
Variations of Forward-SBNDM⋆

Hannu Peltola and Jorma Tarhio

Department of Computer Science and Engineering,
Aalto University, P.O.B. 15400, FI-00076 Aalto, Finland

{hannu.peltola,jorma.tarhio}@aalto.fi

Abstract. Forward-SBNDM is a recently introduced variation of the BNDM algo-
rithm for exact string matching. Forward-SBNDM reads a text character following an
alignment of the pattern. We present a generalization of this lookahead idea and apply
it to SBNDMq for q ≥ 3. As a result we get several new variations of SBNDMq. We
introduce a greedy skip loop for SBNDM2. In addition, we tune up our algorithms
and the reference algorithms with 2-byte read. According to our experiments, the best
of the new variations are in several cases faster than the winners of recent algorithm
comparisons.

Keywords: string matching, BNDM, 2-byte read, q-grams

1 Introduction

After the advent of the Shift-Or [2] algorithm, bit-parallel string matching methods
have gained more and more interest. The BNDM (Backward Nondeterministic DAWG
Matching) algorithm [17] is a nice example of an elegant, compact, and efficient
piece of code for exact string matching. BNDM simulates the nondeterministic finite
automaton of the reverse pattern even without constructing the actual automaton.

SBNDM2 [6,11] is a simplified variation of BNDM. SBNDM2 starts processing
of an alignment by reading two characters. Recently Faro and Lecroq [7] introduced
Forward-SBNDM, a lookahead version of the SBNDM2 algorithm. In this paper we
present a generalization of the lookahead idea and give new variations of SBNDMq [6]
for q ≥ 3. SBNDMq starts processing of an alignment by reading q characters. In
addition, we introduce a greedy skip loop for SBNDM2. Our point of view is practical
efficiency of exact string matching algorithms. According to our experiments, the best
of the new variations are in several cases faster than the winners of recent algorithm
comparisons [6,9].

We use the following notations. Let a pattern P = p1p2 · · · pm and a text T =
t1t2 · · · tn be two strings over a finite alphabet Σ. The task of exact string matching
is to find all occurrences of P in T . Formally we search for all positions i such that
titi+1 · · · ti+m−1 = p1p2 · · · pm. In the pseudocode of the algorithms we use some nota-
tions of the programming language C: ‘|’, ‘&’, ‘∼’, ‘<<’, and ‘>>’ represent bitwise
operations or, and, one’s complement, left shift, and right shift, respectively. The
register width (or word size informally speaking) of a processor is denoted by w.

The rest of the paper is organized as follows. Since our work is based on SBNDMq
and Forward-SBNDM, we start with presenting these algorithms in Section 2. In
Section 3 we generalize Forward-SBNDM with wider lookahead and longer q-grams.
In Section 4 the greedy skip loop is presented. Section 5 reviews the results of our
experiments before concluding remarks in Section 6.

⋆ Supported by the Academy of Finland (grant 134287).

Hannu Peltola, Jorma Tarhio: Variations of Forward-SBNDM, pp. 3–14.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic



4 Proceedings of the Prague Stringology Conference 2011

2 Previous algorithms

2.1 SBNDMq

SBNDMq [6] is a variation of SBNDM [18], a simplified version of BNDM, applying
q-grams. The pseudocode is shown as Alg. 1. F (i, q) on line 6 is a shorthand notation
for the expression

B[ti] & (B[ti+1] << 1) & · · · & (B[ti+q−1] << (q − 1)).

Algorithm 1 SBNDMq (P = p1p2 · · · pm, T = t1t2 · · · tn)
1: for all c ∈ Σ do B[c] ← 0
2: for j ← 1 to m do

3: B[pj ] ← B[pj ] | (1 << (m − j))
4: i ← m − q + 1
5: while i ≤ n − q + 1 do

6: D ← F (i, q)
7: if D 6= 0 then

8: j ← i − (m − q + 1)
9: repeat

10: i ← i − 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: if j = i then

14: report occurrence at j + 1
15: i ← i + s0

16: i ← i + m − q + 1

At each alignment, SBNDMq first reads q characters ti, . . . , ti+q−1 before testing
the state vector D. If D is zero, this q-gram (i.e., the string of q characters) is not a
factor (i.e. a substring) of P , and then the pattern can be shifted forward m − q + 1
positions. If D is not zero, a single character at a time is read to the left until the
suffix ti · · · tj+m of the alignment is not any more a factor of P . If ti · · · tj+m is not a
factor of P and i > j holds, the pattern is shifted forward and the next alignment
starts at ti+1.

In the original BNDM, the inner loop also recognizes prefixes of the pattern. The
leftmost one of the found prefixes determines the next alignment of BNDM. SBNDMq
does not care of prefixes, but shifts the pattern simply past the text character which
nullifies D.

