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Abstract. Manipulation of large sequence data is one of the most important prob-
lems in string processing. Recently, Loekito et al. (Knowl. Inf. Syst., 24(2), 235–268,
2009) have introduced a new data structure, called Sequence Binary Decision Diagrams
(SeqBDDs, or SDDs), which are descendants of both acyclic DFAs (ADFAs) and binary
decision diagrams (BDDs). SDDs can compactly represent sets of sequences as well as
minimal ADFAs, while SDDs allow efficient set operations inherited from BDDs. A
novel feature of the SDDs is that different SDDs can share equivalent subgraphs and
duplicated computation in common to save the time and space in various operations.
In this paper, we study fundamental properties of SDDs. In particular, we first present
non-trivial relationships between sizes of minimum SDDs and minimal ADFAs. We then
analyze the complexities of algorithms for Boolean set operations, called the binary syn-
thesis. Finally, we show experimental results to confirm the results of the theoretical
analysis on real data sets.

1 Introduction

1.1 Background

Compact string indexes for storing sets of strings are fundamental data structures
in computer science, and have been extensively studied in the decades [2,4,5,6,9,19].
Examples of compact string indexes include: tries [1,5], finite automata and trans-
ducers [6,10], suffix trees [15], suffix arrays [14], DAWGs [2], and factor automata
(FAs) [19]. By the rapid increase of massive amounts of sequence data such as bio-
logical sequences, natural language texts, and event sequences, these compact string
indexes have attracted much attention and gained more importance [5,9]. In such
applications, an index have not only to compactly store sets of strings for searching ,
but also have to efficiently manipulate them with various set operations, e.g., merge,
intersection, and subtraction.

Minimal acyclic deterministic finite automata (ADFAs) [5,6,10] are one of such
index structures that fulfill the above requirement based on finite automata theory,
and have been used in many sequence processing applications [13,18]. However, they
have drawback of complicated procedures for minimization and various set operations
caused by multiple branching of the underlying directed acyclic graph structure. To
overcome this problem, Loekito et al. [12] proposed the class of sequence binary de-
cision diagrams (sequence BDDs , or abbreviated as SDDs in this paper), which is a
compact representation for sets of strings that allows a variety of operations for sets
of strings. An SDD is a node-labeled graph structure, which resembles to an acyclic
DFA in binary form, but with the minimization rule which is different from one for
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a minimal DFA. A novel feature of the SDDs is their ability to share equivalent
subgraphs and results of similar intermediate computation between different SDDs,
which avoids redundant generation of nodes and computation.

1.2 Main results

In this paper, we present theoretical analysis of two fundamental problems on se-
quence binary decision diagrams, which have not been studied before: the relationship
to acyclic automata and the complexities of binary set operations as follows.

The relationship to acyclic automata. The structure of SDDs apparently
resembles that of Acyclic Deterministic Finite Automata (ADFAs), which are a clas-
sical model for representing string sets. While a state of an ADFA may have many
outgoing edges, a node of an SDD always has two outgoing edges, which can be seen
as just the “first-child next-sibling” representation of a branching with many edges.
Indeed one can find a straightforward translation from an ADFA to an SDD and
vice versa. However, there are subtle differences between those data structures and
actually an SDD can be even more compact than the corresponding ADFA. We show
that the minimum SDD is never larger than the minimum ADFA but the minimum
ADFA can be |Σ| times larger than the minimum SDD for the same language over
Σ.

The computational complexities of binary set operations. Next, we study
the complexity of the binary synthesis , which are binary operations for minimal SDDs,
such as union, intersection, and subtraction, which directly construct a minimal SDD.
Specifically, we study upper and lower bounds for the time complexity of the binary
synthesis algorithms. Loekito et al. [12] have proposed algorithms for union and sub-
traction, which are similar to the apply algorithm Bryant [3], and have conjectured
that they run in input-output linear-time. We generalize their algorithms into an algo-
rithm Meld⋄ which uniformly implements eight set operations in the style of Knuth’s
melding operation for BDDs [11]. We show an upper bound that its time complexity
is quadratic in the input size, and linear in the size of non-reduced version of the
output size. Moreover, we show a lower bound that Meld⋄ actually requires quadratic
time in input size for some infinite series of inputs using a technique recently devised
for BDD [3], giving matching upper bound.

Experimental results. Finally, we run experiments on real data sets. We first
observed that minimal SDDs were superior to minimal DFAs when large subgraphs
were shared in inputs and outputs due to the node-sharing across multiple SDDs. We
also observed that each binary synthesis operation took less than seconds to take set
operations ∪, ∩, and \ of two input SDDs with around three to four thousands of nodes
each, which were relatively smaller than the running time for set construction [7].

1.3 Related works

There have been a number of researches on manipulation of finite automata in au-
tomata theory and string algorithms. The textbook [10] gives classic examples of a
quadratic-time algorithm for computing the union, intersection, and subtraction of
two DFAs, and a state-minimization algorithm for a given DFA. Daciuk, Mihov, Wat-
son, and Watson [6] presented an incremental algorithm for constructing the minimal
ADFA for a set of strings. Blumer et al. [2] and Crochemore [4] gave linear-time al-
gorithms for construction of the minimal state ADFAs for the set of all factors of an



Shuhei Denzumi et al.: Notes on Sequence Binary Decision Diagrams 149

input string. Compared with a straightforward two-stage algorithm for binary synthe-
sis for ADFAs using product followed by state-minimization [10], the advantages of
the proposed Meld⋄ are its simplicity and efficiency that it directly computes the out-
put by applying the on-the-fly minimization [7]. Using binary synthesis, Denzumi et
al. [7] presented a simple linear-time algorithm for incremental construction of SDDs,
and a recursive top-down algorithm for construction of factor SDDs.

