δ∗(s, w) ∈ F}.
– If L ⊆ Σ∗ and u ∈ Σ then u · L denotes the prefixing of all elements in L by the
symbol u, i.e. u · L = {uw : w ∈ L}. Of course, u · ∅ = ∅.

Definition 1 (FDFA). F = (Q,Σ, δ, f, F, s) is an FDFA if f : Q → Q is a possibly
partial function and D = (Q,Σ, δ, F, s) is a DFA.

We shall callD the embedded DFA of F and f the failure function of F. If q ∈ dom f,
then q is called a failure state.

Definition 2 (Right language of an FDFA’s state). The right language of state q

in FDFA F = (Q,Σ, δ, f, F, s), denoted by
−→
L (F, q), is defined as the smallest language

such that
−→
L (F, q) =

−→
L δ(F, q) ∪

−→
L f(F, q), where

−→
L δ(F, q) =





⋃

b∈Σq

b ·
−→
L (F, δ(q, b))



 ∪

{

{ε} if q ∈ F

∅ otherwise

−→
L f(F, q) =

{−→
L (F, f(q)) ∩ ( /ΣqΣ

∗) if f(q) 6= ⊥

∅ otherwise
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Thus, the right language of an FDFA in state q, written
−→
L (F, q), consists of

three components: (1) all strings that can be generated from that state by making a
conventional DFA transition to the next state on one of the out-transition symbols

in Σq; (2) ε if q is final; and (3) those words in
−→
L (F, f(q)) (the right language of the

next state as determined by the failure function at q) that begin with a symbol not
in Σq, because any word beginning with a symbol in Σq would already have caused
a conventional DFA transition from q.

(Such a recursive definition of right language is well-formed. The above definition

essentially gives rise to a finite set of equations with variables
−→
L (F, q),

−→
L δ(F, q) or

−→
L f(F, q) (for all states q) on the left-hand side. All of those equations are either right-
linear or chain-rules, and Gaussian elimination/substitution can be used to partially
solve them, leaving a limited number of self- or mutually-recursive equations. Those
equations are solvable (as a regular language) using Arden’s lemma [20, Lemma 2.9,
page 100]. See [20, Section 4.3.1, page 133] for a detailed example resembling this
one.)

Definition 3 (Language of an FDFA). The language of an FDFA F is denoted

by L(F) and is defined as
−→
L (F, s), where s denotes the start state of F.

Definition 4 (FDFA equivalence). An FDFA D (which may possibly be a DFA)
is said to be (language) equivalent to an FDFA F iff L(F) = L(D). This will be
denoted by F ≡ D.

Clearly, the embedded DFA of an FDFA is not, in general, equivalent to the
FDFA, but it is in the degenerate case, i.e. when f = ∅. As previously noted, a DFA
can therefore be seen as a special case of an FDFA – it is an FDFA that has a
degenerate failure function.

Note that for a given FDFA, there could be many equivalent DFAs and vice versa.
It is well known that the regular languages partition the set of DFAs into equivalence
classes. Thus, each regular language R defines a class ED(R) = {D | D is a DFA ∧
L(D) = R} that is disjoint from every other such class. Similarly, the regular lan-
guages also induce equivalence classes of FDFAs so that for regular language R there
is a unique and partitioning set of FDFAs EF(R) = {F | F is an FDFA∧L(F) = R}.
Since every DFA is a degenerate FDFA, ED(R) ⊆ EF(R).

The algorithm proposed in Section 4 may be thought of as starting off with D ∈
ED(R) and deriving a sequence of Fi ∈ EF(R), terminating when there are no further
opportunities for removing elements of δ while adding elements of f.

The FDFA F produced by that algorithm can be used for recognising whether a
string x is a member of L(F). Algorithm 1 shows how this can be done. It assumes
FDFA F = (Q,Σ, δ, f, F, s) is given.

