
Computing Longest Common

Substring/Subsequence of Non-linear Texts

Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University
744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan

{kouji.shimohira,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. A non-linear text is a directed graph where each vertex is labeled with a
string. In this paper, we introduce the longest common substring/subsequence problems
on non-linear texts. Firstly, we present an algorithm to compute the longest common
substring of non-linear texts G1 and G2 in O(|E1||E2|) time and O(|V1||V2|) space, when
at least one of G1 and G2 is acyclic. Here, Vi and Ei are the sets of vertices and arcs of
input non-linear text Gi, respectively, for 1 ≤ i ≤ 2. Secondly, we present algorithms
to compute the longest common subsequence of G1 and G2 in O(|E1||E2|) time and
O(|V1||V2|) space, when both G1 and G2 are acyclic, and in O(|E1||E2|+|V1||V2| log |Σ|)
time and O(|V1||V2|) space if G1 and/or G2 are cyclic, where, Σ denotes the alphabet.

1 Introduction

We consider non-linear texts, which are directed graphs where vertices are labeled
by strings. Pattern matching on non-linear texts was first considered in [3], where
an O(N + m|E| + R log logm) time algorithm for directed acyclic graphs. Here, m
is the pattern length, N is the number of vertices, |E| is the number of arcs, and
R is the output size. The algorithm was improved in [6], where an O(n + m|E|)
time algorithm was shown. Here, n represents the total length of the string labels
in the graph. Furthermore, in [1], an O(n) time algorithm was shown for trees. The
problem was solved for general directed graphs in [2], where an O(n + |E|) time
algorithm was developed. The approximate matching problem for non-linear texts
was also considered in [2], where they showed that the problem can be solved in
O(m(n logm+ e)) time when edit operations are only allowed in the pattern. Here, e
denotes the number of arcs in the graph when the graph is converted so that each node
is labeled by a single character. They also showed that the problem is NP-complete
when edit operations are allowed on the non-linear text. Furthermore, in [5], the
algorithm was improved to O(m(n+ e)).

Note that previous work on pattern matching on non-linear texts assumed a
linear pattern. In this paper, we study a more generalized version of the problem,
and consider the longest common substring and longest common subsequence prob-
lems between two non-linear texts. Firstly, we present an algorithm to compute the
longest common substring of non-linear texts G1 and G2 in O(|E1||E2|) time and
O(|V1||V2|) space, where Vi and Ei are the sets of vertices and arcs of input non-
linear text Gi, respectively, for 1 ≤ i ≤ 2. The algorithm works if one of G1 and
G2 is acyclic. Secondly, we present algorithms to compute the longest common sub-
sequence in O(|E1||E2|) time and O(|V1||V2|) space if both G1 and G2 are acyclic,
and in O(|E1||E2| + |V1||V2| log |Σ|) time and O(|V1||V2|) space if G1 and/or G2 are
cyclic. Cyclic non-linear texts represent infinitely many and long strings, but our
algorithms solve the above problems quite efficiently. Our algorithms are natural

Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Computing Longest Common Substring/Subsequence of Non-linear Texts,

pp. 197–208.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

198 Proceedings of the Prague Stringology Conference 2011

extension of classical dynamic programming methods to compute longest common
substring/subsequence of linear strings, and hence are easy to understand.

Very recently, an algorithm for determining the longest common subsequence be-
tween two finite languages was shown in [7]. The algorithm is a modification of the
method based on weighted transducers [4], and requires O(|Σ|2|E1||E2|) time and
space. Compared to this work, our algorithms are faster and also apply to infinite
languages.

problem text pattern time complexity

Substring
Matching

acyclic graph linear O(n+m|E|) [6]
tree linear O(n) [1]
graph linear O(n+ |E|) [2]

Approximate
Matching

graph w/edit
operations

linear NP-complete [2]

graph
linear w/edit
operations

O(m(n+ e)) [5]

text1 text2
Longest Com-
mon Substring

acyclic graph acyclic graph O(|E1||E2|) (this work)
graph acyclic graph O(|E1||E2|) (this work)

Longest
Common
Subsequence

acyclic graph acyclic graph O(|Σ|2|E1||E2|) [7]
acyclic graph acyclic graph O(|E1||E2|) (this work)

graph graph O(|E1||E2|+ |V1||V2| log |Σ|) (this work)

Table 1. Algorithms on non-linear text.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet, and the elements of Σ∗ are called strings. The length of
a string w is denoted by |w|. The empty string, denoted by ε, is a string of length 0,
and thus |ε| = 0. Let Σ+ = Σ∗−{ε}. Strings x, y, and z are called a prefix, substring,
and suffix of string w = xyz, respectively. For any string w, let suffix (w) denote the
set of suffixes of w. The i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|,
and the substring of w that begins at position i and ends at position j is denoted
by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε for i > j. The set
of substrings of a string w is denoted by substr(w). A string u is a subsequence of
another string w if there exists a sequence of integers i1, . . . , ik with k ≥ 0 such that
1 ≤ i1 < · · · < ik ≤ |w| and u = w[i1] · · ·w[ik].