SDDs inherit many of their features from binary decision diagrams (BDDs), which
are compact representation for storing and manipulating combinatorial structures
developed in logic design community [3,11,16,21]. Especially, BDDs equipped with
binary synthesis operation were invented by Bryant [3] in the 80s for dealing with
Boolean functions, while their variant with node-sharing and zero-suppress rules,
called zero-suppressed BDDs (ZDDs), were proposed by Minato [16] in the 90s for
sparse combinatorial sets. On their early history, reduced BDDs were constructed
from tree-like circuits through offline minimization. After the invention of the binary
synthesis algorithm by Bryant [3], it became popular to build large BDDs on-the-
fly in real applications. Loekito et al. [12] discovered that if we remove the ordering
constraint on the 1-edges from ZDDs, the resulting variant of ZDDs, which actually
are SDDs, has a similar structure to ADFAs in binary form and suitable to storing
and manipulating sets of strings. This observation led to the invention of SDDs [12].

Organization of this paper. In Section 2, we prepare basic notions and nota-
tions on SDDs. In Section 3, we give the size bounds for SDDs and DFAs. In Section 4,
we give the time and space complexities of binary synthesis procedures for SDDs. In
Section 5, we show some experimental results. In Section 6, we conclude this paper.
For details of basic properties and algorithms related to SDDs not described in this
paper, please consult the companion paper [7].

2 Preliminaries

In this section, we give basic definitions and notations in strings and sequence BDDs
according to [11,12,16]. For the details of results not found here, please consult the
companion paper [7]. An ordered alphabet is a pair 〈Σ,≺〉 where Σ is a finite alphabet
and ≺ is a total order on Σ. The order ≺ associated with Σ is often denoted by ≺Σ

and the ordered alphabet is simply written Σ for legibility. A string on Σ is a sequence
s = s1 · · · sn of letters si ∈ Σ (1 ≤ i ≤ n), where |s| = n denotes the length. If s = xyz
for some x, y, z ∈ Σ∗, then we say that x is a prefix , y is a factor , and z is a suffix of
s. A string set (or a language) is any finite S ⊆ Σ∗. We denote by |S| the cardinality.
For any x ∈ Σ, we define x ·S = { xy | y ∈ S }.

Sequence BDDs. Let dom be a countable domain of the nodes. A sequence
binary decision diagram or a sequence BDD (abbreviated as SDD1 here) is a directed
acyclic graph (DAG) B = 〈Σ, V, τ, r,0,1〉 where V = V (B) ⊆ dom is a finite set of
nodes, r ∈ V is called the root of B and 0 and 1 ∈ V are distinct nodes called the
0- and 1-terminals, resp. The nodes in VN = V \{0,1} are called nonterminals. Each
node v ∈ VN of B is labeled by a symbol v.lab in Σ and has two children, the 0-child
and the 1-child, denoted by v.0 and v.1, resp, which can be identical. We call the

1 Note that the abbreviation SeqBDD is used to denote sequence BDD in the original paper by Loek-
ito et al. [12]. We also note that the abbreviation SDD was also used for the set decision diagrams
(Couvreur, Thierry-Mieg, Proc. FORTE 2005, LNCS 3731, 443–457, 2005) and the spectral deci-
sion diagrams (Thornton, Drechsler, Proc. DATE’01, IEEE, 713–719, 2001).
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Figure 1. Examples of three index structures on Σ1 = {a, b, c} for the same string set S1 =
{aa, aab, aac, ab, abb, abc, ac, acc, bb, bbb, bbc, bc, bcc, c, cc}: a minimal DFA G1 (left), a minimal DFA
as a non-reduced SDD G2 (middle), and a reduced SDD G3 (right). In the figure, solid and dotted
arrows indicate the 1- and 0-edge . The edges to the 0-terminal are omitted.

edge from v to v.0 and v.1 the 0- and 1-edge of v, resp. The information is formally
described by a function τ : VN → Σ×V 2 that assigns the triple τ(v) = 〈v.lab, v.0, v.1〉
to each v ∈ VN. An SDD must be acyclic, that is, one may assume a strict partial
order ≻V on V such that v ≻V v.0 and v ≻V v.1 hold for any v ∈ VN. The 1-child and
0-child of a node correspond to the leftmost-child and the right-sibling in a DAG in
binary form [1,11]. Siblings are deterministically ordered from left to right according
to the order ≺Σ. That is, we always have v.lab ≺Σ (v.0).lab unless v.0 is a terminal
node. We assume that any SDD B is well-defined meaning that B is both acyclic
and deterministic. We define the size of B by |B| = |VN| = |V | − 2, the number of
non-terminals in B.

To each node v ∈ V , we inductively (w.r.t. ≻V ) assign a language LB(v) as follows:

(i) LB(0) = ∅;
(ii) LB(1) = {ε};
(iii) LB(v) = LB(v.0) ∪ (v.lab) ·LB(v.1).

Equivalently, s ∈ LB(v) iff there is a path from v to 1 such that one obtains s by
concatenating the labels of the nodes whose 1-edges appear in the path. The language
L(B) of B is defined to be LB(r). We say that two SDDs B and B′ are equivalent if
L(B) = L(B′). An SDD B is said to be minimal if it has the smallest number of nodes
among the equivalent SDDs, i.e., |B| ≤ |B′| for any SDD B′ such that L(B′) = L(B).
Figure 1 illustrates examples of SDDs together with the minimum deterministic finite
automaton for the same language.

