Computing Longest Common Substring/Subsequence of Non-linear Texts

Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda
Department of Informatics, Kyushu University
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
\{kouji.shimohira,inenaga,bannai,takeda\}@inf.kyushu-u.ac.jp

Abstract

A non-linear text is a directed graph where each vertex is labeled with a string. In this paper, we introduce the longest common substring/subsequence problems on non-linear texts. Firstly, we present an algorithm to compute the longest common substring of non-linear texts G_{1} and G_{2} in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space, when at least one of G_{1} and G_{2} is acyclic. Here, V_{i} and E_{i} are the sets of vertices and arcs of input non-linear text G_{i}, respectively, for $1 \leq i \leq 2$. Secondly, we present algorithms to compute the longest common subsequence of G_{1} and G_{2} in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space, when both G_{1} and G_{2} are acyclic, and in $O\left(\left|E_{1}\right|\left|E_{2}\right|+\left|V_{1}\right|\left|V_{2}\right| \log |\Sigma|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space if G_{1} and/or G_{2} are cyclic, where, Σ denotes the alphabet.

1 Introduction

We consider non-linear texts, which are directed graphs where vertices are labeled by strings. Pattern matching on non-linear texts was first considered in [an $O(N+m|E|+R \log \log m)$ time algorithm for directed acyclic graphs. Here, m is the pattern length, N is the number of vertices, $|E|$ is the number of arcs, and R is the output size. The algorithm was improved in $[\tilde{6}]$, where an $O(n+m|E|)$ time algorithm was shown. Here, n represents the total length of the string labels in the graph. Furthermore, in [可], an $O(n)$ time algorithm was shown for trees. The problem was solved for general directed graphs in [2는, where an $O(n+|E|)$ time algorithm was developed. The approximate matching problem for non-linear texts was also considered in $\left[\begin{array}{ll}{[2]}\end{array}\right]$, where they showed that the problem can be solved in $O(m(n \log m+e))$ time when edit operations are only allowed in the pattern. Here, e denotes the number of arcs in the graph when the graph is converted so that each node is labeled by a single character. They also showed that the problem is NP-complete when edit operations are allowed on the non-linear text. Furthermore, in algorithm was improved to $O(m(n+e))$.

Note that previous work on pattern matching on non-linear texts assumed a linear pattern. In this paper, we study a more generalized version of the problem, and consider the longest common substring and longest common subsequence problems between two non-linear texts. Firstly, we present an algorithm to compute the longest common substring of non-linear texts G_{1} and G_{2} in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space, where V_{i} and E_{i} are the sets of vertices and arcs of input nonlinear text G_{i}, respectively, for $1 \leq i \leq 2$. The algorithm works if one of G_{1} and G_{2} is acyclic. Secondly, we present algorithms to compute the longest common subsequence in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space if both G_{1} and G_{2} are acyclic, and in $O\left(\left|E_{1}\right|\left|E_{2}\right|+\left|V_{1}\right|\left|V_{2}\right| \log |\Sigma|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space if G_{1} and/or G_{2} are cyclic. Cyclic non-linear texts represent infinitely many and long strings, but our algorithms solve the above problems quite efficiently. Our algorithms are natural

[^0]extension of classical dynamic programming methods to compute longest common substring/subsequence of linear strings, and hence are easy to understand.

Very recently, an algorithm for determining the longest common subsequence between two finite languages was shown in [i] . The algorithm is a modification of the method based on weighted transducers [[4] , and requires $O\left(|\Sigma|^{2}\left|E_{1}\right|\left|E_{2}\right|\right)$ time and space. Compared to this work, our algorithms are faster and also apply to infinite languages.

problem	text	pattern	time complexity	
Substring Matching	acyclic graph	linear	$O(n+m\|E\|)$	[6]
	tree	linear	$O(n)$	$1{ }^{10}$
	graph	linear	$O(n+\|E\|)$	21
Approximate Matching	graph w/edit operations	linear	NP-complete	[2]
	graph	linear w/edit operations	$O(m(n+e))$	[10]
	text1	text2		
Longest Common Substring	acyclic graph	acyclic graph	$O\left(\left\|E_{1}\right\|\left\|E_{2}\right\|\right)$	(this work)
	graph	acyclic graph	$O\left(\left\|E_{1}\right\|\left\|E_{2}\right\|\right)$	(this work)
Longest Common Subsequence	acyclic graph	acyclic graph	$O\left(\|\Sigma\|^{2}\left\|E_{1}\right\|\left\|E_{2}\right\|\right)$	[7]
	acyclic graph	acyclic graph	$O\left(\left\|E_{1}\right\|\left\|E_{2}\right\|\right)$	(this work)
	graph	graph	$O\left(\left\|E_{1}\right\|\left\|E_{2}\right\|+\left\|V_{1}\right\|\left\|V_{2}\right\| \log \|\Sigma\|\right)$	(this work)

Table 1. Algorithms on non-linear text.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet, and the elements of Σ^{*} are called strings. The length of a string w is denoted by $|w|$. The empty string, denoted by ε, is a string of length 0 , and thus $|\varepsilon|=0$. Let $\Sigma^{+}=\Sigma^{*}-\{\varepsilon\}$. Strings x, y, and z are called a prefix, substring, and suffix of string $w=x y z$, respectively. For any string w, let suffix (w) denote the set of suffixes of w. The i-th symbol of a string w is denoted by $w[i]$ for $1 \leq i \leq|w|$, and the substring of w that begins at position i and ends at position j is denoted by $w[i . . j]$ for $1 \leq i \leq j \leq|w|$. For convenience, let $w[i . . j]=\varepsilon$ for $i>j$. The set of substrings of a string w is denoted by $\operatorname{substr}(w)$. A string u is a subsequence of another string w if there exists a sequence of integers i_{1}, \ldots, i_{k} with $k \geq 0$ such that $1 \leq i_{1}<\cdots<i_{k} \leq|w|$ and $u=w\left[i_{1}\right] \cdots w\left[i_{k}\right]$.