A directed graph is an ordered pair (V,E) of set V of vertices and set E ⊆ V × V

of arcs. A path in a directed graph G = (V,E) is a sequence v0, . . . , vk of vertices
such that (vi−1, vi) ∈ E for every i = 1, . . . , k. For any vertex v ∈ V , let P (v) denote
the set of paths that end at vertex v. The set of all paths in G is denoted by P (G),
namely, P (G) = {P (v) | v ∈ V }.

2.2 Longest common substring problem

The longest common substring problem is, given two strings x and y, to compute the
length of longest common substrings of them. Although this problem can be solved
in O(|x| + |y|) time using the generalized suffix tree of x and y, we here mention a

K. Shimohira et al.: Computing Longest Common Substring/Subsequence of Non-linear Texts 199

dynamic programming based solution. Letting Ci,j denote the maximum length of
common suffixes of x[1..i] and y[1..j], it suffices to compute the maximum of Ci,j over
all the pairs (i, j). Since we have

Ci,j =

{

1 + Ci−1,j−1 if i, j > 0 and x[i] = y[j];

0 otherwise,
(1)

the problem can be solved in O(|x||y|) time.

2.3 Longest common subsequence problem

The longest common subsequence problem is, given two strings x and y, to com-
pute the length of longest common subsequences of them. It is well-known that, this
problem can be solved in O(|x||y|) time by using the following recurrence:

Ci,j =











0 if i = 0 or j = 0;

1 + Ci−1,j−1 if i, j > 0 and x[i] = y[j];

max(Ci−1,j, Ci,j−1) if i, j > 0 and x[i] 6= y[j],

(2)

where Ci,j is the length of longest common subsequence of x[1..i] and y[1..j].

2.4 Non-linear texts

A non-linear text is a directed graph with vertices labeled by strings, namely, it is
a directed graph G = (V,E,L) where V is the set of vertices, E is the set of arcs,
and L : V → Σ+ is a labeling function that maps nodes v ∈ V to non-empty strings
L(v) ∈ Σ+. For a path p = v0, . . . , vk ∈ P (G), let L(p) denote the string spelled out
by p, namely L(p) = L(v0) · · ·L(vk). The size |G| of a non-linear text G = (V,E,L)
is |V | + |E| +

∑

v∈V |L(v)|. Let substr(G), suffix (G), and subseq(G) be the sets of
substrings, suffices and subsequences of a non-linear text G = (V,E,L), namely,

substr(G) = {substr(L(p)) | p ∈ P (G)},

suffix (G) = {suffix (L(p)) | p ∈ P (G)},

subseq(G) = {subseq(L(p)) | p ∈ P (G)}.

For a non-linear text G = (V,E,L), consider a non-linear text G′ = (V ′, E ′,L′)
such that L′ : V ′ → Σ,

V ′ = {vi,j | L
′(vi,j) = L(vi)[j], vi ∈ V, 1 ≤ j ≤ |L(vi)|}, and

E ′ = {(vi,|L(vi)|, vk,1) | (vi, vk) ∈ E} ∪ {(vi,j, vi,j+1) | vi ∈ V, 1 ≤ j < |L(vi)|}.

Namely, G′ is a non-linear text in which each vertex is labeled with a single char-
acter and substr(G′) = substr(G). An example is shown in Figure 1. Since |V ′| =
∑

v∈V |L(v)|, |E
′| = |E| +

∑

v∈V (|L(v)| − 1), and
∑

v′∈V ′ |L(v′)| =
∑

v∈V |L(v)|, we
have |G′| = O(|G|). We remark that given G, we can easily construct G′ in O(|G|)
time. Observe that subseq(G) = subseq(G′) also holds.

In the sequel we only consider non-linear texts where each vertex is labeled with
a single character. For any non-linear text G = (V,E,L) such that L(v) ∈ Σ for any
v ∈ V , it trivially holds that substr(G) = {L(p) | p ∈ P (G)}.

We sometimes call strings in Σ∗ linear strings or linear texts, in order to clearly
distinguish them from non-linear texts.

200 Proceedings of the Prague Stringology Conference 2011

ab

b

ac

caabG

b

ba ca

ac ba
G’

Figure 1. A non-linear text G = (V,E,L) with L : V → Σ+ and its corresponding non-linear text
G′ = (V ′, E′,L′) with L′ : V ′ → Σ.