Reduced SDDs. A reduced SDD is a normal form of SDDs. An SDD is said to
be reduced if it satisfies the following two conditions:

1. For any u, v ∈ VN, τ(u) = τ(v) implies u = v (node-sharing rule).
2. For any v ∈ VN, v.1 6= 0 holds (zero-suppress rule).

The above rules say that no distinct non-terminal nodes have the same triple, and
the 1-child of any non-terminal node v is not the 0-terminal. For any finite set of
strings L ⊆ Σ∗, we can construct the canonical SDD for L [7] in a way similar to
the minimal DFA in Myhill-Nerode theorem (e.g.,[10,20]). Actually, the next theorem
gives a characterization of minimal SDDs in terms of a reduced SDD and the canonical
SDD. See the companion paper [7] for the details.

Theorem 1 (Denzumi et al. [7]). For any SDD B with the language L = L(B),
the following (1)–(3) are equivalent to each other.
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✬

✫

✩

✪

Global variable: uniqtable: hash table for triples.

Proc Getnode(x: letter, P0, P1: SDD):

1: if (P1 = 0) return P0; /* zero-suppress rule */
2: else if ((R← uniqtable[〈x, P0, P1〉]) exists) return R; /* node-sharing rule */
3: else

4: R← a new node with τ(R) = 〈x, P0, P1〉; uniqtable[〈x, P0, P1〉]← R;
5: return R;

Figure 2. The Getnode procedure for on-the-fly minimization.

(1) B is a reduced SDD.
(2) B is a canonical SDD for L up to isomorphism.
(3) B is a minimal SDD.

Due to Theorem 1, for a fixed language L, we may call a reduced SDD for L the
reduced SDD for L when we work modulo isomorphism. In order to satisfy the node-
sharing rule, we maintain a hash table, called uniqtable, which is the inverse of τ .
That is, it gives the unique node v such that τ(v) = 〈x, v0, v1〉 (if exists) for the key
〈x, v0, v1〉. As is the case for BDDs and ZDDs, usually we consider only reduced SDDs.
Hereafter we assume that all SDDs are reduced unless otherwise noted.

While an SDD represents a set of strings, we often would like to manipulate two
or more sets of strings. In our shared SDD environment, the terminals 0 and 1, the
function τ and thus the hash uniqtable : Σ × dom× dom→ dom are shared by more
than one SDD in common so that we can have a compact representation of a family
of sets of strings. One may think of the shared SDD environment as a single SDD
with multiple roots. By picking up a node v as the root, one can extract a subgraph
as an SDD consisting of all the nodes that are reachable from v. For convenience, we
often identify a node v with the SDD rooted by v extracted from the shared SDD
environment. Hence |v| represents the number of nonterminal nodes reachable from
the node v.

Figure 2 shows the node allocation procedure Getnode, which is used as a subrou-
tine in algorithms on SDDs. Throughout this paper, we assume that the hash table
uniqtable is a global variable, and a look-up for it takes O(1) time; We have to add
additional O(log n) term if we use balanced binary tree dictionary [1]. In the shared
and reduced SDD environment studied here and in [7,12], we use write-only construc-
tion, similarly to [8], such that any new SDD is constructed by adding a new node
on the top of already constructed SDDs using a call of Getnode given existing nodes
as its arguments. The next lemma guarantees that we always have reduced SDDs as
long as we solely use Getnode to obtain a new node.

Lemma 2 (Denzumi et al. [7]). Let B be any reduced SDD. For any symbol x ∈ Σ
and nodes v0, v1 ∈ V (B) in B such that v0 6∈ VN or x ≺Σ v0.lab, if we invoke
v = Getnode(x, v0, v1) on B and add the result v to V (B), then the resulting SDD B′

with root v obtained from B is well-defined and reduced, too.

Based on the procedure Getnode above, for example, we can implement an off-line
minimization (i.e., reduction) algorithm Reduce for SDDs in linear time and space [7]2.

2 The complexity analysis assumes that a look-up for the hash table uniqtable takes O(1) time.
A precise worst-case time complexity is O(n log n) if the hash table does not work efficiently.
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Factually it simply makes a copy of an input SDD using Getnode, which merges
equivalent nodes in uniqtable. See [7,12] for details.

3 Space-Bounds for Sequence Binary Decision Diagrams
and Acyclic Automata

The structure of SDDs apparently resembles that of acyclic deterministic finite au-
tomata (ADFAs). There is a straightforward translation from an ADFA to an SDD
and the other way around. However, we should note subtle differences between those
formalisms. Actually SDD can be even more compact. This section discusses their
relationship in detail.

3.1 Finite Automata

We presume a basic knowledge of the automaton theory. For a comprehensive intro-
duction to the automaton theory, see [10] for example. A (partial) DFA is represented
by a tuple A = 〈Σ,Γ, δ, q0, F 〉, where Σ is the input alphabet, Γ is the state set, δ
is the partial transition function from Γ × Σ to Γ , q0 ∈ Γ is the initial symbol and
F ⊆ Γ is the set of acceptance states. The partial function δ can be regarded as a
subset δ ⊆ Γ×Σ×Γ . We define the size of a DFA A, denoted by |A|, as the number
of labeled edges in A, i.e., |A| = |δ|.