A directed graph is an ordered pair (V, E) of set V of vertices and set $E \subseteq V \times V$ of arcs. A path in a directed graph $G=(V, E)$ is a sequence v_{0}, \ldots, v_{k} of vertices such that $\left(v_{i-1}, v_{i}\right) \in E$ for every $i=1, \ldots, k$. For any vertex $v \in V$, let $P(v)$ denote the set of paths that end at vertex v. The set of all paths in G is denoted by $P(G)$, namely, $P(G)=\{P(v) \mid v \in V\}$.

2.2 Longest common substring problem

The longest common substring problem is, given two strings x and y, to compute the length of longest common substrings of them. Although this problem can be solved in $O(|x|+|y|)$ time using the generalized suffix tree of x and y, we here mention a
dynamic programming based solution. Letting $C_{i, j}$ denote the maximum length of common suffixes of $x[1 . . i]$ and $y[1 . . j]$, it suffices to compute the maximum of $C_{i, j}$ over all the pairs (i, j). Since we have

$$
C_{i, j}= \begin{cases}1+C_{i-1, j-1} & \text { if } i, j>0 \text { and } x[i]=y[j] ; \tag{1}\\ 0 & \text { otherwise },\end{cases}
$$

the problem can be solved in $O(|x||y|)$ time.

2.3 Longest common subsequence problem

The longest common subsequence problem is, given two strings x and y, to compute the length of longest common subsequences of them. It is well-known that, this problem can be solved in $O(|x||y|)$ time by using the following recurrence:

$$
C_{i, j}= \begin{cases}0 & \text { if } i=0 \text { or } j=0 ; \tag{2}\\ 1+C_{i-1, j-1} & \text { if } i, j>0 \text { and } x[i]=y[j] ; \\ \max \left(C_{i-1, j}, C_{i, j-1}\right) & \text { if } i, j>0 \text { and } x[i] \neq y[j],\end{cases}
$$

where $C_{i, j}$ is the length of longest common subsequence of $x[1 . . i]$ and $y[1 . . j]$.

2.4 Non-linear texts

A non-linear text is a directed graph with vertices labeled by strings, namely, it is a directed graph $G=(V, E, L)$ where V is the set of vertices, E is the set of arcs, and $L: V \rightarrow \Sigma^{+}$is a labeling function that maps nodes $v \in V$ to non-empty strings $L(v) \in \Sigma^{+}$. For a path $p=v_{0}, \ldots, v_{k} \in P(G)$, let $L(p)$ denote the string spelled out by p, namely $L(p)=L\left(v_{0}\right) \cdots L\left(v_{k}\right)$. The size $|G|$ of a non-linear text $G=(V, E, L)$ is $|V|+|E|+\sum_{v \in V}|L(v)|$. Let $\operatorname{substr}(G)$, suffix (G), and subseq (G) be the sets of substrings, suffices and subsequences of a non-linear text $G=(V, E, L)$, namely,

$$
\begin{aligned}
\operatorname{substr}(G) & =\{\operatorname{substr}(L(p)) \mid p \in P(G)\}, \\
\operatorname{suffix}(G) & =\{\operatorname{suffix}(L(p)) \mid p \in P(G)\}, \\
\operatorname{subseq}(G) & =\{\operatorname{subseq}(L(p)) \mid p \in P(G)\} .
\end{aligned}
$$

For a non-linear text $G=(V, E, L)$, consider a non-linear text $G^{\prime}=\left(V^{\prime}, E^{\prime}, L^{\prime}\right)$ such that $L^{\prime}: V^{\prime} \rightarrow \Sigma$,

$$
\begin{aligned}
& V^{\prime}=\left\{v_{i, j}\left|L^{\prime}\left(v_{i, j}\right)=L\left(v_{i}\right)[j], v_{i} \in V, 1 \leq j \leq\left|L\left(v_{i}\right)\right|\right\},\right. \text { and } \\
& \left.E^{\prime}=\left\{\left(v_{i,\left|L\left(v_{i}\right)\right|}\right), v_{k, 1}\right) \mid\left(v_{i}, v_{k}\right) \in E\right\} \cup\left\{\left(v_{i, j}, v_{i, j+1}\right)\left|v_{i} \in V, 1 \leq j<\left|L\left(v_{i}\right)\right|\right\} .\right.
\end{aligned}
$$

Namely, G^{\prime} is a non-linear text in which each vertex is labeled with a single character and $\operatorname{substr}\left(G^{\prime}\right)=\operatorname{substr}(G)$. An example is shown in Figure ${ }_{1}^{1}$ Since $\left|V^{\prime}\right|=$ $\sum_{v \in V}|L(v)|,\left|E^{\prime}\right|=|E|+\sum_{v \in V}(|L(v)|-1)$, and $\sum_{v^{\prime} \in V^{\prime}}\left|L\left(v^{\prime}\right)\right|=\sum_{v \in V}|L(v)|$, we have $\left|G^{\prime}\right|=O(|G|)$. We remark that given G, we can easily construct G^{\prime} in $O(|G|)$ time. Observe that $\operatorname{subseq}(G)=\operatorname{subseq}\left(G^{\prime}\right)$ also holds.

In the sequel we only consider non-linear texts where each vertex is labeled with a single character. For any non-linear text $G=(V, E, L)$ such that $L(v) \in \Sigma$ for any $v \in V$, it trivially holds that $\operatorname{substr}(G)=\{L(p) \mid p \in P(G)\}$.

We sometimes call strings in Σ^{*} linear strings or linear texts, in order to clearly distinguish them from non-linear texts.

Figure 1. A non-linear text $G=(V, E, L)$ with $L: V \rightarrow \Sigma^{+}$and its corresponding non-linear text $G^{\prime}=\left(V^{\prime}, E^{\prime}, L^{\prime}\right)$ with $L^{\prime}: V^{\prime} \rightarrow \Sigma$.

3 Computing Longest Common Substring of Non-linear Texts

In this section, we tackle the problem of computing the length of longest common substrings of two input non-linear texts. The problem is formalized as follows.

Problem 1 (Longest common substring problem for non-linear texts).
Input: Non-linear texts $G_{1}=\left(V_{1}, E_{1}, L_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, L_{2}\right)$.
Output: The length of a longest string in $\operatorname{substr}\left(G_{1}\right) \cap \operatorname{substr}\left(G_{2}\right)$.
For example, see the non-linear texts G_{1} and G_{2} of Figure ${ }_{2}$. The solution to the above problem is 5 , since there is a longest common substring abbaa of G_{1} and G_{2}.