3 Computing Longest Common Substring of Non-linear
Texts

In this section, we tackle the problem of computing the length of longest common
substrings of two input non-linear texts. The problem is formalized as follows.

Problem 1 (Longest common substring problem for non-linear texts).

Input: Non-linear texts G1 = (V1, E1,L1) and G2 = (V2, E2,L2).
Output: The length of a longest string in substr(G1) ∩ substr(G2).

For example, see the non-linear texts G1 and G2 of Figure 2. The solution to the
above problem is 5, since there is a longest common substring abbaa of G1 and G2.

For simplicity, let us first consider the case where the two input non-linear texts
are both acyclic.

Theorem 2. If G1 and G2 are acyclic, then Problem 1 can be solved in O(|E1||E2|)
time and O(|V1||V2|) space.

Proof. Let v1,i and v2,j denote the i-th and j-th vertex in topological ordering in G1

and in G2, for 1 ≤ i ≤ |V1| and 1 ≤ j ≤ |V2|, respectively. Let Ci,j denote the length
of a longest string in suffix (L1(P (v1,i))) ∩ suffix (L2(P (v2,j))). Ci,j can be calculated
as follows.

1. If L1(v1,i) = L2(v2,j), there are two cases to consider:
(a) If there are no arcs to v1,i or to v2,j , i.e., P (v1,j) = {v1,i} or P (v2,j) = {v2,j},

then clearly Ci,j = 1.
(b) Otherwise, let v1,k and v2,ℓ be any nodes s.t. (v1,k, v1,i) ∈ E1 and (v2,ℓ, v2,j) ∈ E2,

respectively. Let z be a longest string in suffix (L1(P (v1,i)))∩suffix (L2(P (v2,j))).
Assume on the contrary that there exists a string y ∈ suffix (L1(P (v1,k))) ∩
suffix (L2(P (v2,ℓ))) such that |y| > |z| − 1. This contradicts that z is a longest
common suffix of L1(P (v1,i)) and L2(P (v2,j)), since L1(v1,i) = L2(v2,j). Hence
y ≤ |z| − 1. If v1,k and v2,ℓ are vertices satisfying Ck,ℓ = |z| − 1, then Ci,j =
Ck,ℓ + 1. Note that such v1,k and v2,ℓ always exist.

2. If L1(v1,i) 6= L2(v2,j), then trivially suffix (L1(P (v1,i)))∩ suffix (L2(P (v2,j))) = {ε}.
Hence Ci,j = 0.

Consequently we obtain the following recurrence:

Ci,j =
{

1+max({Ck,ℓ | (v1,k, v1,i)∈E1, (v2,ℓ, v2,j)∈E2}∪{0}) if L1(v1,i)=L2(v2,j);

0 otherwise.
(3)

K. Shimohira et al.: Computing Longest Common Substring/Subsequence of Non-linear Texts 201

G1 a b b

b a a

1 2 3

4 5 6

G2 a b a

b a b

1 2 3

4 5 6

G2

a b a b a b

1 2 3 4 5 6

a

b

b

a

a

1

2

3

4

5

6

G1

b

C

1 1 1

1

1

3 1 1

2

1 1 1

4 4

5 4

2 20

0 0 0

0

0 0

0 0

0

0

0

0 0 0

0 0 0

Figure 2. Example of dynamic programming for computing the length of a longest common sub-
string of non-linear texts G1 and G2. Each vertex is annotated with its topological order. In this
example, maxCi,j = 5 and the longest common substring is abbaa.

We use dynamic programming to compute Ci,j for all 1 ≤ i ≤ |V1| and 1 ≤ j ≤
|V2|. Consider to compute max{Ck,ℓ | (v1,k, v1,i) ∈ E1, (v2,ℓ, v2,j) ∈ E2}. For each fixed
(v1,k, v1,i) ∈ E1, we refer the value of Ck,ℓ for all 1 ≤ ℓ < j such that (v2,ℓ, v2,j) ∈
V2, in O(|E2|) time. Therefore, the total time complexity for computing max{Ck,ℓ |
(v1,k, v1,i) ∈ E1, (v2,ℓ, v2,j) ∈ E2} is O(|E1||E2|). Since we can sort vertices of G1 and
G2 in topological ordering in linear time, the total time complexity is O(|E1||E2|).
The space complexity is clearly O(|V1||V2|). ⊓⊔

An example of computing Ci,j using dynamic programming is shown in Figure 2.

We remark that the recurrence of (3) is a natural generalization of that of (1) for
computing the longest common substring of linear texts.

