
LZW Data Compression on

Large Scale and Extreme

Distributed Systems

Sergio De Agostino

Computer Science Department, Sapienza University, 00198 Rome, Italy

Abstract. Results on the parallel complexity of Lempel-Ziv data compression suggest

that the sliding window method is more suitable than the LZW technique on shared

memory parallel machines. When instead we address the practical goal of designing

distributed algorithms with low communication cost, sliding window compression does

not seem to guarantee robustness if we scale up the system. The possibility of imple-

menting scalable heuristics is instead offered by LZW compression. In this paper we

present two implementations of the LZW technique on a large scale and an extreme

distributed system, respectively. They are both derived from a parallel approximation

scheme of a bounded memory version of the sequential algorithm.

Keywords: compression, factorization, distributed system, scalability

1 Introduction

Lempel-Ziv compression [18], [19], [22] is based on string factorization. Two different
factorization processes exist with no memory constraints. With the first one (LZ1)
[19], each factor is independent from the others since it extends by one character the
longest match with a substring to its left in the input string (sliding window compres-
sion). With the second one (LZ2 or LZW) [22], each factor is instead the extension by
one character of the longest match with one of the previous factors. This computa-
tional difference implies that while sliding window compression has efficient parallel
algorithms [6], [11], [12], [3], LZW compression (a practical implementation of the LZ2
method [21]) is hard to parallelize [5]. This difference is maintained when the most
effective bounded memory versions of Lempel-Ziv compression are considered [15],
[2]. There are several heuristics for limiting the work-space of the LZW compression
procedure in the literature. The most effective is the “least recently used” strategy
(LRU). Hardness results inside Steve Cook’s class (SC) have been proved for this ap-
proach [15], implying the likeliness of the non-inclusion of the LZW-LRU compression
method in Nick Pippenger’s class (NC). Completeness results in SC have also been
obtained for a relaxed version of the LRU strategy (RLRU) [15]. RLRU was shown
to be as effective as LRU in [8], [9]. Therefore, RLRU is the most efficient among the
bounded memory versions of LZW compression. A simpler heuristic which is still ef-
fective is the RESTART strategy. Differently from LRU and RLRU, LZW-RESTART
is parallelizable [15]. Moreover, parallel decompression is possible (this is true also for
the unbounded memory version) [6], [7], [11], [12].

When we address the practical goal of designing distributed algorithms with low
communication cost sliding window compression does not seem to guarantee robust-
ness when we scale up the system [10], [11], [12], [2]. The possibility of implementing
scalable heuristics is instead offered by LZW-RESTART compression [11], [12], [13].
Traditionally, the scale of a system is considered large when the number of nodes has

Sergio De Agostino: LZW Data Compression on Large Scale and Extreme Distributed Systems, pp. 18–27.

Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 19

the order of magnitude of a thousand. Modern distributed systems may nowadays
consist of hundreds of thousands of nodes, pushing scalability well beyond traditional
scenarios (extreme distributed systems). In this paper we present two implementa-
tions of the LZW technique on a large scale and an extreme distributed system,
respectively. They are both derived from a parallel approximation scheme of the
bounded memory version of the sequential algorithm presented in [13]. The approach
for extreme distributed systems could be applied to arbitrarily smaller scale systems
as well, but the alternative implementation we propose is simpler.

In Section 2 we describe Lempel-Ziv data compression while the bounded memory
versions are given in Section 3. Section 4 briefly describes past work on the study of
the parallel complexity of Lempel-Ziv methods since it is somehow consistent with
the practical results on the distributed implementation of LZW compression shown
in Section 5. Conclusion and future work are given in Section 6.

2 Lempel-Ziv Data Compression

Lempel-Ziv compression is a dictionary-based technique. In fact, the factors of the
string are substituted by pointers to copies stored in a dictionary. LZ1 (LZ2) com-
pression is also called the sliding (dynamic) dictionary method.

2.1 LZ1 Compression

Given an alphabet A and a string S in A∗ the LZ1 factorization of S is S =
f1f2 · · · fi · · · fk where the factor fi is the shortest substring which does not occur
previously in the prefix f1f2 · · · fi for 1 ≤ i ≤ k. With such a factorization, the en-
coding of each factor leaves one character uncompressed. To avoid this, a different
factorization was introduced (LZSS factorization) where fi is the longest match with
a substring occurring in the prefix f1f2 · · · fi if fi 6= λ, otherwise fi is the alphabet
character next to f1f2 · · · fi−1 [20]. fi is encoded by the pointer qi = (di, ℓi), where di
is the displacement back to the copy of the factor and ℓi is the length of the factor
(LZSS compression). If di = 0, li is the alphabet character. In other words the dic-
tionary is defined by a window sliding its right end over the input string, that is, it
comprises all the substrings of the prefix read so far in the computation. It follows
that the dictionary is both prefix and suffix since all the prefixes and suffixes of a
dictionary element are dictionary elements.