For simplicity, let us first consider the case where the two input non-linear texts are both acyclic.

Theorem 2. If G_{1} and G_{2} are acyclic, then Problem : ${ }_{-1}^{1}$, can be solved in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space.

Proof. Let $v_{1, i}$ and $v_{2, j}$ denote the i-th and j-th vertex in topological ordering in G_{1} and in G_{2}, for $1 \leq i \leq\left|V_{1}\right|$ and $1 \leq j \leq\left|V_{2}\right|$, respectively. Let $C_{i, j}$ denote the length of a longest string in suffix $\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{suffix}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$. $C_{i, j}$ can be calculated as follows.

1. If $L_{1}\left(v_{1, i}\right)=L_{2}\left(v_{2, j}\right)$, there are two cases to consider:
(a) If there are no arcs to $v_{1, i}$ or to $v_{2, j}$, i.e., $P\left(v_{1, j}\right)=\left\{v_{1, i}\right\}$ or $P\left(v_{2, j}\right)=\left\{v_{2, j}\right\}$, then clearly $C_{i, j}=1$.
(b) Otherwise, let $v_{1, k}$ and $v_{2, \ell}$ be any nodes s.t. $\left(v_{1, k}, v_{1, i}\right) \in E_{1}$ and $\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}$, respectively. Let z be a longest string in suffix $\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{suffix}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$. Assume on the contrary that there exists a string $y \in \operatorname{suffix}\left(L_{1}\left(P\left(v_{1, k}\right)\right)\right) \cap$ suffix $\left(L_{2}\left(P\left(v_{2, \ell}\right)\right)\right)$ such that $|y|>|z|-1$. This contradicts that z is a longest common suffix of $L_{1}\left(P\left(v_{1, i}\right)\right)$ and $L_{2}\left(P\left(v_{2, j}\right)\right)$, since $L_{1}\left(v_{1, i}\right)=L_{2}\left(v_{2, j}\right)$. Hence $y \leq|z|-1$. If $v_{1, k}$ and $v_{2, \ell}$ are vertices satisfying $C_{k, \ell}=|z|-1$, then $C_{i, j}=$ $C_{k, \ell}+1$. Note that such $v_{1, k}$ and $v_{2, \ell}$ always exist.
2. If $L_{1}\left(v_{1, i}\right) \neq L_{2}\left(v_{2, j}\right)$, then trivially suffix $\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{suffix}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)=\{\varepsilon\}$. Hence $C_{i, j}=0$.

Consequently we obtain the following recurrence:

$$
\begin{align*}
& C_{i, j}= \\
& \begin{cases}1+\max \left(\left\{C_{k, \ell} \mid\left(v_{1, k}, v_{1, i}\right) \in E_{1},\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\} \cup\{0\}\right) & \text { if } L_{1}\left(v_{1, i}\right)=L_{2}\left(v_{2, j}\right) ; \\
0 & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Figure 2. Example of dynamic programming for computing the length of a longest common substring of non-linear texts G_{1} and G_{2}. Each vertex is annotated with its topological order. In this example, $\max C_{i, j}=5$ and the longest common substring is abbaa.

We use dynamic programming to compute $C_{i, j}$ for all $1 \leq i \leq\left|V_{1}\right|$ and $1 \leq j \leq$ $\left|V_{2}\right|$. Consider to compute $\max \left\{C_{k, \ell} \mid\left(v_{1, k}, v_{1, i}\right) \in E_{1},\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\}$. For each fixed $\left(v_{1, k}, v_{1, i}\right) \in E_{1}$, we refer the value of $C_{k, \ell}$ for all $1 \leq \ell<j$ such that $\left(v_{2, \ell}, v_{2, j}\right) \in$ V_{2}, in $O\left(\left|E_{2}\right|\right)$ time. Therefore, the total time complexity for computing $\max \left\{C_{k, \ell} \mid\right.$ $\left.\left(v_{1, k}, v_{1, i}\right) \in E_{1},\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\}$ is $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$. Since we can sort vertices of G_{1} and G_{2} in topological ordering in linear time, the total time complexity is $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$. The space complexity is clearly $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$.

An example of computing $C_{i, j}$ using dynamic programming is shown in Figure
We remark that the recurrence of (computing the longest common substring of linear texts.

Furthermore, we can solve Problem ${ }_{-1}^{1}$ in case where only one of the input nonlinear texts is acyclic:

Theorem 3. If at least one of G_{1} and G_{2} is acyclic, then Problem $\mathbf{1}_{1}$ can be solved in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space.

Proof. Assume w.l.o.g. that G_{1} is acyclic. Recall the proof of Theorem observation is that it indeed suffices to sort one of the input non-linear texts in topological ordering.

For any vertex $v_{2, j} \in V_{2}$ and positive integer h, let $P_{h}\left(v_{2, j}\right)$ denote the set of paths of length not greater than h, which end at vertex $v_{2, j}$. Assume we have sorted vertices of G_{1}. Let $C_{i, j}$ denote the length of a longest string in suffix $\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap$ $\operatorname{suffix}\left(L_{2}\left(P_{r}\left(v_{2, j}\right)\right)\right)$, where r is the length of a longest path in $P\left(v_{1, i}\right)$. We compute $C_{1, j}$ for each vertex $v_{2, j} \in V_{2}$ by: $C_{1, j}=1$ if $L_{1}\left(v_{1,1}\right)=L_{2}\left(v_{2, j}\right)$ and $C_{1, j}=0$ otherwise. Then we compute $C_{i, j}$ for all $i>1$ using the same recurrence as ($\left.\bar{B}_{1}^{2}\right)$. Since the length of any element in $\operatorname{substr}\left(G_{1}\right) \cap \operatorname{substr}\left(G_{2}\right)$ is not greater than that of the longest path in $G_{1}, \max \left\{C_{i, j}\left|1 \leq i \leq\left|V_{1}\right|, 1 \leq j \leq\left|V_{2}\right|\right\}\right.$ equals to the length of a longest string in $\operatorname{substr}\left(G_{1}\right) \cap \operatorname{substr}\left(G_{2}\right)$. Consequently, G_{2} does not have to be acyclic.