The set of strings that lead the automaton A from a state q to an accept state is
denoted by LA(q). The language L(A) accepted by A is LA(q0). A minimum DFA has
no state q such that LA(q) = ∅ and no distinct states q′ and q′′ such that LA(q

′) =
LA(q

′′). Since we are concerned with finite sets of strings, all DFAs discussed in this
section are acyclic (ADFA). We say that A and B, which can be an ADFA or an
SDD, are equivalent if L(A) = L(B).

3.2 From ADFAs to SDDs

We first give a straightforward translation from an ADFA to an equivalent SDD,
which may be non-reduced, and compare the sizes of them.

Theorem 3. For any ADFA A = 〈Σ,Γ, δ, q0, F 〉, there is an equivalent SDD B =
〈Σ, V, τ,0,1, r〉 such that |VN| ≤ |δ|. Moreover, for every positive integer n ≥ 1, there
is an ADFA A that admits no equivalent SDD B such that |VN| < |δ| = n.

Proof. For an ADFA A = 〈Σ,Γ, δ, q0, F 〉, we construct an equivalent SDD B(A). Let

deg(q) = |{ a ∈ Σ | δ(q, a) is defined }| .

We define B(A) = 〈Σ, V, τ,0,1, r〉 as follows. The set of nodes is given by

V = {0,1} ∪ { [q, i] | q ∈ Γ and 1 ≤ i ≤ deg(q) }.

For each q ∈ Γ with deg(q) = k ≥ 1, let a1, . . . , ak ∈ Σ and q1, . . . , qk ∈ Γ be such
that

– δ(q, ai) = qi for i = 1, . . . , k,
– a1 ≺ a2 ≺ · · · ≺ ak.
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Define τ by

τ([q, i]) =





〈ai, [q, i+ 1], q̂i〉 if i < k,

〈ak,1, q̂k〉 if i = k and q ∈ F,

〈ak,0, q̂k〉 if i = k and q 6∈ F,

where

q̂′ =





[q′, 1] if deg(q′) > 0,

1 if deg(q′) = 0 and q′ ∈ F,

0 if deg(q′) = 0 and q′ 6∈ F.

The root r of B(A) is q̂0.
It is easy to see that LA(q) = LB(A)(q̂) for all q ∈ Γ . We note that the above

construction can be done in linear time in |δ|.
The first claim of the theorem can be verified by the above construction of B(A).

The second claim is established by observing the minimum ADFA and the reduced
SDD that accept the singleton {an} for each positive integer n. For the detail of
construction of the reduced (canonical) SDD from a string set, consult [7]. ⊓⊔

We remark that B(A) in the proof is not necessarily reduced for a minimum ADFA A.

Example 4. Let us compare the minimum ADFA A and the constructed SDD B(A)
for the set {ab, b} with a ≺ b:

transition rules of A corresponding nodes of B(A)
δ(q0, a) = q1 τ([q0, 1]) = 〈a, [q0, 2], [q1, 1]〉
δ(q0, b) = q2 τ([q0, 2]) = 〈b,0,1〉
δ(q1, b) = q2 τ([q1, 1]) = 〈b,0,1〉

B(A) is not reduced since τ([q0, 2]) = τ([q1, 1]) for [q0, 2] 6= [q1, 1].

In this example, A has two distinct edges that are labeled with b and come into q2,
which should be merged into the same node in a reduced SDD. Hence the reduced
SDD can be more compact than the minimum ADFA for the same language. We next
discuss how much an SDD can be smaller than an ADFA through a translation from
an SDD into an ADFA.

3.3 From SDDs to ADFAs

We next discuss how much an SDD can be smaller than an ADFA through a trans-
lation from an SDD into an ADFA. Let an SDD B = 〈Σ, V, τ,0,1, r〉 be given. We
construct an ADFA A(B) = 〈Σ,Γ, δ, q0, F 〉 such that L(A(B)) = L(B). We assume
that r 6= 0. Otherwise, the translation is trivial.

For each P ∈ VN, let P̃ = [P1, . . . , Pk] be such that P1 = P and τ(Pi) =
〈ai, Pi+1, Ri〉 for some Ri ∈ V for i ≤ k and Pk+1 ∈ {0,1}. We define 1̃ to be [1]. Let

– Γ = {r̃} ∪ { P̃1 | P1 6= 0 is the 1-child of some P ∈ VN },
– q0 = r̃,

– F = { P̃ ∈ Γ | P̃ = [P1, . . . , Pk] and Pk = 1 },

– δ(P̃ , ai) = R̃i if P̃ = [P1, . . . , Pk] and τ(Pi) = 〈ai, Pi+1, Ri〉.
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It is easy to see that LB(P ) = LA(B)(P̃ ) for all P̃ ∈ Γ . This implies that if B
is reduced, A(B) is minimum. Contrary to the translation from an ADFA into an
equivalent SDD, this construction takes O(|Σ||VN|) time. In fact, this is optimal.
The following theorem implies that the reduced SDD can be about |Σ| times more
compact than the minimum ADFA for the same set of strings.

Theorem 5. For any SDD B = 〈Σ, V, τ, r,0,1〉, one can construct in O(|Σ||VN|)
time the equivalent minimum ADFA A = 〈Σ,Γ, δ, q0, F 〉 such that |Γ | ≤ |VN|+1 and

|δ| ≤

{
|VN|(|VN|+ 1)/2 if |VN| ≤ |Σ|;

|Σ|(2|VN| − |Σ|+ 1)/2 if |VN| > |Σ|.