Furthermore, we can solve Problem 1 in case where only one of the input non-
linear texts is acyclic:

Theorem 3. If at least one of G1 and G2 is acyclic, then Problem 1 can be solved in
O(|E1||E2|) time and O(|V1||V2|) space.

Proof. Assume w.l.o.g. that G1 is acyclic. Recall the proof of Theorem 2. A key
observation is that it indeed suffices to sort one of the input non-linear texts in
topological ordering.

For any vertex v2,j ∈ V2 and positive integer h, let Ph(v2,j) denote the set of
paths of length not greater than h, which end at vertex v2,j . Assume we have sorted
vertices of G1. Let Ci,j denote the length of a longest string in suffix (L1(P (v1,i))) ∩
suffix (L2(Pr(v2,j))), where r is the length of a longest path in P (v1,i). We compute
C1,j for each vertex v2,j ∈ V2 by: C1,j = 1 if L1(v1,1) = L2(v2,j) and C1,j = 0 otherwise.
Then we compute Ci,j for all i > 1 using the same recurrence as (3). Since the length
of any element in substr(G1)∩ substr(G2) is not greater than that of the longest path
in G1, max{Ci,j | 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|} equals to the length of a longest string
in substr(G1) ∩ substr(G2). Consequently, G2 does not have to be acyclic. ⊓⊔

A pseudo-code of our algorithm to solve the longest common substring problem
for non-linear texts is shown in Algorithm 1.

202 Proceedings of the Prague Stringology Conference 2011

Algorithm 1: Computing the length of longest common substring of non-linear
texts.
Input: Acyclic non-linear text G1 = (V1, E1,L1) and non-linear text G2 = (V2, E2,L2).
Output: Length of a longest string in substr(G1) ∩ substr(G2).
topological sort G1;1

n← |V1|; m← |V2|;2

Let C be an n×m integer array;3

for i← 1 to n do4

for j ← 1 to m do5

if f(v1,i) = f(v2,j) then6

Ci,j ← 1;7

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do8

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do9

if Ci,j < 1 + Ck,ℓ then10

Ci,j ← 1 + Ck,ℓ;11

else12

Ci,j ← 0;13

return max{Ci,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m};14

4 Computing Longest Common Subsequence Problem of

Non-linear Texts

In this section, we tackle the problem of computing the length of longest common
subsequence of two input non-linear texts. The problem is formalized as follows.

Problem 4 (Longest common subsequence problem for non-linear texts).

Input: Non-linear texts G1 = (V1, E1,L1) and G2 = (V2, E2,L2).
Output: The length of a longest string in subseq(G1) ∩ subseq(G2).

For example, see the non-linear texts G1 and G2 of Figure 3. The solution to the
above problem is 4, since there is a longest common subsequence acdb of G1 and G2.

In the sequel we present our algorithm to solve the above problem in case where
both G1 and G2 are acyclic.

Theorem 5. If G1 and G2 are acyclic, then Problem 4 can be solved in O(|E1||E2|)
time and O(|V1||V2|) space.

Proof. Let v1,i and v2,j denote the i-th and j-th vertex in topological ordering in G1

and in G2, for 1 ≤ i ≤ |V1| and 1 ≤ j ≤ |V2|, respectively. Let Ci,j denote the length
of a longest string in subseq(L1(P (v1,i)))∩ subseq(L2(P (v2,j))). Ci,j can be calculated
as follows.

1. If L1(v1,i) = L2(v2,j), there are two cases to consider:
(a) If there are no arcs to v1,i or to v2,j, i.e., P (v1,i) = {v1,i} or P (v2,j) = {v2,j},

then clearly Ci,j = 1.
(b) Otherwise, let v1,k and v2,ℓ be any nodes s.t. (v1,k, v1,i) ∈ E1 and (v2,ℓ, v2,j) ∈ E2,

respectively. Let z be a longest string in subseq(L1(P (v1,i)))∩subseq(L2(P (v2,j))).
Assume on the contrary that there exists a string y ∈ subseq(L1(P (v1,k))) ∩
subseq(L2(P (v2,ℓ))) such that |y| > |z| − 1. This contradicts that z is a longest
common subsequence of L1(P (v1,i)) and L2(P (v2,j)), since L1(v1,i) = L2(v2,j).
Hence |y| ≤ |z| − 1. If v1,k and v2,ℓ are vertices satisfying Ck,ℓ = |z| − 1, then
Ci,j = Ck,ℓ + 1. Note that such v1,k and v2,ℓ always exist.