In this text, the Guarded Command Language (GCL) is used to specify algo-
rithms. This minimalist and easy to use specification language was invented by Dijk-
stra [7] and remains widely in use because of its conciseness and precision [14].

We rely on GCL’s multiple guarded command format for the loop. In this form,
the loop comprises of two guarded commands of the form G → S where G is a
boolean expression and S is a command. All guards are evaluated at each iteration,
and a statement is non-deterministically selected among those whose guards evaluate
to true. If no guard evaluates to true, the loop terminates1.

1 cand and cor stand for “conditional and” and “conditional or” respectively, i.e. the equivalent of
the short circuit operators && and ‖ in C++, Java, etc.
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The virtue of this multiple guarded command loop format is that it highlights
the symmetry with standard DFA acceptance. The standard algorithm is identical to
Algorithm 1, but with the second loop guard absent.

Algorithm 1 (Test for string membership of an FDFA’s language)
y, q := x, s;
{ Invariant: y is untested and the current state is q }
do (y 6= ε) cand (δ(q, head(y)) 6= ⊥) → q, y := δ(q, head(y)), tail(y)
[] (y 6= ε) cand ((δ(q, head(y)) = ⊥) ∧ (f(q) 6= ⊥)) → q := f(q)
od;
{ ((y = ε) cor ((δ(q, head(y)) = ⊥) ∧ (f(q) = ⊥))) }
accept := (y = ε) ∧ (q ∈ F )
{ post (accept ⇔ x ∈ L(F)) }

However, Algorithm 1 embodies a potential complication that does not arise in
its DFA counterpart. The presence of cycles in the failure function could lead to
complications. In order to understand the meaning and consequences of such cycles,
we begin by defining the notion of a failure path.

Definition 5 (Failure path and failure alphabet). A sequence of FDFA states,

〈p0, p1, . . . , pn〉 of length n > 0 is called a failure path from p0 to pn, written p0
f
❀ pn,

iff ∀i ∈ [0, n) : f(pi) = pi+1. For such a failure path, Σ
p0

f
❀pn

= /Σp0 ∩ /Σp1 ∩ · · · ∩ /Σpn−1

is its failure alphabet.

Where convenient, pi
f
❀ pj will be used as a predicate to assert that the FDFA

under consideration has a failure path from state pi to state pj.
In Algorithm 1, the transition which occurs on symbols in Σq is determined by δ,

and if q is a failure state then the transition to occur on symbols in /Σq is determined
by the failure function f. The failure alphabet of a failure path is therefore the set
of symbols, each of which is guaranteed to cause failure transitions from the start of
the failure path to its end. This insight becomes important in distinguishing between
failure paths that form cycles. We shall simply call a failure path that forms a cycle

a failure cycle and designate it by pi
f
❀ pi, where pi is any state in the cycle.

Definition 6 (Divergent failure cycle). A failure cycle pi
f
❀ pi is divergent iff

Σ
pi

f
❀pi

6= ∅.

The term divergent is inspired by its use in process algebras. In that domain, a
divergent concurrent system is one that is trapped into a cycle of non-productive state
changes [19]. A divergent failure cycle in an FDFA would cause analogous behaviour
in Algorithm 1. If the algorithm is examining symbol a in state pi, where a ∈ Σ

pi
f
❀pi

,

then the algorithm will cycle non-productively through the divergent failure cycle
without ever consuming symbol a. Clearly, therefore, it is advisable to avoid divergent
failure cycles when constructing an FDFA. On the other hand, cycles which are not
divergent (i.e. where Σ

pi
f
❀pi

= ∅) are harmless, since it is guaranteed that at some

state in the cycle, a symbol will eventually be consumed.
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Definition 1 of an FDFA is as general as possible. It does not preclude failure
cycles, whether or not they are divergent. It allows for useless states and transitions,
including useless failure transitions. For example, a failure arc from state q where
Σq = Σ serves no purpose, but is not prohibited in the FDFA definition. We do not
consider such cases in detail here, but ensure that they are avoided in the FDFA
construction algorithm to be described.