2.2 LZ2 Compression

The LZ2 factorization of a string S is S = f1f2 · · · fi · · · fk where the factor fi is the
shortest substring which is different from one of the previous factors. As for LZ1 the
encoding of each factor leaves one character uncompressed. To avoid this a different
factorization was introduced (LZW factorization) where each factor fi is the longest
match with the concatenation of a previous factor and the next character [21]. fi is
encoded by a pointer qi to such concatenation (LZW compression). LZ2 and LZW
compression can be implemented in real time by storing the dictionary with a trie
data structure. Differently from LZ1 and LZSS, the dictionary is only prefix.

20 Proceedings of the Prague Stringology Conference 2012

2.3 Greedy versus Optimal Factorization

The pointer encoding the factor fi has a size increasing with the index i. This means
that the lower one is the number of factors for a string of a given length the better
is the compression. The factorizations described in the previous subsections are pro-
duced by greedy algorithms. The question is whether the greedy approach is always
optimal, that is, if we relax the assumption that each factor is the longest match can
we do better than greedy? The answer is negative with suffix dictionaries as for LZ1
or LZSS compression. On the other hand, the greedy approach is not optimal for
LZ2 or LZW compression. However, the optimal approach is NP-complete [16] and

the greedy algorithm approximates with an O(n
1

4) multiplicative factor the optimal
solution [14].

3 Bounded Size Dictionary Compression

The factorization processes described in the previous section are such that the number
of different factors (that is, the dictionary size) grows with the string length. In
practical implementations instead the dictionary size is bounded by a constant and
the pointers have equal size. While for sliding window compression this can be simply
obtained by bounding the match and window lengths (therefore, the left end of the
window slides as well), for the LZW compression the dictionary elements are removed
by using a deletion heuristic.

3.1 The Deletion Heuristics

Let d + α be the cardinality of the fixed size dictionary where α is the cardinality
of the alphabet. With the FREEZE deletion heuristic, there is a first phase of the
factorization process where the dictionary is filled up and “frozen”. Afterwards, the
factorization continues in a “static” way using the factors of the frozen dictionary.
In other words, the LZW factorization of a string S using the FREEZE deletion
heuristic is S = f1f2 · · · fi · · · fk where fi is the longest match with the concatenation
of a previous factor fj, with j ≤ d, and the next character.

The shortcoming of the FREEZE heuristic is that after processing the string for a
while the dictionary often becomes obsolete. A more sophisticated deletion heuristic
is RESTART, which monitors the compression ratio achieved on the portion of the
input string read so far and, when it starts deteriorating, restarts the factorization
process. Let f1f2 · · · fj · · · fi · · · fk be such a factorization with j the highest index less
than i where the restart operation happens. Then, fj is an alphabet character and fi
is the longest match with the concatenation of a previous factor fh, with h ≥ j, and
the next character (the restart operation removes all the elements from the dictionary
but the alphabet characters). This heuristic is used by the Unix command “compress”
since it has a good compression effectiveness and it is easy to implement. Usually,
the dictionary performs well in a static way on a block long enough to learn another
dictionary of the same size. This is what is done by the SWAP heuristic. When the
other dictionary is filled, they swap their roles on the successive block.

The best deletion heuristic is the LRU (last recently used) strategy. The LRU
deletion heuristic removes elements from the dictionay in a “continuous” way by
deleting at each step of the factorization the least recently used factor, which is not a
proper prefix of another one. In [15] a relaxed version (RLRU) was introduced. RLRU

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 21

partitions the dictionary in p equivalence classes, so that all the elements in each class
are considered to have the same “age” for the LRU strategy. RLRU turns out to be
as good as LRU even when p is equal to 2 [8], [9]. Since RLRU removes an arbitrary
element from the equivalence class with the “older” elements, the two classes (when
p is equal to 2) can be implemented with a couple of stacks, which makes RLRU
slightly easier to implement than LRU in addition to be more space efficient. SWAP
is the best heuristic among the “discrete” ones.