Moreover, there is an SDD B that admits no equivalent ADFA A for which the strict
inequality holds.

Proof. The first claim, |Γ | ≤ |VN|+ 1, clearly holds by the conversion.
In order to establish the second part of the theorem, we give a variant of the

construction of A(B). We define C(B) from B by replacing the definition of Γ in

A(B) with Γ = { P̃ | P ∈ V − {0} }. For C(B) = 〈Σ,Γ, δ, q0, F 〉, we prove the
inequality by induction on |VN|. Clearly A(B) is not bigger than C(B), and thus this
claim implies the theorem. In the following discussion, we ignore the root of B and
the initial state of C(B), because it does not affect the discussion of their description
size. For |VN| = 1, it is easy to see that the claim holds. Suppose that |VN| > 1.
Let B′ be obtained from B by deleting an arbitrary nonterminal node P that has no
incoming edge.

If |VN| ≤ |Σ|, we have |δ
′| ≤ (|VN|−1)|VN|/2 by the induction hypothesis, where δ′

denotes the transition set of C(B′). By definition, C(B) can be obtained from C(B′)

by adding one state P̃ and at most |VN| outgoing edges from it. Hence

|δ| ≤ |δ′|+ |VN| ≤ (|VN| − 1)|VN|/2 + |VN| = |VN|(|VN|+ 1)/2.

If |VN| > |Σ|, we have |δ′| ≤ |Σ|(2|VN| − |Σ| − 1)/2 by the induction hypothesis.

By definition, C(B) can be obtained from C(B′) by adding one state P̃ and at most
|Σ| outgoing edges from it. Hence

|δ| ≤ |δ′|+ |Σ| ≤ |Σ|(2|VN| − |Σ| − 1)/2 + |Σ| = |Σ|(2|VN| − |Σ|+ 1)/2.

We have proven the inequality.
In order to see that the above bound is tight, consider the reduced SDD and the

minimum ADFA for the language Ln = { ak0ai1 . . . aij | 0 ≤ k ≤ n − |Σ|, 0 ≤ j ≤
min{m,n}, 1 ≤ i1 < · · · < ij ≤ m } over Σ = {a0, . . . , am } with a0 ≺ a1 ≺ · · · ≺ am.

⊓⊔

We note that if am ≺ · · · ≺ a1 ≺ a0, we have |V ′
N| = |δ| for the node set V ′ of the

reduced SDD B′ for Ln and the transition set δ of the minimum ADFA A for Ln

in the proof of Theorem 5. Hence an order on Σ induces a reduced SDD that has
asymptotically |Σ| times more nodes than the one induced by another order on Σ.

Corollary 6. For an order π on Σ and a finite language L over Σ, let Bπ(L) =
〈〈Σ, π〉, V π, τπ, S,0,1〉 be the reduced SDD for L that respects the order π over Σ.
For any order π, ρ on Σ, we have |V π

N | ≤ |Σ||V
ρ
N |.
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Proof. Let δ be the transition set of the minimum automaton for L. By Theorem 3,
|V π

N | ≤ |δ|. By Theorem 5, |δ| ≤ |Σ||V ρ
N |. Hence |V

π
N | ≤ |Σ||V

ρ
N |. ⊓⊔

Through the conversion techniques presented above between ADFAs and SDDs
and/or by Theorems 3 and 5, most known results on the size of minimum ADFAs
can be translated into those on SDDs. A special case is where the set of all factors of
a string is in concern. Let

Fact(w) = { y ∈ Σ∗ | w = xyz for some x, z ∈ Σ∗ }.

The literature has intensively studied the factor automata for the set Fact(w).

Theorem 7 (Blumer et al. [2], Crochemore [4]). For w ∈ Σ∗, let Γ and δ
be the state set and the transition set of the minimum ADFA for Fact(w). Then
|Γ | ≤ 2|w| − 2 and |δ| ≤ 3|w| − 4.

Corollary 8. For w ∈ Σ∗, let V be the node set of the reduced SDD for Fact(w).
Then |w| ≤ |VN| ≤ 3|w| − 4.

Proof. By Theorem 7 and Theorem 5. ⊓⊔

For w = cbna with a ≺ b ≺ c, we have |VN| = 3|w| − 4.

Corollary 9. For w ∈ Σ∗ and order π on Σ, let V π be the node set of the reduced
SDD for Fact(w). Then |V π

N | ≤ |V
ρ
N | + |w| − 1. Moreover, there are w, π and ρ for

which the equality holds.

Proof. Let δ be the transition set of the minimum automaton for Fact(w). We have
|V π

N | ≤ |δ| and |Γ | ≤ |V
ρ
N | + 1 by Theorems 3 and 5, respectively. Blumer et al. [2,

Lemma 1.6] show that |δ| ≤ |Γ |+ |w| − 2. Hence

|V π
N | ≤ |δ| ≤ |Γ |+ |w| − 2 ≤ |V ρ

N |+ |w| − 1.