When an occurrence of the pattern is found, the shift is s0, which corresponds to
the distance to the leftmost prefix of the pattern in itself and which is easily computed
from the pattern (see [6]). We skip the details, because a conservative value s0 = 1
works well in practice. In the subsequent algorithms of this paper we use the value
s0 = 1.

2.2 Forward-SBNDM

Forward-SBNDM, a lookahead version of SBNDM2, was introduced by Faro and
Lecroq [7]. The idea of the algorithm is the following. As in SBNDM2, a 2-gram x1x2

is read before testing the state vector D. In SBNDM2, x1x2 is matched with the end
of the pattern. In Forward-SBNDM, only x1 is matched with the end of the pattern,



Hannu Peltola and Jorma Tarhio: Variations of Forward-SBNDM 5

Algorithm 2 Forward-SBNDM (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ m < w

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← 1
2: for j ← 1 to m do

3: B[pj ] ← B[pj ] | (1 << (m − j + 1))
/* Searching */

4: i ← m

5: while i ≤ n do

6: D ← (B[ti+1] << 1) & B[ti]
7: if D 6= 0 then

8: j ← i

9: repeat

10: i ← i − 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: i ← i + m − 1
14: if j = i then

15: report occurrence at j + 1
16: i ← i + 1
17: i ← i + m

and x2 is a lookahead character. By lookahead characters we mean the text characters
immediately following the current alignment. Note that B[x2] can nullify several bits
of D, and therefore x2 enables longer shifts. The pseudocode of Forward-SBNDM is
shown as Alg. 2.

After reading x1x2 in Forward-SBNDM there are three possibilities to proceed. (i)
If x1x2 is a factor of P , reading continues leftwards. (ii) If x1x2 is not a factor of P
and if x1 matches the last character of P , reading continues leftwards. The extra set
bit in the end of B vectors ensures that the state vector D does not get nullified in
this case. (iii) If x1x2 is not a factor of P and if x1 does not match the last character
of P , then D becomes zero and the pattern is shifted m positions and shift is one
longer than in SBNDM2.

Because the length of the occurrence vector B of each character is m + 1 in
Forward-SBNDM, the upper limit for the pattern length is thus w− 1. The extra bit
is the rightmost one, and its value is always one, because the lookahead character is
not allowed to interfere with recognition of a valid occurrence of P .

In a way Forward-SBNDM is a cross of SBNDM2 and Sunday’s QS [19]. QS was
the first algorithm to use a lookahead character for shifting. Another famous algorithm
using two lookahead characters is by Berry and Ravindran [3].

3 Generalization: Forward-SBNDMq

Ďurian et al. [5,6] reported that SBNDMq is efficient also for q > 2 on modern proces-
sors, although the number of read characters increases with q. This increment can be
considerable in the case of short patterns, but this straightforward method is faster on
average than SBNDM in most cases. Based on this observation we decided to examine
whether a longer lookahead than one as in Forward-SBNDM would be beneficial for
SBNDMq. So based on SBNDMq we constructed Forward-SBNDM(q, f), where the
lookahead f can be any integer between 0 and q − 1. Our preliminary experiments



6 Proceedings of the Prague Stringology Conference 2011

convinced us that longer lookaheads would be beneficial. The pseudocode is given as
Alg. 3.

Algorithm 3 Forward-SBNDM(q, f) (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: q − f ≤ m ≤ w − f and 0 ≤ f < q

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← (∼0) >> (w − f) /* 1f */
2: for j ← 1 to m do

3: B[pj ] ← B[pj ] | (1 << (m − j + f))
/* Searching */

4: i ← m − q + f

5: while i ≤ n − q + 1 do

6: D ← F (i, q)
7: if D 6= 0 then

8: j ← i − (m − q + f + 1)
9: repeat

10: i ← i − 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: if j = i then

14: report occurrence at j + 1
15: i ← i + 1
16: i ← i + m − q + f + 1

Note that Forward-SBNDM(q,0) is in practice the same as SBNMDq if s0 = 1
is selected. If we keep f − q in a precomputed variable, then even the search part
of Forward-SBNDM(q, f) is independent of the value of f . Note also that Forward-
SBNDM(2, 1) corresponds to the original Forward-SBNDM.

Because the length of the occurrence vector B of each character is m + f , the
upper limit for the pattern length is thus w − f . In addition it is required that
0 < q − f ≤ m. When changing q, only line 6 needs to be updated. Note that like
SBNDMq, Forward-SBNDM(q, f) may read a few characters beyond the text (line 6)
and also one character before the text (line 11).