3.2 Compression with Finite Windows

As mentioned at the beginning of this section, bounded size dictionary compression
can also be obtained by sliding a fixed length window and by bounding the match
length. The window length is usually several thousands kilobytes. The compression
tools of the Zip family, as the Unix command “gzip” for example, use a window size
of at least 32K.

3.3 Greedy versus Optimal Factorization

Greedy factorization is optimal for compression with finite windows since the dic-
tionary is suffix. With LZW compression, after we fill up the dictionary using the
FREEZE, RESTART or SWAP heuristic, the greedy factorization we compute with
such dictionary is not optimal since the dictionary is not suffix. However, there is
an optimal semi-greedy factorization which is computed by the procedure of figure
1 [17], [4]. At each step, we select a factor such that the longest match in the next
position with a dictionary element ends to the rightest. Since the dictionary is prefix,
the factorization is optimal. However, greedy factorizations are very close to optimal
in practice even if they approximate the optimal solution with a multiplicative factor
equal to the maximum match length in the worst case.

j:=0; i:=0
repeat forever

for k = j + 1 to i + 1 compute

h(k): xk...xh(k) is the longest match in the kth position
let k′ be such that h(k′) is maximum

xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure

4 Lempel-Ziv Compression on a Parallel System

LZSS (or LZ1) compression can be efficiently parallelized on a PRAM EREW [6],
[2], [3], that is, a parallel machine where processors access a shared memory with-
out reading and writing conflicts. On the other hand, LZW (or LZ2) compression is
P-complete [5] and, therefore, hard to parallelize. Decompression, instead, is paral-
lelizable for both methods [7]. The asymmetry of the pair encoder/decoder between
LZ1 and LZ2 follows from the fact that the hardness results of the LZ2/LZW encoder
depend on the factorization process rather than on the coding itself.

22 Proceedings of the Prague Stringology Conference 2012

As far as bounded size dictionary compression is concerned, the “parallel com-
putation thesis” claims that sequential work space and parallel running time have
the same order of magnitude giving theoretical underpinning to the realization of
parallel algorithms for LZW compression using deletion heuristic. However, the the-
sis concerns unbounded parallelism and a practical requirement for the design of a
parallel algorithm is a limited number of processors. A stronger statement is that
sequential logarithmic work space corresponds to parallel logarithmic running time
with a polynomial number of processors. Therefore, a fixed size dictionary implies
a parallel algorithm for LZW compression satisfying these constraints. Realistically,
the satisfaction of these requirements is a necessary but not a sufficient condition
for a practical parallel algorithm since the number of processors should be linear.
The SCk-hardness and SCk-completeness of LZ2 compression using, respectively, the
LRU and RLRU deletion heuristics and a dictionary of polylogarithmic size show
that it is unlikely to have a parallel complexity involving reasonable multiplicative
constants [15]. In conclusion, the only practical LZW compression algorithm for a
shared memory parallel system is the one using the FREEZE, RESTART or SWAP
deletion heuristics. Unfortunately, the SWAP heuristic does not seem to have a paral-
lel decoder. Since the FREEZE heuristic is not very effective in terms of compression,
RESTART is a good candidate for an efficient parallel implementation of the pair
encoder/decoder even on a distributed system. We will see these arguments more in
detail in the next section.

5 Lempel-Ziv Compression on a Distributed System

Distributed systems have two types of complexity, the interprocessor communication
and the input-output mechanism. While the input/output issue is inherent to any
parallel algorithm and has standard solutions, the communication cost of the com-
putational phase after the distribution of the data among the processors and before
the output of the final result is obviously algorithm-dependent. So, we need to limit
the interprocessor communication and involve more local computation to design a
practical algorithm. The simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no communication cost. Such
array of processors could be a set of neighbors linked directly to a central node (from
which they receive blocks of the input) to form a so called star network (a rooted tree
of height 1). In an extended star each node adjacent to the central one has a set of
leaf neighbors (a rooted tree of height 2). Such extension is useful in practice when
we scale up the system.

