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Abstract. A non-linear text is a directed graph where each vertex is labeled with a
string. In this paper, we introduce the longest common substring/subsequence problems
on non-linear texts. Firstly, we present an algorithm to compute the longest common
substring of non-linear texts G and Gg in O(| E1||Es|) time and O(|V41]|Vz]) space, when
at least one of G and G is acyclic. Here, V; and E; are the sets of vertices and arcs of
input non-linear text G;, respectively, for 1 < ¢ < 2. Secondly, we present algorithms
to compute the longest common subsequence of G; and Gy in O(|E1||E2]|) time and
O(|V1||V2]) space, when both Gy and G2 are acyclic, and in O(|E1||Ea|+|V1||Va|log | X))
time and O(|V1]|Vz]) space if G; and/or Gy are cyclic, where, X denotes the alphabet.

1 Introduction

We consider non-linear texts, which are directed graphs where vertices are labeled
by strings. Pattern matching on non-linear texts was first considered in [3], where
an O(N + m|E| + Rloglogm) time algorithm for directed acyclic graphs. Here, m
is the pattern length, N is the number of vertices, |F| is the number of arcs, and
R is the output size. The algorithm was improved in [6], where an O(n + m|E|)
time algorithm was shown. Here, n represents the total length of the string labels
in the graph. Furthermore, in [{i], an O(n) time algorithm was shown for trees. The
problem was solved for general directed graphs in [2], where an O(n + |E|) time
algorithm was developed. The approximate matching problem for non-linear texts
was also considered in [2], where they showed that the problem can be solved in
O(m(nlogm+ e)) time when edit operations are only allowed in the pattern. Here, e
denotes the number of arcs in the graph when the graph is converted so that each node
is labeled by a single character. They also showed that the problem is NP-complete
when edit operations are allowed on the non-linear text. Furthermore, in [5], the
algorithm was improved to O(m(n + €)).

Note that previous work on pattern matching on non-linear texts assumed a
linear pattern. In this paper, we study a more generalized version of the problem,
and consider the longest common substring and longest common subsequence prob-
lems between two non-linear texts. Firstly, we present an algorithm to compute the
longest common substring of non-linear texts G and Gs in O(|E;||F2|) time and
O(|V1||Va]) space, where V; and E; are the sets of vertices and arcs of input non-
linear text G, respectively, for 1 < ¢ < 2. The algorithm works if one of G; and
(5 is acyclic. Secondly, we present algorithms to compute the longest common sub-
sequence in O(|Ey||Es|) time and O(|Vi||Va]) space if both G and Gy are acyclic,
and in O(|E1||Es| + |Vi||Va| log | X]) time and O(|V4||Va]) space if Gy and/or G, are
cyclic. Cyclic non-linear texts represent infinitely many and long strings, but our
algorithms solve the above problems quite efficiently. Our algorithms are natural
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extension of classical dynamic programming methods to compute longest common
substring /subsequence of linear strings, and hence are easy to understand.

Very recently, an algorithm for determining the longest common subsequence be-
tween two finite languages was shown in [7f]. The algorithm is a modification of the
method based on weighted transducers [#], and requires O(|X|?|E;||Ez|) time and
space. Compared to this work, our algorithms are faster and also apply to infinite

languages.

problem text pattern time complexity
Substring acyclic graph l}near O(n+ m|E)) [’Q]
Matehin tree linear O(n) ]
& graph linear O(n + |E)) 2]
Approximate graph W/ edit linear NP-complete 2]
Matching operations . et -
inear w/edi
graph operations O(m(n +¢)) Eﬂ
textl text2
Longest Com- acyclic graph | acyclic graph |O(|E1||E2|) (this work)
mon Substring graph acyclic graph |O(|E1]|Es]) (this work)
Longest acyclic graph | acyclic graph |O(|X|?|E1||E2]) )
Common acyclic graph | acyclic graph |O(|E1||E2|) (this work)
Subsequence graph graph O(|E1||E2| + [V1]|V2]log | X]) (this work)

Table 1. Algorithms on non-linear text.