Note in passing that the failure function description in [4] also allows for failure
arcs in a general DFA setting, but no algorithm for constructing FDFAs in general
is presented, and all failure arc cycles are prohibited there, even if they are not
divergent. From what has been discussed above, this would seem to be an overly
strict requirement.

Algorithm 1 operates in O(|w|) time in the best case, but in the worst case it
has to traverse the path of an entire failure cycle before having a symbol of w con-
sumed. Since the longest possible non-divergent cycle is |Q|−1, the algorithm’s worst
case performance is described by O(|w| × (|Q| − 1)). The corresponding DFA string
membership algorithm operates in O(|w|).

However, there is a potential savings in arc storage if an FDFA is used instead
of a DFA. For example, consider the DFA depicted in Figure 1a. It has a total of
sixteen arcs. (Doubly labelled arcs are counted twice, because storage is required to
represent each transition.) The FDFA in Figure 1b is language equivalent to the DFA

p1 p2 p3 p4
b

a

c

b
c

a

c

a, b
a, d b, d

c, d
d

(a) Initial DFA: |δ| = 16, |f| = 0

p1 p2 p3 p4c

a, b
a, d d

d
d

f

f f

(b) FDFA after two iterations of Algorithm 2:
|δ| = 8, |f| = 3

Figure 1: Initial DFA and an equivalent FDFA. All states are considered final

in Figure 1a. The FDFA has only eight arcs, and three failure transitions (represented
by dashed arcs). This saving in arcs is possible because a conventional DFA sometimes
contains redundancies, i.e. it may have transitions to the same state from several
destinations, all on the same symbol2. For example, in Figure 1a, all states make a
transition to state p1 on a, the transition from p4 on a being an exception. All states
transition to state p2 on b, and all states transition to state p3 on c.

The FDFA in the Figure 1b is designed to handle transitions that are unique at
each state, and to fail over to another state if the transition to be made on a set
of symbols is shared with other states. For example, in state p2, a transition on d is
determined locally, yet on all other symbols, a failure transition is made to p1, since
on those symbols the behaviour from the states is the same.

2 DFA minimization relies on such redundancy, but only works in case of right language equality

between states, vs. containment in the FDFA case.
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Thus, to recognise the string abca, the following DFA transitions are made in
Figure 1a

p4
a

−→ p2
b

−→ p2
c

−→ p3
a

−→ p1

However, in the case of the FDFA in Figure 1b the transitions made are as follows

p4
a

−→ p2
f

−→ p1
f

−→ p4
b

−→ p2
f

−→ p1
f

−→ p4
c

−→ p3
f

−→ p1
a

−→ p1

An FDFA therefore needs at most O(|Q|× (Σ+1)) to store δ and f. However, the
actual storage will be decreased from this worst case estimate to the extent that δ can
be minimized when constructing the FDFA. The challenge taken up here, therefore, is
to derive from a DFA (seen here as a degenerate FDFA) say F′ = (Q′, Σ, δ′, ∅, s′, F ′),
an equivalent FDFA, say F = (Q,Σ, δ, f, s, F ) such that |δ′| − (|δ| + |f|) is as large
as possible. Because of the benchmarking results reported in [22], we conjecture that
the time penalty will be about 20%.

For the purposes of the algorithm, we assume F′ to be a complete DFA, i.e. for
every state q, Σq = Σ. Furthermore, we regard the various states as constants
(i.e. Q = Q′, s = s′ and F = F ′). The algorithm thus preserves the originating
DFA’s shape, and will, for this reason, be called a DFA-homomorphic algorithm. In
the algorithm δ and f are variables whose values change from their initial values δ′

and f′. The algorithm also ensures that at every step the right language of every state
remains unchanged.

A theorem which relies on a predicate FailPred(P, q,X) indicates conditions under
which the right language is preserved. The predicate is defined as follows.