A pseudo-code of our algorithm to solve the longest common substring problem for non-linear texts is shown in Algorithm

```
Algorithm 1: Computing the length of longest common substring of non-linear
texts.
    Input: Acyclic non-linear text \(G_{1}=\left(V_{1}, E_{1}, L_{1}\right)\) and non-linear text \(G_{2}=\left(V_{2}, E_{2}, L_{2}\right)\).
    Output: Length of a longest string in \(\operatorname{substr}\left(G_{1}\right) \cap \operatorname{substr}\left(G_{2}\right)\).
    topological sort \(G_{1}\);
    \(n \leftarrow\left|V_{1}\right| ; m \leftarrow\left|V_{2}\right| ;\)
    Let \(C\) be an \(n \times m\) integer array;
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(m\) do
            if \(f\left(v_{1, i}\right)=f\left(v_{2, j}\right)\) then
                \(C_{i, j} \leftarrow 1 ;\)
                forall \(v_{1, k}\) s.t. \(\left(v_{1, k}, v_{1, i}\right) \in E_{1}\) do
                forall \(v_{2, \ell}\) s.t. \(\left(v_{2, \ell, \ell} v_{2, j}\right) \in E_{2}\) do
                    if \(C_{i, j}<1+C_{k, \ell}\) then
                                    \(C_{i, j} \leftarrow 1+C_{k, \ell} ;\)
            else
                \(C_{i, j} \leftarrow 0 ;\)
    return \(\max \left\{C_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\} ;\)
```


4 Computing Longest Common Subsequence Problem of Non-linear Texts

In this section, we tackle the problem of computing the length of longest common subsequence of two input non-linear texts. The problem is formalized as follows.
Problem 4 (Longest common subsequence problem for non-linear texts).
Input: Non-linear texts $G_{1}=\left(V_{1}, E_{1}, L_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, L_{2}\right)$.
Output: The length of a longest string in $\operatorname{subseq}\left(G_{1}\right) \cap \operatorname{subseq}\left(G_{2}\right)$.
For example, see the non-linear texts G_{1} and G_{2} of Figure '3. The solution to the above problem is 4 , since there is a longest common subsequence acdb of G_{1} and G_{2}.

In the sequel we present our algorithm to solve the above problem in case where both G_{1} and G_{2} are acyclic.

Theorem 5. If G_{1} and G_{2} are acyclic, then Problem 吥, can be solved in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space.

Proof. Let $v_{1, i}$ and $v_{2, j}$ denote the i-th and j-th vertex in topological ordering in G_{1} and in G_{2}, for $1 \leq i \leq\left|V_{1}\right|$ and $1 \leq j \leq\left|V_{2}\right|$, respectively. Let $C_{i, j}$ denote the length of a longest string in $\operatorname{subseq}\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$. $C_{i, j}$ can be calculated as follows.

1. If $L_{1}\left(v_{1, i}\right)=L_{2}\left(v_{2, j}\right)$, there are two cases to consider:
(a) If there are no arcs to $v_{1, i}$ or to $v_{2, j}$, i.e., $P\left(v_{1, i}\right)=\left\{v_{1, i}\right\}$ or $P\left(v_{2, j}\right)=\left\{v_{2, j}\right\}$, then clearly $C_{i, j}=1$.
(b) Otherwise, let $v_{1, k}$ and $v_{2, \ell}$ be any nodes s.t. $\left(v_{1, k}, v_{1, i}\right) \in E_{1}$ and $\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}$, respectively. Let z be a longest string in $\operatorname{subseq}\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$. Assume on the contrary that there exists a string $y \in \operatorname{subseq}\left(L_{1}\left(P\left(v_{1, k}\right)\right)\right) \cap$ $\operatorname{subseq}\left(L_{2}\left(P\left(v_{2, \ell}\right)\right)\right)$ such that $|y|>|z|-1$. This contradicts that z is a longest common subsequence of $L_{1}\left(P\left(v_{1, i}\right)\right)$ and $L_{2}\left(P\left(v_{2, j}\right)\right)$, since $L_{1}\left(v_{1, i}\right)=L_{2}\left(v_{2, j}\right)$. Hence $|y| \leq|z|-1$. If $v_{1, k}$ and $v_{2, \ell}$ are vertices satisfying $C_{k, \ell}=|z|-1$, then $C_{i, j}=C_{k, \ell}+1$. Note that such $v_{1, k}$ and $v_{2, \ell}$ always exist.
2. If $L_{1}\left(v_{1, i}\right) \neq L_{2}\left(v_{2, j}\right)$, there are two cases to consider:
(a) If there are no arcs to $v_{1, i}$ and to $v_{2, j}$, i.e., $P\left(v_{1, i}\right)=\left\{v_{1, i}\right\}$ and $P\left(v_{2, j}\right)=\left\{v_{2, j}\right\}$, then clearly $C_{i, j}=0$.
(b) Otherwise, let $v_{1, k}$ and $v_{2, \ell}$ be any nodes s.t. $\left(v_{1, k}, v_{1, i}\right) \in E_{1}$ and $\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}$, respectively. Let z be a longest string in $\operatorname{subseq}\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$. Assume on the contrary that there exists a string $y \in \operatorname{subseq}\left(L_{1}\left(P\left(v_{1, k}\right)\right)\right) \cap$ $\operatorname{subseq}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$ such that $|y|>|z|$. This contradicts that z is a longest common subsequence of $L_{1}\left(P\left(v_{1, i}\right)\right)$ and $L_{2}\left(P\left(v_{2, j}\right)\right)$, since subseq $\left(L_{1}\left(P\left(v_{1, k}\right)\right)\right) \cap$ $\operatorname{subseq}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right) \subseteq \operatorname{subseq}\left(L_{1}\left(P\left(v_{1, i}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}\left(P\left(v_{2, j}\right)\right)\right)$. Hence $|y| \leq$ $|z|$. If $v_{1, k}$ is a vertex satisfying $C_{k, j}=|z|$, then $C_{i, j}=C_{k, j}$. Similarly, if $v_{2, \ell}$ is a vertex satisfying $C_{i, \ell}=|z|$, then $C_{i, j}=C_{i, \ell}$. Note that such $v_{1, k}$ or $v_{2, \ell}$ always exists.