Providing m ≤ w, the worst case time complexity of BNDM is O(mn), but the
average time complexity is sublinear. The space complexity of BNDM is O(|Σ|). It is
straightforward to show that Forward-SBNDM(q, f) inherits these complexities when
m ≤ w − f .

Let ti · · · ti+q−1 = x1 · · ·xq−fy1 · · · yf be the q-gram read on line 6. As in the case
of Forward-SBNDM, there are three possibilities to proceed. (i) If x1 · · ·xq−fy1 · · · yf

is a factor of P , reading continues leftwards. (ii) If x1 · · ·xq−fy1 · · · yf is not a factor
of P and if x1 · · ·xq−f matches the suffix of P , reading continues leftwards. The extra
set bits in the end of B vectors ensure that the state vector D does not get nullified.
(iii) If x1 · · ·xq−fy1 · · · yf is not a factor of P and if x1 · · ·xq−f does not match the
suffix of P , then the pattern is shifted and the next alignment ends at ti+m. The shift
is m − q + f + 1, which is f positions more than in SBNDMq.

The disadvantage of Forward-SBNDM(q, f) is that there is a larger risk to fall to
the slow loop on lines 8–15, because the probability F (i, x) to be nonzero is higher
for x = q − f than for x = q.

Example. Let P be abcdefgh. The maximal shifts of SBNDM2 and SBNDM3 are 7
and 6, respectively. The maximal shift of Forward-SBNDM(3,2) is 7. Let us consider



Hannu Peltola and Jorma Tarhio: Variations of Forward-SBNDM 7

a text T =...xabcdey... If SBNDM2 reads a 2-gram de, it scans back until x. If
Forward-SBNDM(3,2) reads 3-gram dey, it immediately skips 7 positions onwards,
because d is not a suffix of P and dey is not a factor of P .

Variation. The way how f lookahead characters are handled takes f low order bits
in the state vector D, which reduces the maximal length of the pattern. This could be
circumvented by using on line 6 a distinct occurrence vector table Ck (corresponding
to B) for each of the q text positions. Then F (i, q) is interpreted as

C1[ti] & C2[ti+1] & · · · & Cq[ti+q−1],

where Ck[x] = ((B[x] << f) + 2f − 1) >> (q − k) where B is B of SBNDMq as
well as on line 11. Note that 2f − 1 ensures that the f lowest order bits are set.
The justification for deleting the f high order bits by a left shift in the computation
of Ck[x] is that they are not needed in the algorithm, because we can assume that
q < w/2 holds.

Implementation note. In the C language the right operand of a shift operation
must be shorter than the width of the left operand. Therefore on line 1 of Alg. 3,
shifting has to be made in two parts or handled e.g. with if clause, when f = 0.

4 Greedy skip loop

Many string matching algorithms apply so called skip loop, which is used for fast
scanning before entering the matching phase. E.g. a basic skip loop of SBNDM is the
following:

while B[ti] = 0 do i ← i + m.

Faro and Lecroq [7,8] introduce several interesting variations of skip loop. In the
variation (originally for an algorithm of SBNDM2 type)

while B[ti] = 0 do i ← i + d[ti+m] (1)

the maximal step is 2m, where d is a shift table based on the bad character heuristics
a.k.a. the occurrence heuristics. We tried several variations of (1), but we did not
succeed improving the speed of our algorithms in our test setting.

Here we present a new type of skip loop for SBNDM2. We call it greedy, because
in some cases it reads lookahead characters that it does not utilize. The pseudocode
is given as Alg. 4.

Two 2-grams are read in the skip loop. If both do not appear in P , the shift is
2m − 2. If the former appears in P , the latter is not read (the operator && denotes
a short-circuit and) and the computation proceeds as in SBNDM2. If only the latter
2-gram tktk+1 appears in P , the next operation is a shift of m − 2. This means that
the new former 2-gram is tk−1tk. Here also a shift of m − 1 would be possible, but
that alternative is a bit slower in practice, because we already know that tktk+1 is a
factor of P .

It would be straightforward to generalize the greedy loop for SBNDMq. Instead
of reading two 2-grams, the loop may hold reading of two q-grams or a q-gram and a
2-gram.

The form of the greedy skip loop is based on the observation that the cost of side
assignments is very small. We tried several variations of the greedy loop on several
processors. Unfortunately no variation was clearly the best.