K. Shimohira et al.: Computing Longest Common Substring/Subsequence of Non-linear Texts 203

2. If L1(v1,i) 6= L2(v2,j), there are two cases to consider:
(a) If there are no arcs to v1,i and to v2,j, i.e.,P (v1,i) = {v1,i} and P (v2,j) = {v2,j},

then clearly Ci,j = 0.
(b) Otherwise, let v1,k and v2,ℓ be any nodes s.t. (v1,k, v1,i) ∈ E1 and (v2,ℓ, v2,j) ∈ E2,

respectively. Let z be a longest string in subseq(L1(P (v1,i)))∩subseq(L2(P (v2,j))).
Assume on the contrary that there exists a string y ∈ subseq(L1(P (v1,k))) ∩
subseq(L2(P (v2,j))) such that |y| > |z|. This contradicts that z is a longest com-
mon subsequence of L1(P (v1,i)) and L2(P (v2,j)), since subseq(L1(P (v1,k))) ∩
subseq(L2(P (v2,j))) ⊆ subseq(L1(P (v1,i))) ∩ subseq(L2(P (v2,j))). Hence |y| ≤
|z|. If v1,k is a vertex satisfying Ck,j = |z|, then Ci,j = Ck,j. Similarly, if v2,ℓ is a
vertex satisfying Ci,ℓ = |z|, then Ci,j = Ci,ℓ. Note that such v1,k or v2,ℓ always
exists.

Consequently we obtain the following recurrence:

Ci,j =










1+max({Ck,ℓ |(v1,k, v1,i)∈E1, (v2,ℓ, v2,j)∈E2}∪{0}) if L1(v1,i)=L2(v2,j);

max

(

{Ck,j | (v1,k, v1,i)∈E1}∪{Ci,ℓ |(v2,ℓ, v2,j)∈E2}

∪{0}

)

otherwise.
(4)

We use dynamic programming to compute Ci,j for all 1 ≤ i ≤ |V1| and 1 ≤ j ≤
|V2|.

By similar arguments to the proof of Theorem 2, computing max{Ck,ℓ | (v1,k, v1,i) ∈
E1, (v2,ℓ, v2,j) ∈ E2} takes O(|E1||E2|) time.

Consider to compute max{Ck,j, Ci,ℓ | (v1,k, v1,i) ∈ E1, (v2,k, v2,j) ∈ E2}. For each
fixed (v1,k, v1,i) ∈ E1, we refer the value of Ck,j for all 1 ≤ j ≤ |V2| in O(|V2|) time.
Similarly, for each fixed (v2,ℓ, v2,j) ∈ E2, we refer the value of Ci,ℓ for all 1 ≤ i ≤ |V1| in
O(|V1|) time. Therefore, the total time cost for computing max{Ck,j, Ci,ℓ | (v1,k, v1,i) ∈
E1, (v2,ℓ, v2,j) ∈ E2} is O(|V2||E1|+ |V1||E2|).

Since we can sort vertices of G1 and G2 in topological ordering in linear time, the
total time complexity is O(|E1||E2|). The space complexity is clearly O(|V1||V2|). ⊓⊔

An example of computing Ci,j using dynamic programming is show in Figure 3.
We remark that the recurrence of (4) is a natural generalization of that of (2) for
computing the longest common subsequence of linear texts.

Algorithm 2 shows a pseudo-code of our algorithm to solve Problem 4 in case
where both G1 and G2 are acyclic.

204 Proceedings of the Prague Stringology Conference 2011

a
1
! c

2
!

d
4
! b

5
! a

6
!

d
3
!

a
1
 b

2

c
4
 d

5
 b

6

c
3

a !c ! d ! b !a !d !

a !

b !

c !

d !

b !

c !

C! 1! 2
 3! 4
 5! 6

1!
1
 1! 1
 1! 1
 1!

2

1! 1
 1! 1
 2! 2

3!
1
 2! 2
 1! 2
 2!

4

0! 1
 1! 0
 1! 1

5!
1
 2! 3
 2! 3
 3!

6

1! 2
 3! 2
 4! 4

Figure 3. Example of dynamic programming for computing the length of a longest common subse-
quence of non-linear texts G1 and G2. Each vertex is annotated with its topological order. In this
example, maxCi,j = 4 and the longest common subsequence is acdb.