In fact for w = anb, π = 〈b ≺ a〉, ρ = 〈a ≺ b〉, we have |V π
N | = 2n−1 and |V ρ

N | = n−1.
⊓⊔

4 Input- and Output-Sensitive Time-bounds for Binary
Synthesis Operations

In this section, we consider time complexity of set operations on SDDs. In particular,
given a binary set operation ⋄ ∈ {∪,∩, \, . . .}, we consider the synthesis problem that
receives two reduced SDDs P,Q and computes R = P ⋄Q, where P ⋄Q denotes the
reduced SDD such that L(P ⋄Q) = L(P ) ⋄L(Q). Bryant [3] presented in his seminal
paper on BDDs, a recursive synthesis algorithm for all Boolean operations. Loekito et
al. [12] gave its string-counterpart for union ∪ and difference \. Below, we generalize
the algorithm in [12] for a family of set operations, called melding , in the style of
Knuth [11].
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✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables for triples and operations.

Algorithm Meld⋄(P,Q: SDDs):
Output: The reduced SDD for the melding P ⋄Q given F⋄ : {0, 1}2 → {0, 1};

1: if (P = 0 or Q = 0 or P = Q)
2: if (F⋄[sign(P ), sign(Q)] = 0) return 0; /* See text for F⋄. */
3: else if P 6= 0 return P ;
4: else if Q 6= 0 return Q;
5: else if ((R← cache[“Meld⋄(P,Q)”]) exists) return R;
6: else

7: x← P.lab; y ← Q.lab;
8: if (x ≺Σ y) R← Getnode(x,Meld⋄(P.0, Q),Meld⋄(P.1,0));
9: else if (x ≻Σ y) R← Getnode(y,Meld⋄(P,Q.0),Meld⋄(0, Q.1));
10: else if (x = y) R← Getnode(x,Meld⋄(P.0, Q.0),Meld⋄(P.1, Q.1));
11: cache[“Meld⋄(P,Q)”]← R;
12: return R;

For convenience, we assume 1.lab to be a symbol larger than any symbols in Σ.

Figure 3. An algorithm Meld⋄ for built-in binary set operations ⋄ ∈ {∪,∩, \,⊕, . . .}.

4.1 The Family of Melding Operations

We give a family of binary set operations ⋄ called melding below. A terminal operation
table is a binary Boolean function F : {0, 1}2 → {0, 1} such that F [0, 0] = 0. Clearly,
there are exactly eight such tables. Let O = {∪,∩, \, /,⊕, ∅, LHS,RHS} be a set
of names of set operations ⋄ : 2Σ

∗

×2Σ
∗

→ 2Σ
∗

on subsets Σ∗. We define F⋄ by:
F∪[x, y] = x∨y, F∩[x, y] = x∧y, F\[x, y] = x∧¬y, F/[x, y] = ¬x∧y, F⊕[x, y] = x⊕y
(exclusive-or), F∅[x, y] = 0, FLHS[x, y] = x, FRHS[x, y] = y, where x, y ∈ {0, 1}. For
any SDD P , we define sign(P ) to be 0 if P = 0 and 1 otherwise.

In Fig. 3, we give the algorithm Meld⋄ that computes the reduced SDD R = P ⋄Q
for two SDDs P and Q given a terminal operation table F⋄. Clearly, the trivial
operations ∅, LHS and RHS can be computed in constant time without Meld⋄. Yet
those are also uniformly described as Meld⋄. A specified terminal operation table F⋄

uniquely determines melding operation P ⋄ Q. In what follows, we assume that the
inputs P and Q and the output R are built by using the same hash table uniqtable,
where uniqtable is initialized with the empty relation before constructing P and Q.
Moreover, our algorithm uses a hash table cache : op×dom2 → dom that stores
invocation patterns of operations for avoiding redundant computation, where op is
the set of operation names. By a similar discussion in Knuth [11], we establish the
following theorem. Meld⋄ directly computes the output without producing redundant
nodes.

Theorem 10 (correctness). Let ⋄ ∈ O be any of the eight operations. Given F⋄,
the algorithm Meld⋄ in Fig. 3 correctly computes the reduced SDD for R = P ⋄ Q
exactly eight string set operations P ⋄Q, where the set operation P ⋄Q is defined as
follows:

the union P ∪Q, the intersection P ∩Q,
the difference P\Q, the inverse difference P/Q = Q\P ,
the symmetric difference P ⊕Q = (P\Q) ∪ (Q\P ), the empty set ∅,
the left hand side LHS(P,Q) = P . the right hand side RHS(P,Q) = Q.
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4.2 Input-Sensitive Complexity of Binary Synthesis

First, we start with input-sensitive analysis of the time complexity for the melding
procedure. We prepare some necessary notations. Consider the algorithm Meld⋄ of
Fig. 3. Let us denote by Meld0⋄ and Meld1⋄ the first and second parts of the algorithm,
that is, the top level if-clause and else-clause consisting of Lines 1 to 5 and Lines 6
to 12, respectively. For a procedure α, #α(P,Q) denotes the number of times that α
is executed during the computation of Meld⋄(P,Q). We assume that |0| = |1| = 1 for
convenience.

Theorem 11 (input complexity of melding). Let ⋄ be any melding operation.
For reduced SDDs P and Q, the algorithm Meld⋄ of Fig. 3 computes R = P ⋄ Q in
O(|P | · |Q|) time and space.