8 Proceedings of the Prague Stringology Conference 2011

Algorithm 4 Greedy-SBNDM2 (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ m < w

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← 0
2: for j ← 1 to m do

3: B[pj ] ← B[pj ] | (1 << (m − j))
/* Searching */

4: i ← m − 1
5: while i ≤ n do

6: while
(

D ← ((B[ti+1] << 1) & B[ti])
)

= 0 &&
(

(B[ti+m] << 1) & B[ti+m−1]
)

= 0 do

7: i ← i + 2m − 2
8: if D 6= 0 then

9: j ← i

10: repeat

11: i ← i − 1
12: D ← (D << 1) & B[ti]
13: until D = 0
14: i ← i + m − 1
15: if j = i then

16: report occurrence at j + 1
17: i ← i + 1
18: else

19: i ← i + m − 2

5 Experimental results

We implemented Greedy-SBNDM2 and Forward-SBNDM(q, f) versions up to q ≤ 8
and for f ≤ min{q−1, 5}. For efficiency f and q were compile time constants. For each
variation we implemented two versions. The standard version corresponds otherwise
to the pseudocode, but the test of the outer loop was eliminated and a copy of the
pattern was placed as a stopper after the last text character tn. The b-version applies
2-byte read, where two bytes are read with one instruction. As a result a part of bit
shifts was moved to preprocessing as explained below. Otherwise the search part of
the b-version is identical with the corresponding standard version.

2-byte read. Reading several bytes at a time is a well-known technique. Fredriks-
son [10] was probably the first who analyzed its advantage. A string matching algo-
rithm applying 2-byte read is in practice much faster than the traditional version. In
some cases the speedup becomes close to two, which is the theoretical limit. The cost
of reading one or two bytes is almost the same on most x86 processors. Only crossing
a word border causes small overhead [14]. A noteworthy additional advantage is the
possibility to move computation from the scanning phase to preprocessing. When
applying 2-byte read in an algorithm of BNDM type, we replace a C language expres-
sion B[t[i]] & (B[t[i+1]]<<1) by B2[*(uint16 t*)(t+i)], where (uint16 t*)

is a typecast and t+i is a reference (pointer) to the character t[i]. The table B2

is computed during preprocessing. When processing a 4-gram, it is advantageous to
process it as two separate 2-byte reads (see [6,14] for details) in order to decrease the
penalty of crossing word borders. The same holds for even larger values of q.

Unaligned 2-byte reads work also on some other CPU architectures than x86.
During preprocessing we take care of endianess (the order in which integer val-
ues are stored as bytes in the computer memory). Let x and y be two succes-



Hannu Peltola and Jorma Tarhio: Variations of Forward-SBNDM 9

sive characters. The indexing of the table B2 is different. On a little endian ma-
chine (like x86) B2[(y<<8)+x]=B[x]&(B[y]<<1) and on a big endian machine
B2[(x<<8)+y]=B[x]&(B[y]<<1) is applied. If you regard 2-byte read as a machine
level thing, you may accept a lighter version applying only the array of 2-byte in-
tegers. Depending on the input, B2[(t[i+1]<<8)+t[i]] is slightly faster than the
original expression in many x86 processors.

Reference algorithms. In addition to variations of SBNDMq we tested four other
algorithms:

– BR [3] by Berry and Ravindran,
– EBOM [7] by Faro and Lecroq,
– Hash3 [16] (originally New3) by Lecroq, and
– BMH2 [20,14], a 2-gram variation of the Horspool algorithm [12].

We updated each algorithm with a stopper handling and made a b-version in the
same way explained above for Forward-SBNDM(q, f).

Concerning BMH2, many researchers have worked out related varia-
tions [1,15,20,21]. The basic idea has been mentioned already in the original
article of Boyer and Moore [4]. BR is a cross of BMH2 and Sunday’s QS algo-
rithm [19]. In BMH2 the shift is based on the last 2-gram of the text window aligned
with the pattern, whereas BR applies the 2-gram locating two positions further to
the right. EBOM is an efficient implementation of the oracle automaton utilizing
2-grams.

Because Hash3 applies a 3-gram, the application of 2-byte read is a bit different.
The statements

h = text[i-2];

h = ((h<<1) + text[i-1]);

h = ((h<<1) + text[i]);

are replaced by

h = d2[*(uint16 t*)(text+i-2)]+text[i];

BMH2 and BR are examples of old algorithms. BR was among the first algorithms
to discredit the connection with the number of character reads and efficiency. EBOM
and Hash3 are the winners of several test cases in a recent comparison [9].

We use the shorthands FSB and GSB for Forward-SBNDM and Greedy-SBNDM,
respectively. FSB(q, f)b for odd q was implemented so that the q-gram is processed us-
ing (q−1)/2 consecutive 2-byte reads followed by one 1-byte read. Because FSB(q,0) is
in practice the same as SBNMDq, q = 2, 3, . . ., the former ones also serve as reference
methods, because the latter ones are among the best in our recent comparison [6].