Algorithm 2: Computing the length of longest common subsequence of acyclic
non-linear texts
Input: Two acyclic non-linear texts G1 = (V1, E1,L1), G2 = (V2, E2,L2)
Output: Length of a longest string in subseq(G1) ∩ subseq(G2)
topological sort G1;1

topological sort G2;2

n← |V1|; m← |V2|;3

Let C be an n×m integer array;4

for i← 1 to n do5

for j ← 1 to m do6

if f(v1,i) = f(v2,j) then7

Ci,j ← 1;8

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do9

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do10

if Ci,j < 1 + Ck,ℓ then11

Ci,j ← 1 + Ck,ℓ;12

else13

Ci,j ← 0;14

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do15

if Ci,j < Ck,j then16

Ci,j ← Ck,j ;17

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do18

if Ci,j < Ci,ℓ then19

Ci,j ← Ci,ℓ;20

return max{Ci,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m};21

K. Shimohira et al.: Computing Longest Common Substring/Subsequence of Non-linear Texts 205

5 Computing Longest Common Subsequence of Cyclic

Non-linear Texts

In this section, we present an algorithm to solve Problem 4 in case where the input
non-linear texts are cyclic. We output ∞ if subseq(G1) ∩ subseq(G2) is infinite, and
do the length of a longest string in subseq(G1) ∩ subseq(G2) otherwise.

We transform a cyclic non-linear text G = (V,E,L) into an acyclic non-linear
text G′ = (V ′, E ′,L′) based on the strongly connected components. For each vertex
v ∈ V , let [v] denote the set of vertices that belong to the same strongly connected
component. Formally, G′ is defined as

V ′ = {[v] | v ∈ V },

E ′ = {([v], [u]) | [v] 6= [u], (v′, u′) ∈ E for some v′ ∈ [v], u′ ∈ [u]} ∪ {(v, v) | |[v]| ≥ 2},

and L′([v]) = {L(v) | v ∈ [v]} ⊆ Σ. We regard each [v] as a single vertex that is
contracted from vertices in [v]. Observe that subseq(G′) = subseq(G).

An example of transformed acyclic non-linear texts is shown in Figure 4.

Theorem 6. If G1 and/or G2 are cyclic, then Problem 4 can be solved in O(|E1||E2|+
|V1||V2| log |Σ|) time and O(|V1||V2|) space.

Proof. We first transform cyclic non-linear texts G1 and G2 into corresponding acyclic
non-linear texts G′

1 and G′
2, as described previously. Let v′1,i and v′2,j denote the i-

th and j-th vertex in topological ordering in G′
1 and G′

2, for 1 ≤ i ≤ |V ′
1 | and

1 ≤ j ≤ |V ′
2 |, respectively. Let S1 and S2 denote the sets of vertices which has a loop,

namely, S1 = {L′
1(v

′
1,i) | (v

′
1,i, v

′
1,i) ∈ E ′

1} and S2 = {L′
2(v

′
2,j) | (v

′
2,j, v

′
2,j) ∈ E ′

2}. If
S1 ∩ S2 6= ∅, then let c be any character in S1 ∩ S2. Clearly an infinite repetition c∗

of c is a common subsequence of G1 and G2, and hence we output ∞.
In the sequel, consider the case where S1 ∩ S2 = ∅. In this case, it is clear that

subseq(G1) ∩ subseq(G2) is finite. Let Ci,j denote the length of a longest string in
subseq(L′

1(P (v′1,i))) ∩ subseq(L′
2(P (v′2,j))). Ci,j can be calculated as follows.

1. If L′(v′1,i) ∩ L′(v′2,j) 6= ∅, there are two cases to consider:
(a) If there are no arcs to v′1,i or to v′2,j, i.e., P (v′1,i) = {v

′
1,i} or P (v′2,j) = {v

′
2,j},

then clearly Ci,j = 1.
(b) Otherwise, let v′1,k and v′2,ℓ be any nodes s.t. (v

′
1,k, v

′
1,i) ∈ E ′

1 and (v′2,ℓ, v
′
2,j) ∈ E ′

2,
respectively. Let z be a longest string in subseq(L′

1(P (v′1,i)))∩subseq(L
′
2(P (v′2,j))).

Assume on the contrary that there exists a string y ∈ subseq(L′
1(P (v′1,k))) ∩

subseq(L′
2(P (v′2,ℓ))) such that |y| > |z| − 1. This contradicts that z is a longest

common subsequence of L′
1(P (v′1,i)) and L′

2(P (v′2,j)), since L
′
1(v

′
1,i)∩L

′
2(v

′
2,j) 6=

∅. Hence |y| ≤ |z| − 1. If v′1,k and v′2,ℓ are vertices satisfying Ck,ℓ = |z| − 1, then
Ci,j = Ck,ℓ + 1. Note that such v′1,k and v′2,ℓ always exist.

2. If L′(v′1,i) ∩ L′(v′2,j) = ∅, there are two cases to consider:
(a) If there are no arcs to v′1,i and to v′2,j, i.e., P (v′1,i) = {v

′
1,i} and P (v′2,j) = {v

′
2,j},

then clearly Ci,j = 0.
(b) Otherwise, let v′1,k and v′2,ℓ be any nodes s.t. (v

′
1,k, v

′
1,i) ∈ E ′

1 and (v′2,ℓ, v
′
2,j) ∈ E ′

2,
respectively. Let z be a longest string in subseq(L′

1(P (v′1,i)))∩subseq(L
′
2(P (v′2,j))).