2 Preliminaries

2.1 Notation

Let X be a finite alphabet, and the elements of X* are called strings. The length of
a string w is denoted by |w|. The empty string, denoted by ¢, is a string of length 0,
and thus |e| = 0. Let ¥ = X* — {e}. Strings z, y, and z are called a prefiz, substring,
and suffiz of string w = zyz, respectively. For any string w, let suffiz(w) denote the
set of suffixes of w. The i-th symbol of a string w is denoted by wli] for 1 < i < |w|,
and the substring of w that begins at position ¢ and ends at position j is denoted
by wli..j] for 1 < i < j < |w|. For convenience, let wli..j| = ¢ for i > j. The set
of substrings of a string w is denoted by substr(w). A string u is a subsequence of
another string w if there exists a sequence of integers i1, ..., 7, with £ > 0 such that
1<iy < <ip < |w| and u = wliq] - - - wlig).

A directed graph is an ordered pair (V) E) of set V' of vertices and set E CV x V
of arcs. A path in a directed graph G = (V, E) is a sequence vy, ..., v of vertices
such that (v;_1,v;) € E for every i = 1,..., k. For any vertex v € V, let P(v) denote
the set of paths that end at vertex v. The set of all paths in G is denoted by P(G),
namely, P(G) = {P(v) |[ve V}.

2.2 Longest common substring problem

The longest common substring problem is, given two strings x and y, to compute the
length of longest common substrings of them. Although this problem can be solved
in O(|z| + |y|) time using the generalized suffix tree of z and y, we here mention a
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dynamic programming based solution. Letting C;; denote the maximum length of
common suffixes of z[1..7] and y[1..j], it suffices to compute the maximum of C; ; over
all the pairs (4, j). Since we have

Cpy = {1 +Ci_q -1 if 4,5 > 0 and z[i] = y[j]; "

0 otherwise,

the problem can be solved in O(]z||y|) time.

2.3 Longest common subsequence problem

The longest common subsequence problem is, given two strings x and y, to com-
pute the length of longest common subsequences of them. It is well-known that, this
problem can be solved in O(|x||y|) time by using the following recurrence:

0 ifi=0o0rj=0;
Cij=q14+Cis1;1 if 7, j > 0 and z[i] = y[j]; (2)
max(Ci_1;,C;-1) if i,5 > 0 and =[i] # y[j],

where C; ; is the length of longest common subsequence of z[1..7] and y[1..j].

2.4 Non-linear texts

A non-linear text is a directed graph with vertices labeled by strings, namely, it is
a directed graph G = (V, E, L) where V is the set of vertices, E is the set of arcs,
and L : V — X1 is a labeling function that maps nodes v € V' to non-empty strings
L(v) € X*. For a path p = vy, ...,v, € P(G), let L(p) denote the string spelled out
by p, namely L(p) = L(vg) - -+ L(vg). The size |G| of a non-linear text G = (V, E, L)
is |V + |E| 4+ X ,ev |L(v)|. Let substr(G), suffiz(G), and subseq(G) be the sets of
substrings, suffices and subsequences of a non-linear text G = (V, E, L), namely,

substr(G) = {substr(L(p)) | p € P(G)},

suffiz(G) = {suffic(L(p)) | p € P(G)},
subseq(G) = {subseq(L(p)) | p € P(G)}.

For a non-linear text G = (V, E, L), consider a non-linear text G' = (V', E', L')
such that L' : V' — X,

V' ={wij | L'(viy) = L(vy)[j],vs € V,1 < j < |L(vg)|}, and
E' = {(vizw), Vr1) | (vi,0r) € EYU{(vig,vigs1) | vi € V,1 < j < |L(wi)]}.

Namely, G’ is a non-linear text in which each vertex is labeled with a single char-
acter and substr(G') = substr(G). An example is shown in Figure 1. Since |V'| =
S ev L@ ] = [E] + ey (L0)] = 1), and e [LW)] = Yooy 1)), we
have |G'| = O(|G]). We remark that given G, we can easily construct G’ in O(|G|)
time. Observe that subseq(G) = subseq(G") also holds.

In the sequel we only consider non-linear texts where each vertex is labeled with
a single character. For any non-linear text G = (V, E, L) such that L(v) € X for any
v € V, it trivially holds that substr(G) = {L(p) | p € P(G)}.

We sometimes call strings in 2* linear strings or linear texts, in order to clearly
distinguish them from non-linear texts.
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Figure 1. A non-linear text G = (V, E, L) with L : V — X* and its corresponding non-linear text
G' =V ,E L)with L' : V' = X.

3 Computing Longest Common Substring of Non-linear
Texts

In this section, we tackle the problem of computing the length of longest common
substrings of two input non-linear texts. The problem is formalized as follows.