Definition 7 (FailPred(P, q,X)). For P ∪ {q} ⊆ Q and X ⊆ Σ, FailPred(P, q,X)
is defined by

∀p ∈ P : (

(Σp = Σ) (1)

∧ (f(p) = ⊥) (2)

∧ (∀(a ∈ X) : (δ(p, a) = δ(q, a))) (3)

∧ (q
f
❀ p ⇒ (Σ

q
f
❀p

∩X = ∅)) (4)

)

A scenario in which this predicate holds is sketched in Figure 2a, where it is assumed
that P = {p}, Σ = {a, b, c} and X = {a, b}. Notice that the scenario in the figure
complies with the first three conjuncts of Definition 7, i.e. (Σp = Σ), complying with
conjunct 1; (∀a ∈ X : (δ(p, a) = δ(q, a)), complying with conjunct 3 ; and (f(p) = ⊥),
complying with conjunct 2. Furthermore, the figure shows that f(q) = p, and thus

q
f
❀ p. Clearly, Σ

q
f
❀p

= /Σq = {c} and since {c} ∩ X = ∅, conjunct 4 holds as well.

Thus, Figure 2a depicts a scenario in which FailPred(P, q,X) holds.
Figure 2b shows the result of removing the a and b transitions from p, and pro-

viding a failure transition from p to q. Note that this can be done without disturbing
the right languages of any of the states in the figures. Note also that because con-
junct 4 holds, we can be sure that a divergent cycle has not been created. Theorem 8
generalises these observations.
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p q

r0 r1 r2

c a
b

a b

f

(a) Before

p q

r0 r1 r2

c
a b

f

f

(b) After

Figure 2: Theorem 8 applied, where X = {a, b}

Theorem 8 (A transformation that preserves right languages and does not
introduce any failure cycle). Let F be an FDFA such that P ∪ {q} ⊆ Q, X ⊆ Σ
and FailPred(P, q,X) holds. Then the following transformation on each p ∈ P leaves
the right languages of all states unchanged and does not introduce any failure cycle:

Delete from δ all transitions from p on each symbol in X, and add a failure
arc from p to q.

Applying such a transformation to FDFA F′ results in an FDFA F such that
F′ ≡ F, in which |δ| has decreased by |X| and |f| has increased by 1. Theorem 8 may
be applied repeatedly, as long as P, q and X satisfying the definition above can be
found. In Section 4 we will show how formal concept lattices, introduced in the next
section, can be used to identify such P, q and X.

3 State / Out-Transition Formal Concept Lattices

A formal concept lattice can be defined in a domain of discourse consisting of a set of
objects, and a set of attributes that the various objects possess. In such a domain, a
concept is considered to be a pair of two sets: a set of objects, the concept’s extent ;
and a set of attributes, the concept’s intent. All objects in the concept’s extent have in
common all and only the attributes in the intent. Furthermore, the extent is maximal
over the objects: there may not be any object outside of the concept’s extent which
also possesses all the attributes in the intent.

In the theory known as formal concept analysis, such concepts are considered to be
partially ordered: if ci and cj are two arbitrary concepts in the domain, and if ext(c)
denotes concept c’s extent, then ci ≤ cj ⇔ ext(ci) ⊆ ext(cj). Equality holds if and
only if i = j. Furthermore, it can be shown that there is a duality in the role of objects
and attributes, such that if int(c) denotes concept c’s intent, then ci ≤ cj ⇔ int(cj) ⊆
int(ci). The relationship between objects and attributes in a given domain can be
presented as a cross table known as a context. An example is shown in Table 1. The
rows represent the objects p1, . . . , p4 and the columns represent attributes designated
〈a, p1〉, 〈a, p2〉, 〈b, p2〉, . . . , 〈d, p4〉. (We discuss the reason for these rather strange
attributes later.) An entry in a cell indicates that the relevant object has the indicated
attributes. E.g. object p4 has attributes {〈a, p2〉, 〈b, p2〉, 〈c, p3〉, 〈d, p4〉}.