Assume on the contrary that there exists a string y ∈ subseq(L′
1(P (v′1,k))) ∩

subseq(L′
2(P (v′2,j))) such that |y| > |z|. This contradicts that z is a longest com-

mon subsequence of L′
1(P (v′1,i)) and L′

2(P (v′2,j)), since subseq(L′
1(P (v′1,k))) ∩

206 Proceedings of the Prague Stringology Conference 2011

subseq(L′
2(P (v′2,j))) ⊆ subseq(L′

1(P (v′1,i))) ∩ subseq(L′
2(P (v′2,j))). Hence |y| ≤

|z|. If v′1,k is a vertex satisfying Ck,j = |z|, then Ci,j = Ck,j. Similarly, if v′2,ℓ is
a vertex satisfying Ci,ℓ = |z|, then Ci,j = Ci,ℓ. Note that such v′1,k (k 6= i) or
v′2,ℓ (ℓ 6= j) always exists.

Consequently we obtain the following recurrence:

Ci,j =










1+max({Ck,ℓ | (v
′
1,k, v

′
1,i)∈E

′
1, (v

′
2,ℓ, v

′
2,j)∈E

′
2}∪{0}) If L′(v′1,i)∩L

′(v′2,j) 6=∅;

max

(

{Ck,j | (v
′
1,k, v

′
1,i)∈E1}∪{Ci,ℓ |(v

′
2,ℓ, v

′
2,j)∈E2}

∪{0}

)

otherwise.
(5)

It is well-known that we can transform G1 and G2 into G′
1 and G′

2 in linear time,
based on strongly connected components.

For each self-loop such as (v′1,i, v
′
1,i) ∈ E1, we refer the value of Ci,j for all 1 ≤

j ≤ |V ′
2 | in O(|V ′

2 |) time. Similarly, for each self-loop such as (v′2,j , v
′
2,j) ∈ E2, we

refer the value of Ci,j for all 1 ≤ i ≤ |V ′
1 | in O(|V ′

1 |) time. For the other arcs, we can
compute Ci,j for all 1 ≤ i ≤ |V ′

1 | and 1 ≤ j ≤ |V ′
2 | using dynamic programming in

O(|E ′
1| · |E

′
2|) time, in a similar way as the previous section. Therefore the total time

cost for computing Ci,j is O(|E ′
1| · |E

′
2|).

Let Σ1 and Σ2 be the sets of characters that appear in G1 and G2, respectively.
The time cost to compute S1 ∩ S2 is O(|Σ1| log |Σ2|+ |Σ2| log |Σ1|) using a balanced
tree. Assume S1 ∩ S2 = ∅, and consider to compute L′(v′1,i) ∩ L′(v′2,j). If |L

′(v′1,i)| > 1
and |L′(v′2,j)| > 1, then we know L′(v′1,i)∩L

′(v′2,j) = ∅ since S1∩S2 = ∅. If |L
′(v′1,i)| = 1

and/or |L′(v′2,j)| = 1, then L′(v′1,i)∩L
′(v′2,j) can be computed in O(log |Σ|) time using a

balanced tree, where |Σ| = max{|Σ1|, |Σ2|}. Therefore the total time cost to compare
L′(v′1,i) and L′(v′2,j) for all 1 ≤ i ≤ |V ′

1 | and 1 ≤ j ≤ |V ′
2 | is O(|V ′

1 ||V
′
2 | log |Σ|). The

total time complexity becomes O(|E1|+|E2|+|E
′
1||E

′
2|+|V

′
1 ||V

′
2 | log |Σ|+|Σ1| log |Σ2|+

|Σ2| log |Σ1|) = O(|E1||E2| + |V1||V2| log |Σ|), since |Σ1| ≤ |V1| and |Σ2| ≤ |V2|. The
total space complexity is O(|V ′

1 ||V
′
2 |+ |Σ1| log |Σ2|+ |Σ2| log |Σ1|) = O(|V1||V2|). ⊓⊔

An example of computing Ci,j using dynamic programming is shown in Figure 4.
A pseudo-code of our algorithm is shown in Algorithm 3.

a ! a !

b ! d ! c!

c!G!!

a ! c !

a! b! a !

d!G"!

a 1! a 2!

b 3! {c,d} 4!

 {a} 1! c 2 !

 {a,b} 4 !

d 3!

C!

!"!

!"!

#"!

$%&'("!