Problem 1 (Longest common substring problem for non-linear texts).

Input: Non-linear texts G; = (14, E1, L) and Gy = (Va, Es, Ly).
Output: The length of a longest string in substr(Gy) N substr(Gs).

For example, see the non-linear texts Gy and G of Figure 2. The solution to the
above problem is 5, since there is a longest common substring abbaa of G; and Gbs.

For simplicity, let us first consider the case where the two input non-linear texts
are both acyclic.

Theorem 2. If Gy and Gy are acyclic, then Problem 1 can be solved in O(|E||Es|)
time and O(|V1||Va]) space.

Proof. Let vy, and v, ; denote the i-th and j-th vertex in topological ordering in G
and in Gy, for 1 <7 <|Vj| and 1 < j < |V4], respectively. Let C;; denote the length
of a longest string in suffiz(Li (P(v1,))) N suffix(Le(P(v2;))). Ci; can be calculated
as follows.

1. If Ly(v1;) = La(v2,;), there are two cases to consider:

(a) If there are no arcs to vy; or to vy, i.e., P(vy;) = {vi,;} or P(va;) = {v2;},
then clearly C;; = 1.

(b) Otherwise, let vy j, and vy be any nodes s.t. (vyx, v1;) € Ey and (vey, v ;) € E,
respectively. Let z be a longest string in suffiz (L (P(v1,)))Nsuffiz(Le(P(v25))).
Assume on the contrary that there exists a string y € suffiz(Li(P(v1))) N
suffiz(La(P(vey))) such that |y| > |z| — 1. This contradicts that z is a longest
common suffix of L;(P(vy;)) and Lao(P(va;)), since Ly(v1;) = La(ve;). Hence
y < |z| — 1. If vy and vy, are vertices satisfying Cy, = |2| — 1, then C;; =
Cre + 1. Note that such vy, and vy, always exist.

2. If Ly(v1;) # Lo(va), then trivially suffiz(Ly(P(v1,))) N suffiz(Le(P(ve;))) = {e}.

Hence C;; = 0.

Consequently we obtain the following recurrence:
Cij =

{1+max({Ck7g | ('Ul,ky Ul,i) € El, (’Ug’g, Ugyj) & EQ}U{O}) if L1 (Ul,i) = LQ(UQJ); (3)

0 otherwise.
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Figure 2. Example of dynamic programming for computing the length of a longest common sub-
string of non-linear texts G; and Gs. Each vertex is annotated with its topological order. In this
example, max C; ; = 5 and the longest common substring is abbaa.
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We use dynamic programming to compute C;; for all 1 < ¢ < |Vj] and 1 < j <
|V2]. Consider to compute max{Cj¢ | (v1,x, 1) € E1, (vap,v2;) € Ea}. For each fixed
(v1g,v1;) € By, we refer the value of Cy, for all 1 < ¢ < j such that (voy,ve;) €
Va, in O(|E2|) time. Therefore, the total time complexity for computing max{Cj |
(V1,6 01,5) € By, (vop,v2;) € Es} is O(|E4||Es|). Since we can sort vertices of Gy and
(5 in topological ordering in linear time, the total time complexity is O(|E1||E2|).
The space complexity is clearly O(|V1||Va]). O

An example of computing C; ; using dynamic programming is shown in Figure 2.

We remark that the recurrence of (3) is a natural generalization of that of (1) for
computing the longest common substring of linear texts.

Furthermore, we can solve Problem i} in case where only one of the input non-
linear texts is acyclic:

Theorem 3. If at least one of Gy and G+ is acyclic, then Problem i1 can be solved in
O(|E1||Ez|) time and O(|V1]|Va]) space.

Proof. Assume w.l.o.g. that G, is acyclic. Recall the proof of Theorem 2. A key
observation is that it indeed suffices to sort one of the input non-linear texts in
topological ordering.