For every integer k greater than 1 there is an O(kw) time, O(n/kw) processors
distributed algorithm factorizing an input string S with a cost which approximates
the cost of the LZSS factorization within the multiplicative factor (k + m − 1)/k,
where n, m and w are the lengths of the input string, the longest factor and the win-
dow respectively [2]. As far as LZW compression is concerned, if we use a RESTART
deletion heuristic clearing out the dictionary every ℓ characters of the input string we
can trivially parallelize the factorization process with an O(ℓ) time, O(n/ℓ) proces-
sors distributed algorithm. This could also be done with the LRU or SWAP deletion
heuristic. However, with the RESTART deletion heuristic scalable compression and
decompression algorithms are possible on a tree architecture. The parallel encoder,
after a dictionary is filled for each block of length ℓ, produces a factorization of S with
a cost approximating the cost of the optimal factorization within the multiplicative

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 23

factor (k+1)/k in O(km) time with O(n/km) processors [13]. These algorithms pro-
vide approximation schemes for the corresponding factorization problems since the
approximation factors converge to 1 when km and kw converge to ℓ and to n, respec-
tively. In the following subsections, we first discuss sliding window compression and
then propose two improved new versions of the LZW distributed algorithm suitable
on large scale and extreme distributed systems.

5.1 Sliding Window Compression on a Distributed System

We simply apply in parallel sliding window compression to blocks of length kw.
It follows that the algorithm requires O(kw) time with n/kw processors and the
approximation factor is (k + m − 1))/k with respect to any parsing. In fact, the
number of factors of an optimal (greedy) factorization on a block is at least kw/m
while the number of factors of the factorization produced by the scheme is at most
(k− 1)w/m+w. As shown in figure 2, the boundary might cut a factor (sequence of
plus signs) and the length w of the initial full size window of the block (sequence of
w’s) is the upper bound to the factors produced by the scheme in it. Yet, the factor
cut by the boundary might be followed by another factor (sequence of x’s) which
covers the remaining part of the initial window. If this second factor has a suffix to
the right of the window, this suffix must be a factor of the sliding dictionary defined
by it (dotted line) and the multiplicative approximation factor follows.

+++++(+++)xxxxxxxxxxx
———————/——————————–

wwwwwwwwww
.....

Figure 2. The making of the surplus factors

Making the order of magnitude of the block length greater than the one of the
window length largely beats the worst case bound on realistic data. Since the com-
pression tools of the Zip family use a window size of at least 32K, the block length in
our parallel implementation should be about 300K and the file size should be about
one third of the number of processors in megabytes. Therefore, the approximation
scheme is suitable only for a small scale system unless the file size is very large.

5.2 LZW Compression on a Distributed System

LZW compression was originally presented with a dictionary of size 212, clearing out
the dictionary as soon as it is filled up [21]. The Unix command “compress” employs
a dictionary of size 216 and works with the RESTART deletion heuristic. The block
length needed to fill up a dictionary of this size is approximately 300K.

As previously mentioned, the SWAP heuristic is the best deletion heuristic among
the discrete ones. After a dictionary is filled up on a block of 300K, the SWAP
heuristic shows that we can use it efficiently on a successive block of about the same
dimension where a second dictionary is learned. A distributed compression algorithm
employing the SWAP heuristic learns a different dictionary on every block of 300K of
a partitioned string (the first block is compressed while the dictionary is learned). For
the other blocks, block i is compressed statically in a second phase using the dictionary

24 Proceedings of the Prague Stringology Conference 2012

learned during the first phase on block i − 1. But, unfortunately, the decoder is not
parallelizable since the dictionary to decompress block i is not available until the
previous blocks have been decompressed. On the other hand, with RESTART we can
work on a block of 600K where the second half of it it is compressed statically. We
wish to speed up this second phase though, since LZW compression must be kept
more efficient than sliding window compression. In fact, it is well-known that sliding
window compression is more effective but slower. If both methods are applied to a
block of 300K, but LZW has a second static phase to execute on a block of about
the same length it would no longer have the advantage of being faster. We show how
to speed up this second phase on a very simple tree architecture as the extended star
in time O(km) with O(n/km) processors.

During the input phase, the central node broadcasts a block of length 600K to
each adjacent processor. Then, for each block the corresponding processor broadcasts
to the adjacent leaves a sub-block of length m(k + 2) in the suffix of length 300K,
except for the first one and the last one which are m(k + 1) long. Each sub-block
overlaps on m characters with the adjacent sub-block to the left and to the right,
respectively (obviously, the first one overlaps only to the right and the last one only
to the left). Every processor stores a dictionary initially set to comprise only the
alphabet characters.