Computers and test setting. We run the main tests on two computers. The first
one was IBM ThinkPad X61s having Intel Core 2 Duo Processor L7300 (32 KiB
L1 data cache). The test environment was Cygwin. The second computer was a Dell
Precision T1500 containing Intel Core i7-860 2.8 GHz CPU (8 KiB L1 data cache/core)
running with the 64-bit Ubuntu kernel 2.6.35-30. The programs in C were compiled
with the gcc compiler version 3.4.4 in IBM and 4.4.5 in Dell to run either in the 32-bit
mode or in the 64-bit mode (only in Dell) using the optimization level -O3.

In the main tests we used three texts: English (4 MB), DNA (2 MB), and binary
(2 MB). The English text was the KJV Bible. Sets of patterns of various lengths were



10 Proceedings of the Prague Stringology Conference 2011

randomly taken from each text. Each set contained 200 patterns. Neither end of the
English patterns was aligned with boundaries of English words.

All the algorithms were tested in a testing framework of Hume and Sunday [13].
The data was in the main memory so that I/O time had no effect to speed measure-
ments. The search speeds shown are averages of 100 runs (if not otherwise told). Accu-
racy of the results is about 1 %. For organizational reasons the test sets of ThinkPad
X61s and Dell T1500 were not identical.

With 32-bit bitvectors the maximum pattern length for FSB(*,3) is 29. Therefore
some results of FSB(4,3) for length 30 are missing.

Text 1: English. The search speeds on English data are shown in Tables 1 and 2. The
best speed for each pattern set has been boxed. Both GSB2 and EBOM were among
the fastest standard algorithms for m ≤ 15. Also FSB(3,1) (not tested for Table 1),
FSB(4,0), FSB(4,1), and FSB(4,2) worked well for longer patterns. Among the b-
versions GSB2b was good for short patterns. FSB(4,0)b, FSB(4,1)b, and FSB(4,2)b
were excellent for m ≥ 7.

As explained in Section 3, FSB(4,f), f > 0, was developed from SBNDM4 ≃
FSB(4,0). For most values of m, one of FSB(4,f) was faster than FSB(4,0). The same
was true for the b-versions, but the gain on Dell extended further. Note that for
m = 4, FSB(4,0) and FSB(4,0)b process the whole pattern in the outer loop of the
algorithm, and shift is always one! As explained in Section 4, GSB2 was developed
from SBNDM2 ≃ FSB(2,0). GSB2 was faster than FSB(2,0) for short patterns. The
same was true for the b-versions, but the gain on ThinkPad extended further.

Note that FSB(2,1) ≃ original Forward-SBNDM was slower than SBNDM2 ≃
FSB(2,0). (The same was true for the b-versions.) We made an additional test with
an alphabet of 128 characters in order to verify that FSB(2,1) is faster than FSB(2,0)
in a text of a larger alphabet as shown in [9].

Relative speedup of 2-byte read is shown in Table 3. Numbers are arithmetic means
of the speed ratios calculated from the data of Table 2. The overall average speedup
was 1.52 in this test set. The speedup was the biggest for m = 4 and decreased
as patterns get longer. Note that two of the algorithms went over the limit of two,
possibly due to advantageous pipelining.

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 0.74 1.22 1.52 1.84 2.03 2.42 1.26 1.80 2.00 2.24 2.44 2.92
FSB(2,0) 0.71 1.16 1.43 1.74 1.95 2.30 1.06 1.57 1.80 2.05 2.25 2.67
FSB(2,1) 0.66 0.99 1.23 1.56 1.82 2.25 0.79 1.17 1.40 1.74 2.02 2.47
FSB(4,0) 0.16 0.60 1.02 1.68 2.25 3.23 0.34 1.27 2.05 3.13 3.78 4.71
FSB(4,1) 0.31 0.73 1.15 1.78 2.34 3.27 0.63 1.49 2.18 3.17 3.78 4.73
FSB(4,2) 0.43 0.85 1.23 1.81 2.40 3.29 0.85 1.61 2.26 3.11 3.78 4.59
FSB(4,3) 0.48 0.81 1.12 1.64 2.12 – 0.72 1.21 1.63 2.31 2.88 –
BMH2 0.38 0.63 0.86 1.13 1.39 1.76 0.71 1.18 1.64 2.20 2.66 3.19
BR 0.57 0.83 1.07 1.42 1.88 2.40 0.68 0.98 1.23 1.74 2.16 2.67
Hash3 0.19 0.47 0.73 1.18 1.59 2.31 0.22 0.55 0.85 1.36 1.82 2.59
EBOM 0.84 1.26 1.50 1.74 1.89 2.17 1.15 1.62 1.77 1.96 2.10 2.39

Table 1. Searching speed of algorithms GB/s (per a single pattern) using English text and patterns
on ThinkPad X61s.