For any vertex vy; € V5 and positive integer h, let P,(vs;) denote the set of
paths of length not greater than h, which end at vertex vy ;. Assume we have sorted
vertices of Gy. Let C;; denote the length of a longest string in suffiz(Ly(P(v1,;))) N
suffix(Lo(P,(v2,5))), where r is the length of a longest path in P(v;;). We compute
C; for each vertex vy ; € Vo by: Cy; = 1if Ly(v1,1) = Lo(vo;) and C4 ; = 0 otherwise.
Then we compute C; ; for all i > 1 using the same recurrence as (8). Since the length
of any element in substr(G1) N substr(Gs) is not greater than that of the longest path
in Gy, max{C;; | 1 <1< |Vi|,1 <j < |Va]} equals to the length of a longest string
in substr(Gy) N substr(Gz). Consequently, G does not have to be acyclic. O

A pseudo-code of our algorithm to solve the longest common substring problem
for non-linear texts is shown in Algorithm 1.
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Algorithm 1: Computing the length of longest common substring of non-linear

texts.
Input: Acyclic non-linear text Gy = (Vi, Eq, L1) and non-linear text Gy = (Va, Ea, Lo).
Output: Length of a longest string in substr(G1) N substr(Gs).

1 topological sort Gy;

2 n <« |Vis m < |Val;

3 Let C be an n X m integer array;

4 for i+ 1tondo

5 for j + 1 to m do

6 if f(vl,i) = f(UQJ') then

7

8

9

0

1

Cij < 15
forall vy s.t. (vi,v1,:) € Eq do
forall vy s.t. (vay,v2,;) € Ey do
if Ci,j <1+ C}c,é then
L | Cij 14+ Cry;

12 else
13 L Ci,j “— O;

14 return max{C;; |1 <i<n,1 <j<m}

4 Computing Longest Common Subsequence Problem of
Non-linear Texts

In this section, we tackle the problem of computing the length of longest common
subsequence of two input non-linear texts. The problem is formalized as follows.

Problem 4 (Longest common subsequence problem for non-linear texts).

Input: Non-linear texts G; = (V4, E1, L) and Gy = (Va, Es, Ly).
Output: The length of a longest string in subseq(G1) N subseq(Gy).

For example, see the non-linear texts Gy and G of Figure 3. The solution to the
above problem is 4, since there is a longest common subsequence acdb of Gy and Gs.

In the sequel we present our algorithm to solve the above problem in case where
both G; and G4 are acyclic.

Theorem 5. If Gy and Gy are acyclic, then Problem ¥ can be solved in O(|E1||Es|)
time and O(|V1]|Va|) space.

Proof. Let v,; and vy ; denote the i-th and j-th vertex in topological ordering in G4
and in Go, for 1 < ¢ < |Vj] and 1 < j < |V5], respectively. Let C;; denote the length
of a longest string in subseq(Ly(P(v1,;))) N subseq(Ly(P(vq;))). Ci; can be calculated
as follows.

1. If Ly (v1;) = Lo(vq;), there are two cases to consider:

(a) If there are no arcs to vy; or to vy, i.e., P(v1;) = {v1,;} or P(va;) = {v2},
then clearly C;; = 1.

(b) Otherwise, let vy, and v be any nodes s.t. (vyx, v1;) € Ey and (veg, v2 ) € Es,
respectively. Let z be a longest string in subseq( Ly (P (v1;)))Nsubseq(La(P(va5))).
Assume on the contrary that there exists a string y € subseq(Li(P(v1))) N
subseq(Ly(P(vaye))) such that |y| > |z| — 1. This contradicts that z is a longest
common subsequence of Ly(P(vy;)) and Ly(P(va;)), since Ly(vi;) = La(ve;).
Hence |y| < |z| — 1. If vy, and vy, are vertices satisfying Cj, = |z| — 1, then
C;; = Ce + 1. Note that such vy 5 and vy, always exist.
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2. If Ly(v1;) # Lo(va), there are two cases to consider:

(a) If there are no arcs to vy, and to vy j, i.e.,P(v1;) = {v1,;} and P(vq;) = {v2},
then clearly C;; = 0.

(b) Otherwise, let vy j, and vy be any nodes s.t. (vyx, v1;) € Ey and (vey, v ;) € E,
respectively. Let z be a longest string in subseq (L (P(v1,;)))Nsubseq(La(P(vs,;))).
Assume on the contrary that there exists a string y € subseq(Li(P(vi))) N
subseq(Ly(P(va;))) such that |y| > |2|. This contradicts that z is a longest com-
mon subsequence of Ly(P(vy;)) and Ly(P(va;)), since subseq(Ly(P(v1))) N
subseq(La(P(v2;))) € subseq(Ly(P(v1,))) N subseq(Le(P(vs;))). Hence |y| <
|z|. If vy is a vertex satisfying Cy ; = |z|, then C; ; = Cy ;. Similarly, if vy is a
vertex satisfying C;, = |z|, then C; ; = C;,. Note that such vy, or vy, always
exists.