The first phase of the computation is executed by processors adjacent to the
central node. The prefix of length 300K of each block is compressed while learning
the dictionary. At each step of the LZW factorization process, each of these processors
sends the current factor to the adjacent leaves. They all adds such factor to their
own dictionary. After compressing the prefix of length 300K of each block, all the
leaves have a dictionary stored which has been learned by their parents during such
compression phase.

Let us call a boundary match a factor covering positions of two adjacent sub-blocks
stored by leaf processors. Then, the leaf processors execute the following algorithm
to compress the suffix of length 300K of each block:

– for each block, every corresponding leaf processor but the one associated with the
last sub-block computes the boundary match between its sub-block and the next
one ending furthest to the right, if any;

– each leaf processor computes the optimal factorization from the beginning of its
sub-block to the beginning of the boundary match on the right boundary of its
sub-block (or the end of its sub-block if there is no boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 3. The making of a surplus factor

Stopping the factorization of each sub-block at the beginning of the right boundary
match might cause the making of a surplus factor, which determines the approxima-
tion factor (k+1)/k with respect to any factorization. In fact, as it is shown in figure

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 25

3, the factor in front of the right boundary match (sequence of x’s) might be extended
to be a boundary match itself (sequence of plus signs) and to cover the first position
of the factor after the boundary (dotted line).

In [1], it is shown experimentally that for k = 10 the compression ratio achieved
by such factorizarion is about the same as the sequential one. Results were presented
for static prefix dictionary compression but they are valid for dynamic compression
using the LZW technique with the RESTART deletion heuristic. In fact, experiments
were proposed compressing similar files in a collection using a dictionary learned
from one of them. This is true even if the second step is greedy, since greedy is very
close to optimal in practice. Moreover, with the greedy approach it is enough to use
a simple trie data structure for the dictionary rather than the modified suffix tree
data structure of [17] needed to implement the semi-greedy factorization in real time.
Therefore, after computing the boundary matches the second part of the parallel
approximation scheme can be substituted by the following procedure:

– each leaf processor computes the static greedy factorization from the end of the
boundary match on the left boundary of its sub-block to the beginning of the
boundary match on the right boundary.

Considering that typically the average match length is 10, one processor can com-
press down to 100 bytes independently. Then compressing 300K involves a number
of processors up to 3000 for each block. It follows that with a file size of several
megabytes or more, the system scale has a greater order of magnitude than the stan-
dard large scale parameter making the implementation suitable for an extreme dis-
tributed system. We wish to point out that the computation of the boundary matches
is very relevant for the compression effectiveness when an extreme distributed system
is employed since the sub-block length becomes much less than 1K.

With standard large scale systems the sub-block length is several kilobytes with
just a few megabytes to compress and the approach using boundary matches is too
conservative for the static phase. In fact, a partition of the second half of the block
does not effect on the compression effectiveness unless the sub-blocks are very small
since the process is static. In conclusion, we can propose a further simplification of
the algorithm for standard small, medium and large scale distributed systems.

Let p0 · · · pn be the processors of a distributed system with an extended star
topology. p0 is the central node of the extended star network and p1 · · · pm are its
neighbors. For 1 ≤ i ≤ m and t = (n−m)/m let the processors pm+(i−1)t+1 · · · pm+it

be the neighbors of processor i.
B1 · · ·Bm is the sequence of blocks of length 600K partitioning the input file.

Denote with B1
i and B2

i the two halves of Bi for 1 ≤ i ≤ m. Divide B2
i into t

sub-blocks of equal length.
The input phase of this simpler algorithm distributes for each block the first half

and the sub-blocks of the second half in the following way:

– broadcast B1
i to processor pi for 1 ≤ i ≤ m

– broadcast the j-th sub-block of B2
i to processor pm+(i−1)t+j for 1 ≤ i ≤ m and

1 ≤ j ≤ t

26 Proceedings of the Prague Stringology Conference 2012

Then, the computational phase is:

in parallel for 1 ≤ i ≤ m

– processor pi applies LZW compression to its block, sending the current factor to
its neigbors at each step of the factorization

– the neighbors of processor pi compress their blocks statically using the dictionary
received from pi with a greedy factorization

5.3 Decompression

To decode the compressed files on a distributed system, it is enough to use a special
mark occurring in the sequence of pointers each time the coding of a block ends. The
input phase distributes the subsequences of pointers coding each block among the
processors. If the file is encoded by an LZW compressor implemented with one of the
two procedures described in the previous section, a second special mark indicates for
each block the end of the coding of a sub-block. The coding of the first half of each
block is stored in one of the neighbors of the central node while the coding of the
sub-blocks are stored into the corresponding leaves. The first half of each block is
decoded by one processor to learn the corresponding dictionary. Each decoded factor
is sent to the corresponding leaves during the process, so that the leaves can rebuild
the dictionary themselves. Then, the dictionary is used by the leaves to decode the
sub-blocks of the second half.