It can be shown that the partial ordering over all possible concepts implied by
such a context, constitutes a lattice. Various lattice construction algorithms have been
devised to extract all possible concepts from a given context and to arrange them
in a graph structure that reflects their parent/child relationships [17,12]. Figure 3
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shows a line diagram, generated from the context in Table 1, showing the ordering of
concepts in the lattice. Concepts have been labelled c1, c2, c3, c4, c123 and c1234.

〈a, p1〉 〈a, p2〉 〈b, p2〉 〈c, p3〉 〈d, p1〉 〈d, p2〉 〈d, p3〉 〈d, p4〉
p1 1 1 1 1
p2 1 1 1 1
p3 1 1 1 1
p4 1 1 1 1

Table 1: The state/out-transition context of DFA in Figure 1a

c2
c3

c1 c4

c123
c1234

p2 p3 p1 p4

〈d, p2〉
〈d, p3〉

〈d, p1〉 〈d, p4〉 〈a, p2〉

〈a, p1〉
〈c, p3〉 〈b, p2〉

Figure 3: State/out-transition formal concept lattice of DFA in Figure 1a

Consider concept c123. Its extent is given by ext(c123) = {p1, p2, p3}, while its in-
tent is int(c123) = {〈a, p1〉, 〈c, p3〉, 〈b, p2〉}. Thus, concept c123 indicates that objects
p1, p2 and p3 share all and only the attributes 〈a, p1〉, 〈c, p3〉 and 〈b, p2〉.

Concept c123 illustrates that the extent of a concept is the union of the extents of
its children, together with any of its so-called “own objects”. In this case, c123 does
not have any own objects. Its children are c1, c2 and c3, and their respective extents
correspond to their own objects, which are explicitly shown in the diagram – i.e. their
extents are {p1}, {p2} and {p3} respectively. Dually, concept c123 also illustrates the
fact that the intent of a concept is the union of the intents of all its parents, together
with any of its so-called “own attributes”. It has 〈a, p1〉 as its single own attribute,
and its only parent, c1234, adds its intent, {〈c, p3〉, 〈b, p2〉}, to that of c123.

Information in a DFA’s transition graph can be represented in a context, and
hence in a formal concept lattice. Here we propose one particular way to do so and
call the result a state/out-transition (formal concept) lattice. For a DFA D, we denote
this lattice by SO(D). The set of objects in SO(D) is simply the set of states in D,
namely Q. Each attribute is a pair consisting of the label of an out-transition from
some state, and the corresponding destination state. Formally, 〈b, p〉 is an attribute
in SO(D) iff ∃ : q ∈ Q : δ(q, b) = p. In this case, 〈b, p〉 is an attribute of object q. The
context in Table 1 was derived from the DFA in Figure 1a in precisely this way, and
hence Figure 3 shows SO(D).

The space and time requirements for building the lattice’s context table are deter-
mined by the size of δ, i.e. they are O(|Q|2×|Σ|). An SO-lattice is a constrained lattice
in the sense that its objects are constrained to each have exactly one attribute from
each of |Σ| classes, each class having |Q| attributes. In [13] it is shown that the number

of concepts for such a lattice is bound from above by min((1 + |Σ|)|Q|, |Q|
(1+|Σ|)

21+|Σ|).
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For convenience, we shall denote this expression by LB(Σ,Q). This means that for
a fixed alphabet, an upper bound of the lattice size eventually becomes linearly de-
pendent on the number of states.

4 A DFA-Homomorphic Algorithm

Consider an arbitrary concept c in SO(D), the state/out-transition lattice for a
complete DFA D. By definition, all states in ext(c) share all and only the out-
transitions in int(c). (Of course, each state in ext(c) may have other out-transitions.)
For convenience, let m = |ext(c)| and n = |int(c)|. Let q be any state in ext(c), let
P = ext(c)\{q} and let X = dom int(c). Thus X ⊆ Σ is the set of symbols on which
transitions to common states are made from all states in ext(c).