Consequently we obtain the following recurrence:

Ow‘ =
1—|—max({0k74 | (Ul,k7 ’U17i) c El, (’U27£, ?.]QJ) c EQ}U{O}) if Ll (Ul,i) = LQ(’UQJ');

Ch s e B YU ek
max { k.j | (U1,k,vl,z)€ 1 HU{ 'L,Zl(UQ,ZaUQ,])E 2} otherwise,

u{0}

We use dynamic programming to compute C;; for all 1 < i < |Vj]and 1 < j <
Vil

By similar arguments to the proof of Theorem 2, computing max{Cj., | (v1 4, v1,) €
El, (Ug,g, U27j) € EQ} takes O(|E1||E2|) time.

Consider to compute max{Cy j, Cis | (v14,v1,) € E1, (o, v2;) € Es}. For each
fixed (vyx,v1:) € By, we refer the value of Cy; for all 1 < j < |V3| in O(]V2|) time.
Similarly, for each fixed (vey, v ;) € Es, we refer the value of C; o forall 1 <14 < |V4]in
O(|V1]) time. Therefore, the total time cost for computing max{Cj ;, C;, | (v1,v1,) €
Ey, (vag,v25) € Ea} is O(|Val| x| + [Vi|| Ex).

Since we can sort vertices of G; and (G5 in topological ordering in linear time, the
total time complexity is O(|E1||Ez|). The space complexity is clearly O(|V4||Va]). O

(4)

An example of computing C; ; using dynamic programming is show in Figure 3.
We remark that the recurrence of (4) is a natural generalization of that of (2) for
computing the longest common subsequence of linear texts.

Algorithm 2 shows a pseudo-code of our algorithm to solve Problem 4 in case
where both G and G5 are acyclic.
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Figure 3. Example of dynamic programming for computing the length of a longest common subse-
quence of non-linear texts G; and G5. Each vertex is annotated with its topological order. In this

example, max C; ; = 4 and the longest common subsequence is acdb.

Algorithm 2: Computing the length of longest common subsequence of acyclic
non-linear texts

O A WN -
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Input: Two acyclic non-linear texts G; = (V, E1, L1),Go = (Va, Eo, Lo)

Output: Length of a longest string in subseq(G1) N subseq(G2)
topological sort G7;

topological sort Ga;

n Vil m < [Val:

Let C be an n x m integer array;

for i + 1 ton do

for j + 1 to m do

if f(vl,i) = f(’l)gyj) then
C@j — 1;
forall vy s.t. (v1,k,v1,:) € E1 do
forall V20 S.1. (U27(,1227j) € FE> do
if C;; <1+ Cp ¢ then
L CZ}]' — 1+ ij;

else
Ci,j +— 0;
forall vy j, s.t. (v15,v1,:) € By do
if Ci}j < Ck’j then
L C@j < de‘;

forall vy ¢ s.t. (va4,v2,;) € E2 do
if Ciﬁj < Ci,l then
| Cij+ Cig

return max{C;; | 1 <i<n,1 <j <m};
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5 Computing Longest Common Subsequence of Cyclic
Non-linear Texts

In this section, we present an algorithm to solve Problem 4 in case where the input
non-linear texts are cyclic. We output oo if subseq(G1) N subseq(Gz) is infinite, and
do the length of a longest string in subseq(G1) N subseq(G5) otherwise.

We transform a cyclic non-linear text G = (V, E, L) into an acyclic non-linear
text G' = (V', E’, I) based on the strongly connected components. For each vertex
v € V, let [v] denote the set of vertices that belong to the same strongly connected
component. Formally, G’ is defined as

={l]lveVy,
E'=A{([v], [u]) | [v] # [ul, (v/,u') € E for some v' € [v], v € [u]} U{(v,v) | [[v]| = 2},

and L'([v]) = {L(v) | v € [v]} € X. We regard each [v] as a single vertex that is
contracted from vertices in [v]. Observe that subseq(G’) = subseq(G).
An example of transformed acyclic non-linear texts is shown in Figure 4.

Theorem 6. If Gy and/or Gy are cyclic, then Problem can be solved in O(|Ey||Ea|+
[V1||Va| log | X)) time and O(|V1||Va]) space.