Hannu Peltola and Jorma Tarhio: Variations of Forward-SBNDM 11

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 1.41 2.23 2.67 3.23 3.68 4.35 2.15 3.11 3.59 4.13 4.47 5.21
FSB(2,0) 1.24 2.04 2.60 3.24 3.76 4.55 1.99 2.97 3.50 4.09 4.49 5.29
FSB(2,1) 1.12 1.71 2.15 2.79 3.29 4.08 1.52 2.20 2.68 3.34 3.92 4.65
FSB(3,1) 1.03 1.92 2.67 3.77 4.69 6.21 1.86 3.29 4.35 5.69 6.68 7.94
FSB(4,0) .300 1.16 1.97 3.22 4.33 6.37 .568 2.13 3.51 5.43 7.05 9.51
FSB(4,1) .565 1.37 2.11 3.28 4.35 6.34 1.42 3.26 4.78 7.02 8.57 10.4
FSB(4,2) .802 1.56 2.26 3.35 4.44 6.28 1.86 3.48 4.80 6.73 8.28 10.1
FSB(4,3) .831 1.40 1.95 2.85 3.79 – 1.32 2.16 2.93 4.24 5.51 –
BMH2 .710 1.18 1.60 2.16 2.75 3.52 1.34 2.27 3.13 4.37 5.48 7.03
BR 1.09 1.59 2.06 2.88 3.65 4.78 1.24 1.81 2.35 3.27 4.19 5.43
Hash3 .414 1.02 1.60 2.53 3.39 5.01 .436 1.07 1.67 2.64 3.53 5.23
EBOM 1.23 1.99 2.48 3.07 3.49 4.15 1.60 2.42 2.91 3.45 3.84 4.51

Table 2. Searching speed of algorithms GB/s (per a single pattern) using English text and patterns
on Dell T1500 in 32-bit mode using 32 bit bitvectors.

algorithm speedup
GSB2 1.32
FSB(2,0) 1.34
FSB(2,1) 1.24
FSB(3,1) 1.56
FSB(4,0) 1.72
FSB(4,1) 2.15
FSB(4,2) 2.03
FSB(4,3) 1.51
BMH2 1.96
BR 1.14
Hash3 1.05
EBOM 1.17

Table 3. Average speedup of 2-byte read based on Table 2.

Text 2: DNA. The search speeds are shown in Tables 4 and 5. On DNA data, larger
values of q were better than on natural language. On the other hand the probability
to fall to the slow loop, i.e. the inner loop of an algorithm, increases with f .

According to Table 4 GSB2 was slightly faster than FSB(2,0) in every case, and
FSB(4,1) was better than FSB(4,0) for short patterns. Otherwise the lookahead ver-
sions of FSB(4,0) were not significantly better than FSB(4,0). FSB(2,1) was faster
than FSB(2,0) for longer patterns, but neither of them was then competitive with
faster algorithms.

Table 5 shows that the lookahead versions were in many cases clearly faster than
the versions without lookahead for m = 10, 20, 30.

Text 3: Binary. The search speeds are shown in Tables 6 and 7. Large values of q
were good with binary data.

The relatively good performance of FSB(4,3) in Table 6 is surprising. With
FSB(4,3) only one text character comes from the alignment, and therefore the proba-
bility to fall to the slow loop is quite high. Among the standard versions, BMH2 was
the fastest for m = 4.

Results in Table 7 indicate that 8-grams worked best for m ≥ 20, and lookahead
characters gave clear advantage only for m = 10.



12 Proceedings of the Prague Stringology Conference 2011

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 0.33 0.49 0.62 0.85 1.10 1.58 0.44 0.59 0.72 0.95 1.24 1.76
FSB(2.0) 0.33 0.47 0.60 0.83 1.06 1.50 0.40 0.55 0.69 0.93 1.21 1.69
FSB(2.1) 0.28 0.46 0.63 0.88 1.14 1.57 0.30 0.49 0.67 0.96 1.22 1.72
FSB(4.0) 0.16 0.57 0.94 1.50 1.94 2.64 0.34 1.17 1.81 2.64 3.04 3.69
FSB(4.1) 0.28 0.66 1.01 1.51 1.93 2.53 0.52 1.19 1.75 2.45 2.86 3.43
FSB(4.2) 0.32 0.63 0.94 1.35 1.72 2.32 0.46 1.01 1.49 2.04 2.48 3.05
FSB(4.3) 0.23 0.44 0.65 1.01 1.27 – 0.30 0.57 0.83 1.27 1.54 –
BMH2 0.32 0.51 0.64 0.84 0.94 1.10 0.48 0.74 0.86 1.20 1.34 1.54
BR 0.25 0.34 0.39 0.54 0.59 0.68 0.27 0.37 0.46 0.59 0.65 0.74
Hash3 0.17 0.41 0.65 1.00 1.31 1.80 0.21 0.50 0.79 1.22 1.59 2.12
EBOM 0.34 0.44 0.54 0.70 0.88 1.20 0.37 0.48 0.58 0.75 0.93 1.27