We argue that FailPred(P, q,X) is true because the following holds for each p ∈ P .
Conjunct 1 of the predicate is true because the DFA is assumed to be complete.
Conjuncts 2 and 4 of the predicate hold because a DFA has no failure arcs. Conjunct 3
holds by the construction of SO(D) and by the definition of a concept in a concept
lattice. Therefore Theorem 8 may be applied to produce an equivalent FDFA. This
entails the following arc changes:

For each p ∈ P remove all outgoing arcs represented in int(c). Thus, the
number of arcs removed from D is n(m− 1).
For each p ∈ P install an outgoing failure arc to q. Thus, the number of arcs
added to D is (m− 1).

As a result of these steps, (n−1)(m−1) arcs will be removed from the initial structure.
For a given concept, c, we will call (n− 1)(m− 1) its arc redundancy, denoted by

ar(c). For example, ar(c123) = (3−1)×(3−1) = 4 since |int(c123)| = |ext(c123)| = 3.
If the above steps to construct a failure arc are applied to a concept c for which

ar(c) = 0, there will be no decline in the number of arcs. Conversely, the ‘maximum’
decline is obtained if one selects from all the concepts, the one for which ar(c) is
‘maximal’. (Note that ‘maximal’ is used here in terms of the initially computed ar(c)
– it may not necessarily be maximal in terms of the current arc redundancy values, as
we will discuss below.) This suggests the following ‘greedy’ algorithm for constructing
FDFA F from DFA D, assuming that SO(D) is available.

Algorithm 2
f, O := ∅, Q;
{ Assume that AR is set of concepts with non-zero arc redundancy }
{ Invariant: (dom f = Q \O) ∧ (Concepts in AR have not been processed) }
do ((O 6= ∅) ∧ (AR 6= ∅)) →

c := maxcar(AR);
AR := AR \ {c};
let q ∈ ext(c);
P := ext(c) \ {q};
for each (p ∈ P ∩O) →

if ¬(q
f
❀ p) COR ((Σ

q
f
❀p

∩ dom int(c)) = ∅) →

for each (〈a, r〉 ∈ int(c)) →
δ := δ \ {〈p, a, r〉}

rof ;
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f(p), O := q, O \ {p};

[] (q
f
❀ p) CAND ((Σ

q
f
❀p

∩ dom int(c)) 6= ∅) → skip

fi
rof

od

The set, AR, of concepts with non-zero arc redundancy is easily computed, and
is assumed to be available to the algorithm. The algorithm initialises and maintains
the set O of states which do not originate failure transitions, i.e. O is defined by
dom f = Q \ O. A function maxcar : P(SO(D)) → SO(D) is assumed which selects
from AR a concept, c with the maximum arc redundancy as initially determined.

Note that, as stated above, q is arbitrarily selected from ext(c) to act as the
target for failure arcs. The outer for each loop identifies states remaining in ext(c)
which may serve as sources of failure arcs. Such states have to be in O (to ensure
compliance with conjunct 2 of Definition 7). The if statement then ensures that δ
arcs are replaced by f (within the inner for each loop) if and only if conjunct 4 of
Definition 7 holds3, thus ensuring that divergent cycles are never produced.