Proof. We first transform cyclic non-linear texts (G; and GG, into corresponding acyclic
non-linear texts G and Gy, as described previously. Let v} ; and vy ; denote the i-
th and j-th vertex in topological ordering in G| and G}, for 1 < i < |V/| and
1 < j < |VJ|, respectively. Let S; and Sy denote the sets of vertices which has a loop,
namely, S1 = {Ly(vi,;) | (vi;vi,) € Eif and Sy = {L5(vh;) | (vy;,v5;5) € Ea}. If
S1 NSy # 0, then let ¢ be any character in S; N Sy. Clearly an infinite repetition c*
of ¢ is a common subsequence of G; and G5, and hence we output oo.

In the sequel, consider the case where S; NSy = (). In this case, it is clear that
subseq(G1) N subseq(G>) is finite. Let C;; denote the length of a longest string in
subseq( Ly (P(v);))) N subseq(Ly(P(vy;))). Cij can be calculated as follows.

L If I (v) ;) N L (vh ;) # O, there are two cases to consider:

(a) If there are no arcs to v}, or to v, i.e., P(v};) = {vy,;} or P(vy;) = {v5,},
then clearly C} i~ =1.

(b) Otherwise, let v}, and vj , be any nodes s.t. (v} ,, v} ;) € B} and (vj,, véy ) € Eb,
respectively. Let z be a longest string in subseq (L} (P(vlﬂ)))ﬂsubseq( 5(P(v55)))
Assume on the contrary that there exists a string y € subseq(L} (P(vik))) N
subseq(Ly(P(vy,))) such that |y| > |2| — 1. This contradicts that z is a longest
common subsequence of Lj (P (v} ;)) and Ly(P(v;)), since Ly (v] ;) N Ly(vy ;) #
0. Hence |y| < |z| —1. If v}, and vy, are vertices satisfying Cy ¢ = |2| — 1, then
C;; = Cre + 1. Note that such v}, and vy, always exist.

2. If L' (vy ;) N L' (v ;) = B, there are two cases to consider:

(a) If there are no arcs to v} ; and to vy ;, i.e., P(vy,;) = {v},;} and P(vy ;) = {v5;},
then clearly C;; =0

(b) Otherwise, let v} ;, and v , be any nodes s.t. (v}, vy ;) € £} and (vy,, vh ;) € Ej,
respectively. Let 2 be a longest string in subseq(Lj (P(v ;)))Nsubseq( Ly (P (v5 ])))
Assume on the contrary that there exists a string y € subseq(L)(P(vy;))) N
subseq(Ly(P(v;))) such that [y| > |z|. This contradicts that z is a longest com-
mon subsequence of Lj(P(v];)) and Ly(P(vy;)), since subseq(L}(P(vy,;))) N
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subseq(L’z(P(véd))) C subseq(L’l(P(viyi))) N subseq(L’Q(P(véJ))). Hence |y| <
|z|. If vy, is a vertex satisfying Cj; = |2], then C;; = Cy ;. Similarly, if vj , is
a vertex satisfying Cj, = [z], then C;; = Cj . Note that such v, (k # i) or
vy, (€ # j) always exists.

Consequently we obtain the following recurrence:

Ci’j:
Ltmax({Che | (001 ) € By, (v, 0 5) €E}U(0)) I L'(f )L (1) 0
- ((5?0} | <v1,k,va,i>eE1}u{ci,z|<vg,z,v;,j>eE2}) herice. (5)

It is well-known that we can transform Gy and Gs into G and G, in linear time,
based on strongly connected components.

For each self-loop such as (vj;,v);) € Ey, we refer the value of C;; for all 1 <
j < |Va| in O(|V5]) time. Similarly, for each self-loop such as (v ;,v5 ;) € Fa, we
refer the value of C; ; for all 1 <14 < |V/|in O(|V/|) time. For the other arcs, we can
compute C;; for all 1 < ¢ < |[V/] and 1 < j < |VJ| using dynamic programming in
O(|E7| - |ES]) time, in a similar way as the previous section. Therefore the total time
cost for computing C; ; is O(|EY| - |E}|).