Consequently we obtain the following recurrence:

$$
\begin{align*}
& C_{i, j}= \\
& \begin{cases}1+\max \left(\left\{C_{k, \ell} \mid\left(v_{1, k}, v_{1, i}\right) \in E_{1},\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\} \cup\{0\}\right) & \text { if } L_{1}\left(v_{1, i}\right)=L_{2}\left(v_{2, j}\right) ; \\
\max \left(\begin{array}{ll}
\left\{C_{k, j} \mid\left(v_{1, k}, v_{1, i}\right) \in E_{1}\right\} \cup\left\{C_{i, \ell} \mid\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\} \\
\cup\{0\}
\end{array}\right. & \text { otherwise. }\end{cases} \tag{4}
\end{align*}
$$

We use dynamic programming to compute $C_{i, j}$ for all $1 \leq i \leq\left|V_{1}\right|$ and $1 \leq j \leq$ $\left|V_{2}\right|$.

By similar arguments to the proof of Theorem $\underline{2}_{\underline{1}}^{1}$ computing $\max \left\{C_{k, \ell} \mid\left(v_{1, k}, v_{1, i}\right) \in\right.$ $\left.E_{1},\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\}$ takes $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time.

Consider to compute $\max \left\{C_{k, j}, C_{i, \ell} \mid\left(v_{1, k}, v_{1, i}\right) \in E_{1},\left(v_{2, k}, v_{2, j}\right) \in E_{2}\right\}$. For each fixed $\left(v_{1, k}, v_{1, i}\right) \in E_{1}$, we refer the value of $C_{k, j}$ for all $1 \leq j \leq\left|V_{2}\right|$ in $O\left(\left|V_{2}\right|\right)$ time. Similarly, for each fixed $\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}$, we refer the value of $C_{i, \ell}$ for all $1 \leq i \leq\left|V_{1}\right|$ in $O\left(\left|V_{1}\right|\right)$ time. Therefore, the total time cost for computing $\max \left\{C_{k, j}, C_{i, \ell} \mid\left(v_{1, k}, v_{1, i}\right) \in\right.$ $\left.E_{1},\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\right\}$ is $O\left(\left|V_{2}\right|\left|E_{1}\right|+\left|V_{1}\right|\left|E_{2}\right|\right)$.

Since we can sort vertices of G_{1} and G_{2} in topological ordering in linear time, the total time complexity is $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$. The space complexity is clearly $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$.

An example of computing $C_{i, j}$ using dynamic programming is show in Figure We remark that the recurrence of $\binom{1}{1}$ is a natural generalization of that of $(\underline{2} \mathbf{2})$ for computing the longest common subsequence of linear texts.
 where both G_{1} and G_{2} are acyclic.

Figure 3. Example of dynamic programming for computing the length of a longest common subsequence of non-linear texts G_{1} and G_{2}. Each vertex is annotated with its topological order. In this example, $\max C_{i, j}=4$ and the longest common subsequence is acdb.

```
Algorithm 2: Computing the length of longest common subsequence of acyclic
non-linear texts
    Input: Two acyclic non-linear texts \(G_{1}=\left(V_{1}, E_{1}, L_{1}\right), G_{2}=\left(V_{2}, E_{2}, L_{2}\right)\)
    Output: Length of a longest string in \(\operatorname{subseq}\left(G_{1}\right) \cap \operatorname{subseq}\left(G_{2}\right)\)
    topological sort \(G_{1}\);
    topological sort \(G_{2}\);
    \(n \leftarrow\left|V_{1}\right| ; m \leftarrow\left|V_{2}\right| ;\)
    Let \(C\) be an \(n \times m\) integer array;
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(m\) do
            if \(f\left(v_{1, i}\right)=f\left(v_{2, j}\right)\) then
            \(C_{i, j} \leftarrow 1 ;\)
                forall \(v_{1, k}\) s.t. \(\left(v_{1, k}, v_{1, i}\right) \in E_{1}\) do
                    forall \(v_{2, \ell}\) s.t. \(\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\) do
                    if \(C_{i, j}<1+C_{k, \ell}\) then
                                    \(C_{i, j} \leftarrow 1+C_{k, \ell} ;\)
            else
                \(C_{i, j} \leftarrow 0 ;\)
                forall \(v_{1, k}\) s.t. \(\left(v_{1, k}, v_{1, i}\right) \in E_{1}\) do
                    if \(C_{i, j}<C_{k, j}\) then
                    \(C_{i, j} \leftarrow C_{k, j} ;\)
                forall \(v_{2, \ell}\) s.t. \(\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\) do
                    if \(C_{i, j}<C_{i, \ell}\) then
                    \(C_{i, j} \leftarrow C_{i, \ell} ;\)
    return \(\max \left\{C_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}\);
```


5 Computing Longest Common Subsequence of Cyclic Non-linear Texts

In this section, we present an algorithm to solve Problem 'in in case where the input non-linear texts are cyclic. We output ∞ if $\operatorname{subseq}\left(G_{1}\right) \cap \operatorname{subseq}\left(G_{2}\right)$ is infinite, and do the length of a longest string in $\operatorname{subseq}\left(G_{1}\right) \cap \operatorname{subseq}\left(G_{2}\right)$ otherwise.

We transform a cyclic non-linear text $G=(V, E, L)$ into an acyclic non-linear text $G^{\prime}=\left(V^{\prime}, E^{\prime}, L^{\prime}\right)$ based on the strongly connected components. For each vertex $v \in V$, let $[v]$ denote the set of vertices that belong to the same strongly connected component. Formally, G^{\prime} is defined as
$V^{\prime}=\{[v] \mid v \in V\}$,
$E^{\prime}=\left\{([v],[u]) \mid[v] \neq[u],\left(v^{\prime}, u^{\prime}\right) \in E\right.$ for some $\left.v^{\prime} \in[v], u^{\prime} \in[u]\right\} \cup\{(v, v)| |[v] \mid \geq 2\}$,
and $L^{\prime}([v])=\{L(v) \mid v \in[v]\} \subseteq \Sigma$. We regard each $[v]$ as a single vertex that is contracted from vertices in $[v]$. Observe that $\operatorname{subseq}\left(G^{\prime}\right)=\operatorname{subseq}(G)$.