Proof. Consider the computation of Meld⋄(P,Q). Since the arguments P ′ and Q′ of
any subroutine call Meld⋄(P

′, Q′), resp., are subgraphs of P and Q, the number of
distinct calls for Meld⋄(P,Q) is at most |P | · |Q| (Claim 1 ). It also follows that
cache has O(|P | · |Q|) entries. Since the table-lookup with cache at Line 5 eliminates
duplicated calls, theMeld1⋄ can be executed at most once for each (P ′, Q′), and thus, we
have #Meld1⋄ ≤ |P |·|Q| (Claim 2 ). We observe thatMeld⋄ is called either (i) at the top-
level or (ii) within Meld1⋄. Since exactly one of Line 8, 9, and 10 is executed in Meld1⋄,
which contains at most two calls forMeld⋄, we have #Meld⋄ ≤ 2·#Meld1⋄+1 (Claim 3 ).
Combining Claims 2 and 3, we have that #Meld⋄ ≤ 2 · |P | · |Q|+ 1 = O(|P | · |Q|). If
each call of Meld⋄ takes O(1) time, then the time complexity is O(|P | · |Q|). On the
other hand, each Meld⋄(P

′, Q′) makes exactly one call for Getnode by adding a new
node. Thus, the algorithm adds at most |R| ≤ #Getnode ≤ #Meld⋄ = O(|P | · |Q|)
nodes. Since the number of cache-entries is O(|P | · |Q|) and the function stack has
depth no more than #Meld⋄, the space complexity is O(|P | · |Q|). ⊓⊔

From the proof of the above theorem, we have the following corollary.

Corollary 12 For any melding operation ⋄ ∈ O, the reduced output size |R| is
bounded from above by O(|P | · |Q|).

4.3 Pseudo Output Sensitive Complexity of Binary Synthesis

Next, we present output-sensitive analysis of the time complexity of the melding in
the style of Wegener [21], which analyzed the time complexity of Boolean operations
for BDDs based on the size of non-reduced BDDs. We define R∗ = P ⋄∗ Q to be the
(possibly non-reduced) SDD computed by Meld⋄ equipped with the modification of
Getnode in Fig. 3 by removing Line 1 and 2 for node-sharing and zero-suppress rules.
Clearly, the non-reduced output size |R∗| is bounded from above by O(|P | · |Q|).

Theorem 13 (output-sensitive complexity w.r.t. non-reduced output). The
reduced SDD for R = P ⋄∗ Q can be computed in O(|R∗|) time and space by the
algorithm Meld⋄ in Fig. 3, where R∗ is the non-reduced SDD for P ⋄∗ Q.

Proof. Consider the computation of Meld⋄ of Fig. 3 equipped with Getnode∗. Since
each call of Getnode∗ increases the output size by at least one, we have #Getnode∗ ≤
|R∗| (Claim 4 ). Since exactly one of Line 8, 9, and 10 is executed in Meld1⋄ and it
contains at least one call for Getnode, we have #Meld1⋄ ≤ #Getnode∗ (Claim 5 ). From
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the proof for Theorem 11, we have #Meld⋄ ≤ 2 ·#Meld1⋄ + 1 (Claim 3 ). Combining
Claims 3, 4, and 5 above, we now have #Meld⋄ ≤ 2·#Meld1⋄+1 ≤ 2·#Getnode∗+1 ≤
2·|R∗|+1 = O(|R∗|)., and thus, we have the time complexity O(|R∗|). Since uniqtable
and cache contain at most #Getnode∗ and #Meld⋄ entries, resp., the space complexity
follows from a similar argument to the proof for Theorem 11. ⊓⊔

4.4 A Lower Bound for the Time Complexity of Binary Synthesis

In the BDD community, there has been a strong belief that the quadratic input-
sensitive complexities of the binary synthesis procedures for a number of variants of
BDDs, including the BDDs and ZDDs, is output-linear time for most input instances,
and there has been no super-linear lower bound for its time complexity. Recently,
Yoshinaka et al. [22] show that this conjecture is not true for BDDs and ZDDs; They
constructed an infinite sequence of input BDDs that demonstrated the quadratic
lower bound for the time complexity of the melding for BDDs and ZDDs. Based on
their discussion, below we show that the above quadratic input-sensitive complexity
of the melding in terms of input size is optimal for SDDs in reality.

Theorem 14. Let ⋄ be any melding operations. The algorithm Meld⋄ of Fig. 3 re-
quires Ω(|P | · |Q|) time and space regardless of the output size, where P and Q are
the input SDDs.

Proof. Our example that the binary synthesis takes O(|P | · |Q|) time to compute
R = P ⋄Q where |R| is linear in |P |+ |Q| is just a straightforward translation of the
one from [22]. The theorem can be shown in a way similar to [22]. Here we give a
rough sketch of the proof. Let Σ = {0, 1}. For a fixed positive integer n, we define

S = {x1y1 · · · xnynz1 · · · zm ∈ {0, 1}
2n+m | xβ(z1···zm) = 1 },

T = {x1y1 · · · xnynz1 · · · zm ∈ {0, 1}
2n+m | yβ(z1···zm) = 1 },

where m = ⌈log n⌉ and

β(z1 · · · zm) =

{
1 +

∑m
k=1 2

k−1zk if
∑m

k=1 2
k−1zk < n;

1 otherwise.

We have

S ⋄ T = {x1y1 · · · xnynz1 · · · zm ∈ {0, 1}
2n+m | F⋄[xβ(z1···zm), yβ(z1···zm)] = 1 }.