Let X, and Y5 be the sets of characters that appear in G; and G, respectively.
The time cost to compute Sy N Sy is O(| 2] log | Xs| + | X2|log | X |) using a balanced
tree. Assume S; N Sy = (), and consider to compute L'(vy ;) N L (vy ;). If |L'(v] ;)] > 1
and |L'(vg ;)| > 1, then we know L' (v} ;)N L' (vy ;) = 0 since S1NSy = 0. If [ L' (v] ;)| = 1
and /or |L’(U2J)\ = 1, then L'(v} ;)N L' (v5 ;) can be computed in O(log | X]) time using a
balanced tree, Where 12| = max{|X1|, |~|}. Therefore the total time cost to compare
L'(vy;) and L/(UQJ) forall 1 <4 < |V/|and 1 < j < |V|is O(|V{||V5|log|X|). The
total time complexity becomes O(|Ey |+ |Eq|+|E1||ES|+|V{||V3] log | X|+| X1 | log | X |+
Sllog [51]) = O(Eu[| B + [Vi[[Va|log | Z1), since [3] < [Va] and |5 < [V3|. The
total space complexity is O(|V/||Vy| 4+ | X1 |log | Xa] + | Xa] log | X4]) = O(|V1]|Va]). O

An example of computing C; ; using dynamic programming is shown in Figure 4.
A pseudo-code of our algorithm is shown in Algorithm 3.

2 Crane
G0 & @),
m"@"% Gl
G:(a)=(c—(d) G ({apr{)r(d)
g@ge 53

Figure 4. Example of dynamic programming for computing the length of a longest common subse-
quence of non-linear texts G; and Gs. G} and G4 are non-linear texts which are transformed from
(G1 and G2 by grouping vertices into strongly connected components. Each vertex is annotated with
its topological order. In this example, max C; ; = 4 and the longest common subsegence is aacd.

N \S R \S R
W N
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Algorithm 3: Computing the length of longest common subsequence of cyclic

non-linear texts
Input: Two non-linear texts G; = (V1, E1, L1),Go = (Va, Eo, Ly)
Output: Length of a longest string in subseq(G1) N subseq(G2)

1 G + Strongly Connected Components Gy;
2 G, + Strongly Connected Components Ga;
3 Let S7 be a set of vertices which belong to cycles in Gy;
4 Let Sy be a set of vertices which belong to cycles in Ga;
5 if SlﬂSg#Q]then
6 | return oo ;
7 else
8 topological sort G;
9 topological sort G;
10 Let C be an |V]| x |VJ]| integer array;
11 for i < 1 to |V/| do
12 for j <+ 1 to |V3]| do
13 if (v} ,,v);) € E] then
14 if (v5;,v5 ;) € Ej then
15 | Ci,j < Vertex-mismatch (v] ;,v5 ;);
16 else if L(vy ;) 2 L(vy ;) then
17 | Cij +Vertex-match (vq ;,v5 ;);
18 else
19 | Ci,j < Vertex-mismatch(v] ;,v5 ;);
20 else if (v, ;, v ;) € Ej) then
21 if L(v],;) C L(v, ;) then
22 | Cij < Vertex-match(vy ;, 5 ;);
23 else
24 | Cij «Vertex-mismatch(vy ;,v5 ;);
25 else if L(v; ;) = L(vy ;) then
26 | Cij < Vertex-match(v] ;, v5 ;);
27 else
28 | Cij «Vertex-mismatch(vy ;,v3 ;);

29 return max{C; ; |1 <i <|V/[,1<j <|V5|};

Algorithm 4: Vertex-match(vy;, vs ;)

1 C,‘J’ —1
2 forall vy s.t. (v1,v1,) € Eq do

3 forall vy s.t. (vay,v2,;) € Bz do
4 if Ciyj <1+ Ck,é then
5 L Ci}j — 1+ Ck’g

6 return C; ;
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Algorithm 5: Vertex-mismatch(vy;, v ;)

C@j +~0
forall vy s.t. (v1,v1,;) € E1 do
L if Ci,j < Ck’,j then

=W N

L Ciyj — Ck,j

]

forall vy s.t. (va,v2,;) € Eo do
L if C,'J' < C@g then

=N O

L Ci,j «— Oi7g

8 return C; ;

6 Conclusions

We considered the longest common substring and subsequence problems between
two non-linear texts. We showed that when the texts are acyclic, the problem can be
solved in O(| E1 || E»|) time and O(|V4]|V2|) space by a dynamic programming approach.
Furthermore, we extend our algorithm and consider the case where the texts can

C

ontain cycles, and presented an O(|E:||E2| + |Vi||Vz|log |X]) time and O(|V1]|Va])

space algorithm for the longest common subsequence problem. The longest common
substring between general graphs is an open problem.
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