An example of transformed acyclic non-linear texts is shown in Figure
Theorem 6. If G_{1} and/or G_{2} are cyclic, then Problem1 $\mathbf{1}_{1}$ can be solved in $O\left(\left|E_{1}\right|\left|E_{2}\right|+\right.$ $\left.\left|V_{1}\right|\left|V_{2}\right| \log |\Sigma|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space.

Proof. We first transform cyclic non-linear texts G_{1} and G_{2} into corresponding acyclic non-linear texts G_{1}^{\prime} and G_{2}^{\prime}, as described previously. Let $v_{1, i}^{\prime}$ and $v_{2, j}^{\prime}$ denote the i th and j-th vertex in topological ordering in G_{1}^{\prime} and G_{2}^{\prime}, for $1 \leq i \leq\left|V_{1}^{\prime}\right|$ and $1 \leq j \leq\left|V_{2}^{\prime}\right|$, respectively. Let S_{1} and S_{2} denote the sets of vertices which has a loop, namely, $S_{1}=\left\{L_{1}^{\prime}\left(v_{1, i}^{\prime}\right) \mid\left(v_{1, i}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}^{\prime}\right\}$ and $S_{2}=\left\{L_{2}^{\prime}\left(v_{2, j}^{\prime}\right) \mid\left(v_{2, j}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}^{\prime}\right\}$. If $S_{1} \cap S_{2} \neq \emptyset$, then let c be any character in $S_{1} \cap S_{2}$. Clearly an infinite repetition c^{*} of c is a common subsequence of G_{1} and G_{2}, and hence we output ∞.

In the sequel, consider the case where $S_{1} \cap S_{2}=\emptyset$. In this case, it is clear that $\operatorname{subseq}\left(G_{1}\right) \cap \operatorname{subseq}\left(G_{2}\right)$ is finite. Let $C_{i, j}$ denote the length of a longest string in $\operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, i}^{\prime}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)\right) . C_{i, j}$ can be calculated as follows.

1. If $L^{\prime}\left(v_{1, i}^{\prime}\right) \cap L^{\prime}\left(v_{2, j}^{\prime}\right) \neq \emptyset$, there are two cases to consider:
(a) If there are no arcs to $v_{1, i}^{\prime}$ or to $v_{2, j}^{\prime}$, i.e., $P\left(v_{1, i}^{\prime}\right)=\left\{v_{1, i}^{\prime}\right\}$ or $P\left(v_{2, j}^{\prime}\right)=\left\{v_{2, j}^{\prime}\right\}$, then clearly $C_{i, j}=1$.
(b) Otherwise, let $v_{1, k}^{\prime}$ and $v_{2, \ell}^{\prime}$ be any nodes s.t. $\left(v_{1, k}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}^{\prime}$ and $\left(v_{2, \ell}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}^{\prime}$, respectively. Let z be a longest string in $\operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, i}^{\prime}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)\right)$. Assume on the contrary that there exists a string $y \in \operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, k}^{\prime}\right)\right)\right) \cap$ $\operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, \ell}^{\prime}\right)\right)\right)$ such that $|y|>|z|-1$. This contradicts that z is a longest common subsequence of $L_{1}^{\prime}\left(P\left(v_{1, i}^{\prime}\right)\right)$ and $L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)$, since $L_{1}^{\prime}\left(v_{1, i}^{\prime}\right) \cap L_{2}^{\prime}\left(v_{2, j}^{\prime}\right) \neq$ \emptyset. Hence $|y| \leq|z|-1$. If $v_{1, k}^{\prime}$ and $v_{2, \ell}^{\prime}$ are vertices satisfying $C_{k, \ell}=|z|-1$, then $C_{i, j}=C_{k, \ell}+1$. Note that such $v_{1, k}^{\prime}$ and $v_{2, \ell}^{\prime}$ always exist.
2. If $L^{\prime}\left(v_{1, i}^{\prime}\right) \cap L^{\prime}\left(v_{2, j}^{\prime}\right)=\emptyset$, there are two cases to consider:
(a) If there are no arcs to $v_{1, i}^{\prime}$ and to $v_{2, j}^{\prime}$, i.e., $P\left(v_{1, i}^{\prime}\right)=\left\{v_{1, i}^{\prime}\right\}$ and $P\left(v_{2, j}^{\prime}\right)=\left\{v_{2, j}^{\prime}\right\}$, then clearly $C_{i, j}=0$.
(b) Otherwise, let $v_{1, k}^{\prime}$ and $v_{2, \ell}^{\prime}$ be any nodes s.t. $\left(v_{1, k}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}^{\prime}$ and $\left(v_{2, \ell}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}^{\prime}$, respectively. Let z be a longest string in $\operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, i}^{\prime}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)\right)$. Assume on the contrary that there exists a string $y \in \operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, k}^{\prime}\right)\right)\right) \cap$ $\operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)\right)$ such that $|y|>|z|$. This contradicts that z is a longest common subsequence of $L_{1}^{\prime}\left(P\left(v_{1, i}^{\prime}\right)\right)$ and $L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)$, since $\operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, k}^{\prime}\right)\right)\right) \cap$
$\operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)\right) \subseteq \operatorname{subseq}\left(L_{1}^{\prime}\left(P\left(v_{1, i}^{\prime}\right)\right)\right) \cap \operatorname{subseq}\left(L_{2}^{\prime}\left(P\left(v_{2, j}^{\prime}\right)\right)\right)$. Hence $|y| \leq$ $|z|$. If $v_{1, k}^{\prime}$ is a vertex satisfying $C_{k, j}=|z|$, then $C_{i, j}=C_{k, j}$. Similarly, if $v_{2, \ell}^{\prime}$ is a vertex satisfying $C_{i, \ell}=|z|$, then $C_{i, j}=C_{i, \ell}$. Note that such $v_{1, k}^{\prime}(k \neq i)$ or $v_{2, \ell}^{\prime}(\ell \neq j)$ always exists.
Consequently we obtain the following recurrence:

$$
\begin{align*}
& C_{i, j}= \\
& \begin{cases}1+\max \left(\left\{C_{k, \ell} \mid\left(v_{1, k}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}^{\prime},\left(v_{2, \ell}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}^{\prime}\right\} \cup\{0\}\right) & \text { If } L^{\prime}\left(v_{1, i}^{\prime}\right) \cap L^{\prime}\left(v_{2, j}^{\prime}\right) \neq \emptyset \\
\max \left(\begin{array}{l}
\left\{C_{k, j} \mid\left(v_{1, k}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}\right\} \cup\left\{C_{i, \ell} \mid\left(v_{2, \ell}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}\right\} \\
\cup\{0\}
\end{array}\right. & \text { otherwise. }\end{cases} \tag{5}
\end{align*}
$$

It is well-known that we can transform G_{1} and G_{2} into G_{1}^{\prime} and G_{2}^{\prime} in linear time, based on strongly connected components.

For each self-loop such as $\left(v_{1, i}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}$, we refer the value of $C_{i, j}$ for all $1 \leq$ $j \leq\left|V_{2}^{\prime}\right|$ in $O\left(\left|V_{2}^{\prime}\right|\right)$ time. Similarly, for each self-loop such as $\left(v_{2, j}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}$, we refer the value of $C_{i, j}$ for all $1 \leq i \leq\left|V_{1}^{\prime}\right|$ in $O\left(\left|V_{1}^{\prime}\right|\right)$ time. For the other arcs, we can compute $C_{i, j}$ for all $1 \leq i \leq\left|V_{1}^{\prime}\right|$ and $1 \leq j \leq\left|V_{2}^{\prime}\right|$ using dynamic programming in $O\left(\left|E_{1}^{\prime}\right| \cdot\left|E_{2}^{\prime}\right|\right)$ time, in a similar way as the previous section. Therefore the total time cost for computing $C_{i, j}$ is $O\left(\left|E_{1}^{\prime}\right| \cdot\left|E_{2}^{\prime}\right|\right)$.

Let Σ_{1} and Σ_{2} be the sets of characters that appear in G_{1} and G_{2}, respectively. The time cost to compute $S_{1} \cap S_{2}$ is $O\left(\left|\Sigma_{1}\right| \log \left|\Sigma_{2}\right|+\left|\Sigma_{2}\right| \log \left|\Sigma_{1}\right|\right)$ using a balanced tree. Assume $S_{1} \cap S_{2}=\emptyset$, and consider to compute $L^{\prime}\left(v_{1, i}^{\prime}\right) \cap L^{\prime}\left(v_{2, j}^{\prime}\right)$. If $\left|L^{\prime}\left(v_{1, i}^{\prime}\right)\right|>1$ and $\left|L^{\prime}\left(v_{2, j}^{\prime}\right)\right|>1$, then we know $L^{\prime}\left(v_{1, i}^{\prime}\right) \cap L^{\prime}\left(v_{2, j}^{\prime}\right)=\emptyset$ since $S_{1} \cap S_{2}=\emptyset$. If $\left|L^{\prime}\left(v_{1, i}^{\prime}\right)\right|=1$ and/or $\left|L^{\prime}\left(v_{2, j}^{\prime}\right)\right|=1$, then $L^{\prime}\left(v_{1, i}^{\prime}\right) \cap L^{\prime}\left(v_{2, j}^{\prime}\right)$ can be computed in $O(\log |\Sigma|)$ time using a balanced tree, where $|\Sigma|=\max \left\{\left|\Sigma_{1}\right|,\left|\Sigma_{2}\right|\right\}$. Therefore the total time cost to compare $L^{\prime}\left(v_{1, i}^{\prime}\right)$ and $L^{\prime}\left(v_{2, j}^{\prime}\right)$ for all $1 \leq i \leq\left|V_{1}^{\prime}\right|$ and $1 \leq j \leq\left|V_{2}^{\prime}\right|$ is $O\left(\left|V_{1}^{\prime}\right|\left|V_{2}^{\prime}\right| \log |\Sigma|\right)$. The total time complexity becomes $O\left(\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{1}^{\prime}\right|\left|E_{2}^{\prime}\right|+\left|V_{1}^{\prime}\right|\left|V_{2}^{\prime}\right| \log |\Sigma|+\left|\Sigma_{1}\right| \log \left|\Sigma_{2}\right|+\right.$ $\left.\left|\Sigma_{2}\right| \log \left|\Sigma_{1}\right|\right)=O\left(\left|E_{1}\right|\left|E_{2}\right|+\left|V_{1}\right|\left|V_{2}\right| \log |\Sigma|\right)$, since $\left|\Sigma_{1}\right| \leq\left|V_{1}\right|$ and $\left|\Sigma_{2}\right| \leq\left|V_{2}\right|$. The total space complexity is $O\left(\left|V_{1}^{\prime}\right|\left|V_{2}^{\prime}\right|+\left|\Sigma_{1}\right| \log \left|\Sigma_{2}\right|+\left|\Sigma_{2}\right| \log \left|\Sigma_{1}\right|\right)=O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$.