Applying the algorithm to the DFA in Figure 1a, and making use of the state/out-
transition lattice shown in Figure 3 yields the FDFA shown in Figure 4a after the
first iteration of the outer do loop. To see that this is so, note that upon entering the
loop, AR = {c123, c1234} where ar(c123) = 4, ar(c1234) = 3 and O = {p1, p2, p3, p4}.
Thus, in the first iteration maxcar(AR) returns concept c123 and the algorithm re-
moves c123 from AR. Choosing q = p1 (any element of P = {p1, p2, p3} could have
been chosen) as the destination of all failure nodes in this iteration, the for each
loop removes the following 6 arcs (δ mappings) from the DFA in Figure 1a:

{〈p2, a, p1〉, 〈p2, b, p2〉, 〈p2, c, p3〉, 〈p3, a, p1〉, 〈p3, b, p2〉, 〈p3, c, p3〉}

Thereafter, it inserts two failure transitions: {〈p2, p1〉, 〈p3, p1〉}. It also changes O to
{p1, p4}. As a result, the number of arcs has been reduced by 4 – as predicted by
c123’s arc redundancy.

p1 p2 p3 p4
b

c

c

a, b
a, d d

d
d

f

f

(a) After first iteration: |δ| = 9, |f| = 2

p1 p2 p3 p4c

a, b
a, d d

d
d

f

f f

(b) After second iteration: |δ| = 8, |f| = 3

Figure 4: FDFA’s as Algorithm 2 progresses

3 The guard of the if statement, namely ¬(q
f
❀ p) COR (Σ

q
f
❀p

∩ dom int(c) = ∅)), is logically

equivalent to (q
f
❀ p) ⇒ (Σ

q
f
❀p

∩ dom int(c) = ∅), which in turn corresponds to conjunct 4 in

Definition 7 in which dom int(c) takes the role of X.
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After the second iteration of the outer do loop the FDFA in Figure 4b is obtained.
(It is a copy of Figure 1b, reproduced here for convenience.) Upon entering the loop
for a second time, AR = {c1234}. maxcar(AR) therefore returns concept c1234. At
this point one of the states in ext(c1234) = {p1, p2, p3, p4} has to be selected as the
destination of all failure nodes in this iteration.

The for each loop removes from the FDFA in Figure 4a the arcs 〈p1, b, p2〉 and
〈p1, c, p3〉 and inserts failure transition {〈p1, p4〉}, reducing the number of arcs by 1.

We offer the following reflections, based on the algorithm and the example just
given.

1. Out-transitions from p2 and p3 are not considered in the outer for each loop,
since these became failure states in the previous iteration and were removed from
set O. To have more than one failure arc emanating from a state would mean
that we could no longer speak of a failure function, and we would not know under
which circumstances which failure arc should be selected. This, of course, is the
reason for conjunct 2 in Definition 7.

2. Suppose that instead of selecting p4 from ext(c1234) as the failure arc destination,
p2 had been chosen. In this case, p1 and p4 would be candidate source states for
failure arcs to p2. (Again, p3 would be eliminated because it is already a failure
state.) The if statement within the for each loop would discover that a failure
arc 〈p1, p2〉 would result in a divergent failure cycle. Consequently, only failure
transition 〈p4, p2〉 would be added, and arcs 〈p4, c, p3〉 and 〈p4, b, p2〉 would be
removed.

3. It can easily be verified that the reduction in the number of arcs in the second
iteration is by 1, no matter which member of ext(c1234) is selected for the fail-
ure arc destination. This does not correspond to the initially computed value of
ar(c1234), namely 3. This is to be expected, because the algorithm as given above
computes concept arc redundancy only once – at the start of the algorithm. Con-
sequently, the algorithm in its above format näıvely ignores the fact that whenever
states are removed from O, the concept arc redundancies may change for those
concepts whose extents contain removed states. By implication, therefore, maxcar
is no longer guaranteed to choose as “greedily” as it might have. This potential
selection inefficiency could easily be overcome at the cost of recomputing concept
arc redundancy whenever s is removed from O. In such a case, the arc redundancy
of a concept whose extent contains s should account for the fact that s is not a
candidate for being the source of an second failure arc.