6 Conclusion

We presented an approach to the parallel implementation of LZW data compression
which is suitable for small and large scale distributed systems. Some blocks are com-
pressed independently providing information for a second phase where the remaining
portions of the input string are encoded in parallel with a higher granularity. In order
to push scalability beyond what is traditionally considered a large scale system a more
involved approach distributes overlapping sub-blocks of these remaining portions to
compute boundary matches. These boundary matches are relevant to maintain the
compression effectiveness on a so-called extreme distributed system. We wish to im-
plement these ideas on real systems with the appropriate architecture to experiment
how the communication cost effects on the speed-up. If we have a relatively small
scale system available, the approach with no bounadary matches can be used. More-
over, if the system has an architecture with a simple star topology rather than an
extended one we could still experiment on a file with size between 500K and one
megabyte. During the input phase, the central node brodcasts the sub-blocks of the
second half of the file to the neighbors. Then, it applies LZW compression to the first
half providing the dictionary to the other nodes for the compression of the second
half. The parallel running time of this implementation could be compared with the
sequential time of the sliding compression method applied to each of the two halves
of the file (the higher one would be considered). In this way, it can be seen how the
running times of the two parallel implementations relate to each other.

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 27

References

1. D. Belinskaya, S. D. Agostino, and J. A. Storer: Near optimal compression with respect

to a static dictionary on a practical massively parallel architecture, in Proceedings IEEE Data

Compression Conference, 1996, pp. 172–181.

2. L. Cinque, S. DeAgostino, and L. Lombardi: Scalability and communication in parallel

low-complexity lossless compression. Mathematics in Computer Science, 3 2010, pp. 391–406.

3. M. Crochemore and W. Rytter: Efficient parallel algorithms to test square-freeness and

factorize strings. Information Processing Letters, 38 1991, pp. 57–60.

4. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, 2003.

5. S. DeAgostino: P-complete problems in data compression. Theoretical Computer Science, 127

1994, pp. 181–186.

6. S. DeAgostino: Parallelism and dictionary-based data compression. Information Sciences, 135

2001, pp. 43–56.

7. S. DeAgostino: Almost work-optimal PRAM EREW decoders of LZ-compressed text. Parallel

Processing Letters, 14 2004, pp. 351–359.

8. S. DeAgostino: Bounded size dictionary compression: Relaxing the LRU deletion heuristic, in

Proceedings Prague Stringology Conference, 2005, pp. 135–142.

9. S. DeAgostino: Bounded size dictionary compression: Relaxing the LRU deletion heuristic.

International Journal of Foundations of Computer Science, 17 2006, pp. 1273–1280.

10. S. DeAgostino: Parallel implementations of dictionary text compression without communica-

tion, 2009.

11. S. DeAgostino: Lempel-Ziv data compression on parallel and distributed systems, in Proceed-

ings Data Compression, Communications and Processing Conference, 2011, pp. 193–202.

12. S. DeAgostino: Lempel-Ziv data compression on parallel and distributed systems. Algorithms,

4 2011, pp. 183–199.

13. S. DeAgostino: LZW versus sliding window compression on a distributed system: Robustness

and communication, in Proceedings INFOCOMP, 2011, pp. 125–130.

14. S. DeAgostino and R. Silvestri: A worst case analisys of the LZ2 compression algorithm.

Information and Computation, 139 1997, pp. 258–268.

15. S. DeAgostino and R. Silvestri: Bounded size dictionary compression: SCk-completeness

and nc algorithms. Information and Computation, 180 2003, pp. 101–112.

16. S. DeAgostino and J. A. Storer: On-line versus off-line computation for dynamic text

compression. Information Processing Letters, 59 1996, pp. 169–174.

17. A. Hartman and M. Rodeh: Optimal parsing of strings, 1985.

18. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-

tion Theory, 22 1976, pp. 75–81.

19. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, 23 1977, pp. 337–343.

20. J. A. Storer and T. G. Szymanski: Data compression via textual substitution. Journal of

ACM, 29 1982, pp. 928–951.

21. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.

22. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