An example of computing $C_{i, j}$ using dynamic programming is shown in Figure ${ }_{-1}$. A pseudo-code of our algorithm is shown in Algorithm ${ }_{3}^{5}$

Figure 4. Example of dynamic programming for computing the length of a longest common subsequence of non-linear texts G_{1} and $G_{2} . G_{1}^{\prime}$ and G_{2}^{\prime} are non-linear texts which are transformed from G_{1} and G_{2} by grouping vertices into strongly connected components. Each vertex is annotated with its topological order. In this example, $\max C_{i, j}=4$ and the longest common subseqence is aacd.

```
Algorithm 3: Computing the length of longest common subsequence of cyclic
non-linear texts
    Input: Two non-linear texts \(G_{1}=\left(V_{1}, E_{1}, L_{1}\right), G_{2}=\left(V_{2}, E_{2}, L_{2}\right)\)
    Output: Length of a longest string in \(\operatorname{subseq}\left(G_{1}\right) \cap \operatorname{subseq}\left(G_{2}\right)\)
    \(G_{1}^{\prime} \leftarrow\) Strongly Connected Components \(G_{1}\);
    \(G_{2}^{\prime} \leftarrow\) Strongly Connected Components \(G_{2}\);
    Let \(S_{1}\) be a set of vertices which belong to cycles in \(G_{1}\);
    Let \(S_{2}\) be a set of vertices which belong to cycles in \(G_{2}\);
    if \(S_{1} \cap S_{2} \neq \emptyset\) then
        return \(\infty\);
    else
        topological sort \(G_{1}^{\prime}\);
        topological sort \(G_{2}^{\prime}\);
        Let \(C\) be an \(\left|V_{1}^{\prime}\right| \times\left|V_{2}^{\prime}\right|\) integer array;
        for \(i \leftarrow 1\) to \(\left|V_{1}^{\prime}\right|\) do
            for \(j \leftarrow 1\) to \(\left|V_{2}^{\prime}\right|\) do
                if \(\left(v_{1, i}^{\prime}, v_{1, i}^{\prime}\right) \in E_{1}^{\prime}\) then
                if \(\left(v_{2, j}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}^{\prime}\) then
                    \(\vec{C}_{i, j} \leftarrow\) Vertex-mismatch \(\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right) ;\)
                else if \(L\left(v_{1, i}^{\prime}\right) \supseteq L\left(v_{2, j}^{\prime}\right)\) then
                    \(C_{i, j} \leftarrow\) Vertex-match \(\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right)\);
                else
                \(C_{i, j} \leftarrow \operatorname{Vertex}-m i s m a t c h\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right) ;\)
            else if \(\left(v_{2, j}^{\prime}, v_{2, j}^{\prime}\right) \in E_{2}^{\prime}\) then
                if \(L\left(v_{1, i}^{\prime}\right) \subseteq L\left(v_{2, j}^{\prime}\right)\) then
                    \(C_{i, j} \leftarrow\) Vertex-match \(\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right) ;\)
                else
                    \(C_{i, j} \leftarrow\) Vertex-mismatch \(\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right) ;\)
            else if \(L\left(v_{1, i}^{\prime}\right)=L\left(v_{2, j}^{\prime}\right)\) then
                \(C_{i, j} \leftarrow\) Vertex-match \(\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right) ;\)
            else
                \(C_{i, j} \leftarrow\) Vertex-mismatch \(\left(v_{1, i}^{\prime}, v_{2, j}^{\prime}\right) ;\)
    return \(\max \left\{C_{i, j}\left|1 \leq i \leq\left|V_{1}^{\prime}\right|, 1 \leq j \leq\left|V_{2}^{\prime}\right|\right\} ;\right.\)
```

```
Algorithm 4: Vertex-match \(\left(v_{1, i}, v_{2, j}\right)\)
    \(C_{i, j} \leftarrow 1\)
    forall \(v_{1, k}\) s.t. \(\left(v_{1, k}, v_{1, i}\right) \in E_{1}\) do
        forall \(v_{2, \ell}\) s.t. \(\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\) do
            if \(C_{i, j}<1+C_{k, \ell}\) then
                \(C_{i, j} \leftarrow 1+C_{k, \ell}\)
    return \(C_{i, j}\)
```

```
Algorithm 5: Vertex-mismatch \(\left(v_{1, i}, v_{2, j}\right)\)
    \(C_{i, j} \leftarrow 0\)
    forall \(v_{1, k}\) s.t. \(\left(v_{1, k}, v_{1, i}\right) \in E_{1}\) do
        if \(C_{i, j}<C_{k, j}\) then
            \(C_{i, j} \leftarrow C_{k, j}\)
    forall \(v_{2, \ell}\) s.t. \(\left(v_{2, \ell}, v_{2, j}\right) \in E_{2}\) do
        if \(C_{i, j}<C_{i, \ell}\) then
            \(C_{i, j} \leftarrow C_{i, \ell}\)
    return \(C_{i, j}\)
```


6 Conclusions

We considered the longest common substring and subsequence problems between two non-linear texts. We showed that when the texts are acyclic, the problem can be solved in $O\left(\left|E_{1}\right|\left|E_{2}\right|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space by a dynamic programming approach. Furthermore, we extend our algorithm and consider the case where the texts can contain cycles, and presented an $O\left(\left|E_{1}\right|\left|E_{2}\right|+\left|V_{1}\right|\left|V_{2}\right| \log |\Sigma|\right)$ time and $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ space algorithm for the longest common subsequence problem. The longest common substring between general graphs is an open problem.

References

1. T. Akutsu: A linear time pattern matching algorithm between a string and a tree, in Proc. CPM'93, 1993, pp. 1-10.
2. A. Amir, M. Lewenstein, and N. Lewenstein: Pattern matching in hypertext, in Proc. WADS'97, vol. 1272 of LNCS, 1997, pp. 160-173.
3. U. MANBER AND S. WU: Approximate string matching with arbitrary costs for text and hypertext, in Proc. IAPR, 1992, pp. 22-33.
4. M. Mohri: Edit-distance of weighted automata: General definitions and algorithms. Int. J. Found. Comput. Sci, 14(6) 2003, pp. 957-982.
5. G. NAVARRO: Improved approximate pattern matching on hypertext. Theoretial Computer Science, $237(1-2) 2000$, pp. 455-463.
6. K. Park and D. K. Kim: String matching in hypertext, in Proc. CPM'95, 1995, pp. 318-329.
7. D. Q. THANG: Algorithm to determine longest common subsequences of two finite languages, in New Challenges for Intelligent Information and Database System, vol. 351/2011 of Studies in Computational Intelligence, 2011, pp. 3-12.

[^0]: Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Computing Longest Common Substring/Subsequence of Non-linear Texts, pp. 197-208.
 Proceedings of PSC 2011, Jan Holub and Jan Ždárek (Eds.), ISBN 978-80-01-04870-2 © Czech Technical University in Prague, Czech Republic