Table 4. Searching speed of algorithms GB/s (per a single pattern) using DNA text and patterns
on ThinkPad X61s.

patterns→ 10 20 30 40 50 60 10 20 30 40 50 60
↓algorithm standard version b-version with 2-byte read
GSB2 1.19 2.01 2.92 3.80 4.69 5.60 1.22 2.14 3.08 3.91 4.90 5.69
FSB(4,0) 2.25 4.42 5.72 6.62 7.37 8.26 3.42 5.79 6.91 7.96 8.68 9.66
FSB(4,1) 2.25 4.19 5.37 6.40 7.13 7.88 3.41 5.65 6.66 7.78 8.53 9.48
FSB(5,0) 1.81 4.46 6.55 8.37 9.53 10.9 2.77 6.27 8.52 10.5 11.8 13.2
FSB(5,1) 2.04 4.59 6.63 8.34 9.51 10.7 3.05 6.40 8.61 10.4 11.9 13.3
FSB(6,0) 1.26 3.62 5.76 7.77 9.44 11.0 2.49 6.88 10.2 12.6 14.5 16.6
FSB(6,1) 1.55 3.95 6.18 8.17 9.69 11.2 2.92 7.16 10.3 12.8 14.5 16.8
FSB(6,2) 1.76 4.11 6.29 8.20 9.72 11.2 3.20 7.14 10.2 12.5 14.4 16.1
FSB(6,3) 1.86 4.07 6.05 7.89 9.31 10.8 3.07 6.59 9.17 11.4 13.5 15.2
FSB(7,0) .882 3.02 5.04 7.00 8.68 10.2 1.56 5.25 8.53 11.5 13.1 15.2
FSB(7,1) 1.10 3.23 5.21 7.16 8.89 10.3 1.93 5.60 8.96 11.6 13.2 15.0
FSB(7,2) 1.31 3.38 5.34 7.23 8.86 10.4 2.27 5.81 9.06 11.6 13.4 15.1
FSB(7,3) 1.49 3.54 5.46 7.33 8.93 10.4 2.57 6.04 9.13 11.5 13.1 14.7
BMH2 1.27 1.89 2.15 2.41 2.45 2.60 1.89 2.79 3.16 3.55 3.59 3.81
BR .805 1.11 1.26 1.43 1.44 1.50 .859 1.20 1.35 1.53 1.55 1.60
Hash3 1.35 2.72 3.67 4.41 4.93 5.41 1.36 2.90 3.97 4.83 5.39 5.93
EBOM 1.09 1.76 2.38 2.99 3.51 4.09 1.13 1.84 2.46 3.08 3.66 4.20

Table 5. Searching speed of algorithms GB/s (per a single pattern) using DNA text and patterns
on Dell T1500. Speeds are averages of 300 runs with 64-bit code.

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 .127 .213 .301 .457 .588 .917 .156 .238 .322 .485 .578 .946
FSB(2,0) .137 .210 .289 .434 .561 .878 .127 .211 .299 .458 .578 .937
FSB(2,1) .139 .219 .309 .465 .600 .905 .125 .218 .319 .484 .645 .962
FSB(4,0) .131 .249 .334 .470 .606 .886 .244 .321 .426 .571 .721 1.03
FSB(4,1) .146 .243 .337 .481 .621 .902 .178 .298 .414 .574 .736 1.05
FSB(4,2) .128 .228 .327 .479 .631 .918 .145 .264 .393 .579 .750 1.07
FSB(4,3) .124 .222 .323 .492 .652 – .121 .239 .366 .548 .724 –
BMH2 .164 .187 .199 .208 .215 .212 .207 .231 .247 .246 .267 .263
BR .115 .120 .130 .127 .130 .129 .129 .136 .132 .140 .140 .139
Hash3 .110 .204 .265 .331 .356 .384 .124 .226 .294 .367 .394 .425
EBOM .122 .175 .231 .331 .430 .618 .120 .180 .237 .335 .437 .633

Table 6. Searching speed of algorithms GB/s (per a single pattern) using binary text and patterns
on ThinkPad X61s.