Let P and Q be the reduced SDD for S and T , resp.
We first show that |P |, |Q|, |R| = O(2n). It is easy to see that every node in P

and Q represents a set of strings of a fixed length, since all strings in S and T have
the same length 2n+m. We define the level of a node to be 2n+m− k if the node
represents a set of strings of length k. Since the membership of x1y1 · · · xnynz1 · · · zm
to S does not depend on any of yi, it is not hard to see that there are at most O(2k)
nodes of level 2k for 0 ≤ k < n. The number of nodes of level 2k+1 is at most twice
as big as that of level 2k. On the other hand, since there are at most 22

k

distinct
sets of strings of length k, there are at most |Σ| · 22

k

nodes of level 2n + m − k
for 0 ≤ k ≤ m = ⌈log n⌉. All in all, |P | = O(2n). Similarly |Q| = O(2n). It is
easy to see that for any xi, yi, x

′
i, y

′
i ∈ {0, 1} such that F⋄[xi, yi] = F⋄[x

′
i, y

′
i], we have
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Data Size (byte) #line #unique line Ave. line len (byte) |Σ |

BibleAll 4,047,392 30,383 30,129 133.2 62

BibleBi 7,793,268 767,854 154,479 10.1 27

Ecoli 4,638,690 1 1 4,638,690.0 4

Table 1. Outline of data sets

Data

SDD input H1 H2 ∪ ∩ ＼ ／ ∪ ∩ ＼ ／
BibleAll(Fac) 3099 3082 6110 417 3415 3388 0.67 0.44 0.59 0.58

BibleBi 101 115 167 36 82 97 0.06 0.00 0.00 0.00

Ecoli(Fac) 4973 4970 9938 654 6346 6347 1.63 1.09 1.42 1.41

Size (Kilo node) Time (sec)

Table 2. Output size and running time of algorithms for binary synthesis
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Figure 4. Ratio between the sizes SDDs and DFAs in binary format

w1xiyiw2 ∈ S ⋄ T iff w1x
′
iy

′
iw2 ∈ S ⋄ T for any w1 ∈ {0, 1}

2k, w2 ∈ {0, 1}
2n+m−k−2

with k < n. Hence we have |R| = O(2n) by a discussion similar to the one for
|P |, |Q| = O(2n).

Second we show that #Meld⋄ ≥ 22n. For w ∈ {0, 1}2n, let Pw denote the node of P
such that L(Pw) = {w

′ | ww′ ∈ S }. In fact P has such a node for each w. Similarly
we let Qw be such that L(Qw) = {w

′ | ww′ ∈ T }. By definition, the algorithm calls
Meld⋄(Pw, Qw) for each w. Moreover, Px1···yn 6= Px′

1
···y′n whenever xi 6= x′

i for some i and

Qx1···yn 6= Qx′
1
···y′n whenever yi 6= y′i for some i. Therefore, for distinct w,w′ ∈ {0, 1}2n,

the pairs 〈Pw, Qw〉 and 〈Pw′ , Qw′〉 are distinct. This means that #Meld⋄ ≥ 22n. ⊓⊔

5 Experiments

This section presents our experimental results on SDDs. Our first experiment has
constructed SDDs and DFAs for the same sets of strings of real data and compared
their sizes. Secondly we have implemented the binary synthesis algorithm Meld⋄ and
computed different binary operations on sets over SDDs.

Setting. The data sets used in our experiments are summarized in Table 1.
BibleAll and BibleBi are sets of all sentences and all word bi-grams drawn from an
English text bible.txt and Ecoli is a single DNA string in ecoli.txt in Canterbury
corpus3. We implemented our shared and reduced SDD environment on the top of

3 http://corpus.canterbury.ac.nz/resources/
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the SAPPORO BDD package [17] for BDDs and ZDDs written in C and C++, where
each node is encoded in a 32-bit integer and a node triple occupies approximately 30
bytes in average including hash entries in uniqtable. We also used another implemen-
tation of SDD environment in functional language Erlang . Experiments were run on
a PC (Intel Core i7, 2.67 GHz, 3.25 GB memory, Windows XP SP3). About 1.5 GB
of memory was allocated to the SDD environment in maximum.

Exp 1: Comparison of the size of indexes. Figure 4 shows the sizes of SDDs
and DFAs for different sets of strings, where BibleAll (Fac), BibleBi (Fac) and Ecoli
(Fac) mean the sets of all factors of sequences in the respective input files. We see
that a minimal SDD is 0 to 23 percent more succinct than the equivalent minimal
ADFA in binary format. In particular, the size ratio for factor sets is even smaller
than that for the original string data. SDDs can search strings as fast as DFAs where
edges of DFAs are represented by linked list.

Exp 2: Binary synthesis. We divided the source texts into two parts, the
first half H1 and the second H2, and then performed Meld⋄ on those parts for ⋄ ∈
{∪,∩, \, /}. The results are presented in Table 2. It took less than seconds to compute
set operations ⋄ on two SDDs with around three to four millions of nodes each. The
output size of H1 ∪ H2 is much larger than that of H1 ∩ H2, but the running time is
not different that much.

Overall, we conclude that the shared and reduced SDD environment with the
above algorithms is a practical choice for storing and manipulating string sets in
large-scale string applications.

6 Conclusion

In this paper, we consider the class of sequence binary decision diagrams (SDDs)
proposed by Loekito et al. [12], and studied two fundamental problems on sequence
binary decision diagrams: the relationship to acyclic automata and the complexities
of the binary synthesis operation. In Sec. 4, we showed the quadratic time complexity
of the Meld⋄ algorithm. In [7], it is shown that the Meld⋄ runs in input linear time if
one of the argument is the minimal SDD of linear shape corresponding to a string.
Therefore, it would be an interesting future problem to study special cases that Meld⋄
has input linear time complexity. It would be another problem to apply SDDs for
studying the dynamic versions of sequence analysis problems such as the maximal
repeat problem and the consistent string problem [9].
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