$!("! %""! $!&#(!'"!
1
 2
 3
 4

1

1
 1
 1
 1

2

2
 2
 2
 2

3

2
 2
 2
 3

4

2
 3
 4
 4

Figure 4. Example of dynamic programming for computing the length of a longest common subse-
quence of non-linear texts G1 and G2. G

′

1 and G′

2 are non-linear texts which are transformed from
G1 and G2 by grouping vertices into strongly connected components. Each vertex is annotated with
its topological order. In this example, maxCi,j = 4 and the longest common subseqence is aacd.

K. Shimohira et al.: Computing Longest Common Substring/Subsequence of Non-linear Texts 207

Algorithm 3: Computing the length of longest common subsequence of cyclic
non-linear texts
Input: Two non-linear texts G1 = (V1, E1,L1), G2 = (V2, E2,L2)
Output: Length of a longest string in subseq(G1) ∩ subseq(G2)
G′

1 ← Strongly Connected Components G1;1

G′

2 ← Strongly Connected Components G2;2

Let S1 be a set of vertices which belong to cycles in G1;3

Let S2 be a set of vertices which belong to cycles in G2;4

if S1 ∩ S2 6= ∅ then5

return ∞ ;6

else7

topological sort G′

1;8

topological sort G′

2;9

Let C be an |V ′

1 | × |V
′

2 | integer array;10

for i← 1 to |V ′

1 | do11

for j ← 1 to |V ′

2 | do12

if (v′1,i, v
′

1,i) ∈ E′

1 then13

if (v′2,j , v
′

2,j) ∈ E′

2 then14

Ci,j ←Vertex-mismatch (v′1,i, v
′

2,j);15

else if L(v′1,i) ⊇ L(v′2,j) then16

Ci,j ←Vertex-match (v′1,i, v
′

2,j);17

else18

Ci,j ←Vertex-mismatch(v′1,i, v
′

2,j);19

else if (v′2,j , v
′

2,j) ∈ E′

2 then20

if L(v′1,i) ⊆ L(v′2,j) then21

Ci,j ←Vertex-match(v′1,i, v
′

2,j);22

else23

Ci,j ←Vertex-mismatch(v′1,i, v
′

2,j);24

else if L(v′1,i) = L(v′2,j) then25

Ci,j ←Vertex-match(v′1,i, v
′

2,j);26

else27

Ci,j ←Vertex-mismatch(v′1,i, v
′

2,j);28

return max{Ci,j | 1 ≤ i ≤ |V ′

1 |, 1 ≤ j ≤ |V ′

2 |};29

Algorithm 4: Vertex-match(v1,i, v2,j)

Ci,j ← 11

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do2

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do3

if Ci,j < 1 + Ck,ℓ then4

Ci,j ← 1 + Ck,ℓ5

return Ci,j6

208 Proceedings of the Prague Stringology Conference 2011

Algorithm 5: Vertex-mismatch(v1,i, v2,j)

Ci,j ← 01

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do2

if Ci,j < Ck,j then3

Ci,j ← Ck,j4

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do5

if Ci,j < Ci,ℓ then6

Ci,j ← Ci,ℓ7

return Ci,j8

6 Conclusions

We considered the longest common substring and subsequence problems between
two non-linear texts. We showed that when the texts are acyclic, the problem can be
solved inO(|E1||E2|) time andO(|V1||V2|) space by a dynamic programming approach.
Furthermore, we extend our algorithm and consider the case where the texts can
contain cycles, and presented an O(|E1||E2| + |V1||V2| log |Σ|) time and O(|V1||V2|)
space algorithm for the longest common subsequence problem. The longest common
substring between general graphs is an open problem.

References

1. T. Akutsu: A linear time pattern matching algorithm between a string and a tree, in Proc.
CPM’93, 1993, pp. 1–10.

2. A. Amir, M. Lewenstein, and N. Lewenstein: Pattern matching in hypertext, in Proc.
WADS’97, vol. 1272 of LNCS, 1997, pp. 160–173.

3. U. Manber and S. Wu: Approximate string matching with arbitrary costs for text and hypertext,
in Proc. IAPR, 1992, pp. 22–33.

4. M. Mohri: Edit-distance of weighted automata: General definitions and algorithms. Int. J.
Found. Comput. Sci, 14(6) 2003, pp. 957–982.

5. G. Navarro: Improved approximate pattern matching on hypertext. Theoretial Computer Sci-
ence, 237(1–2) 2000, pp. 455–463.

6. K. Park and D. K. Kim: String matching in hypertext, in Proc. CPM’95, 1995, pp. 318–329.
7. D. Q. Thang: Algorithm to determine longest common subsequences of two finite languages,

in New Challenges for Intelligent Information and Database System, vol. 351/2011 of Studies in
Computational Intelligence, 2011, pp. 3–12.