4. The way in which the target state for failure arcs, q, is selected in Algorithm 2
could also be optimised to enhance the algorithm’s greediness. Instead of selecting
an arbitrary state in ext(c), preference should be given to failure states (i.e. states
already in dom f). The reason for this heuristic is clear: when a state becomes a
source state (i.e. a failure state), its δ arcs are removed, but when a state becomes
a target state, no δ arcs are removed. Since an existing failure state is no longer
a candidate for becoming a source state, and therefore cannot contribute to the
removal of δ arcs, it might as well serve as the target of newly installed failure
arcs, thus allowing more states to become source states and thus allowing more
states to shed some of their δ arcs. If this heuristic is to be applied, then the
recomputation of arc redundancy mentioned in point 3 above should be suitably
adjusted.

5. The test to be carried out in the if statement of Algorithm 2 entails determining
whether a divergent cycle will arise if a failure arc is installed from state p to
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state q. Since cycle-determination is a well known task in general data structure
theory, details here are unnecessary. In the present context, a cycle cannot be
longer than |Q|. Furthermore cycles in a given FDFA have to be disjoint, since f

is a function. This considerably simplifies the task of identifying divergent cycles.
6. Consider the implications of providing a sink node to render a partial DFA com-

plete so that it may serve as input to Algorithm 2 to produce an FDFA. Of course,
there can be no guarantee that the number of arcs in the FDFA will be less than
in the originating partial DFA. However, it may be possible to remove some of
the inserted arcs from the FDFA. In particular, all arcs from non-failure states to
the sink state may safely be removed. This applies, even if the non-failure state
serves the target state of one or more failure states. Furthermore, noting that the
sink state will have loops back to itself on all symbols (as part of the completeness
requirement), it is possible that the sink state becomes the target of failure arcs
from other states. Such failure arcs could be removed as well. Notwithstanding
these few brief observations, the matter of converting partial DFAs to FDFAs
requires further study.

Additional details relating to algorithmic enhancements mentioned in points 3
and 4 above are briefly taken up in [15], and an example is also given to illustrate
the points that are made.

Recall from the previous section that the number of concepts in lattice SO(D) is
bound from above by LB(Σ,Q), giving a very rough upper bound for |AR| in our
algorithm. We expect the actual bound to be much lower than this, since it is not
clear that a state/out-transition lattice can reach the upper bound mentioned, and
many concepts may have no arc redundancy and thus not end up in AR. Nevertheless,
using that bound, and noting that O ⊆ Q, the outer do loop is executed at most
LB(Σ,Q) times under the assumption that AR is never recomputed and under the
unrealistic assumption that all concepts initially have a positive arc redundancy. This
bound also ignores the fact that the loop terminates when O becomes the empty set.

The outer for each loop is executed at most |Q| times, as both P and O are
subsets of Q. The complexity of computing the value of the guards of the if statement
is bounded by the maximum of |Q| (for failure path tracing) and |Σ| (for checking
intersection), while the inner for each loop has complexity at most |Σ|. Combining
this gives LB(Σ,Q) × |Q| × max(|Q|, |Σ|) × |Σ|) as a very coarse upper bound on
the algorithm’s time complexity.

5 The Next Steps

The foregoing has stimulated a number of future research questions and ideas relating
to FDFAs, their properties, their relation to DFAs, and their construction. They
include investigating transition and state minimality properties of FDFAs compared
to their DFA counterparts; directly constructing an FDFA from a regular expression;
handling partial DFAs; and constructing a DFA from a given FDFA. Additionally, we
are investigating alternative construction algorithms for producing an FDFA that is
language-equivalent to a given DFA. These also rely on a state/out-transition lattice,
but allow for the generation of new states that are derived from lattice concepts.
In this sense, they can be regarded as “lattice-homomorphic”. Refinements of the
DFA-homomorphic algorithm of Section 4 have also been developed. They relate to
the recomputation of arc redundancy and to optimised selection strategies for target
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state of a failure transition. The tradeoff between FDFA storage size reduction versus
processing speed is currently under empirical investigation. We refer the reader to [15]
for details regarding this and other future work.
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