Hannu Peltola and Jorma Tarhio: Variations of Forward-SBNDM 13

patterns→ 10 20 30 40 50 60 10 20 30 40 50 60
↓algorithm standard version b-version with 2-byte read
GSB2 .586 1.15 1.68 2.20 2.70 3.20 .574 1.15 1.70 2.24 2.77 3.29
FSB(4,0) .661 1.16 1.73 2.31 2.88 3.44 .739 1.30 1.91 2.53 3.09 3.68
FSB(4,1) .632 1.19 1.76 2.34 2.90 3.46 .722 1.34 1.96 2.57 3.16 3.72
FSB(5,0) .846 1.32 1.76 2.29 2.81 3.36 .978 1.48 1.98 2.59 3.19 3.78
FSB(5,1) .815 1.31 1.76 2.28 2.82 3.33 .945 1.48 2.03 2.63 3.24 3.84
FSB(6,0) .870 1.66 2.14 2.60 3.03 3.48 1.27 2.12 2.59 3.02 3.52 4.03
FSB(6,1) .960 1.73 2.19 2.63 3.07 3.53 1.29 2.10 2.56 3.07 3.57 4.03
FSB(6,2) .909 1.64 2.14 2.59 3.06 3.54 1.16 1.97 2.49 2.99 3.53 4.09
FSB(6,3) .776 1.46 1.99 2.50 3.01 3.53 .935 1.73 2.31 2.89 3.49 4.07
FSB(7,0) .755 1.99 2.80 3.39 3.86 4.29 1.22 2.85 3.72 4.33 4.69 5.13
FSB(7,1) .874 2.03 2.77 3.39 3.84 4.32 1.38 2.87 3.73 4.29 4.69 5.04
FSB(7,2) .935 1.99 2.71 3.32 3.82 4.26 1.40 2.74 3.54 4.14 4.50 4.95
FSB(7,3) .883 1.83 2.53 3.14 3.65 4.16 1.24 2.45 3.20 3.81 4.26 4.78
FSB(7,4) .787 1.58 2.25 2.84 3.40 3.91 .970 1.96 2.71 3.35 3.88 4.41
FSB(8,0) .543 2.02 3.14 4.06 4.76 5.36 1.05 3.45 4.99 6.00 6.49 7.16
FSB(8,1) .696 2.10 3.18 4.05 4.77 5.35 1.30 3.53 5.01 5.93 6.56 7.14
FSB(8,2) .812 2.14 3.17 4.00 4.71 5.28 1.45 3.49 4.90 5.84 6.39 6.90
BMH2 .369 .375 .373 .371 .383 .384 .496 .502 .500 .497 .511 .513
BR .228 .214 .232 .223 .222 .233 .244 .229 .248 .239 .237 .248
Hash3 .610 .820 .834 .796 .832 .865 .613 .826 .847 .843 .872 .874
EBOM .422 .767 1.09 1.37 1.64 1.87 .436 .781 1.11 1.39 1.68 1.91

Table 7. Searching speed of algorithms GB/s (per a single pattern) using binary text and patterns
on Dell T1500. Speeds are averages of 300 runs with 64-bit code.

Other processors. We tested the algorithms also in several other computers having
a x86 processor (Pentium III or newer). The relative performance of the algorithms
was mostly similar. The only exception was Atom N450, on which BMH2b was a clear
winner.

Memory usage and preprocessing time. All b-versions using 2-byte read require
additional 262 kB (bitvectors of 32) or 524 kB (bitvectors of 64). The initialization of
the additional table takes about 15–20 milliseconds per 200 patterns. Preprocessing of
Forward-SBNDM(q, f) is more laborious when f > 0. In our tests the preprocessing
time increased at most 6 %.

6 Concluding remarks

For long we believed that the tuned algorithms of Hume and Sunday [13] were the
final solution for exact string matching of natural language. Only long patterns offered
space for improvement. But the development of processor technology changed the
situation: new algorithms, especially those applying bit-parallelism, can be much
faster than the old ones.

In this paper, we have presented a generalization of the Forward-SBNDM algo-
rithm and introduced the Greedy-SBNDM2 algorithm. We have shown that the new
algorithms are competitive for several pattern lengths in three types of text. Gener-
ally the number of lookahead characters f has smaller influence than the q-gram size.
Lookahead characters can appreciably increase the shift length in the case of pattern
lengths q − f ≤ m ≤ 3q and thus give significant improvement to the search speed.



14 Proceedings of the Prague Stringology Conference 2011

In addition we tested the effect of 2-byte read. The speedup of 2-byte read varied
from a few percents to over two. It is clear that 2-byte read should be used whenever
it is possible.

When comparing the search speed of two string matching algorithms, several
factors affect the result: processor, compiler, stage of tuning, text, pattern. Even a
small change in the pattern may switch the order of the algorithms. Thus there is
no absolute truth which algorithm is better. Because the continuing development
of processor and compiler technologies, it is also difficult to anticipate, how present
algorithms manage after a few years. We have experienced several times how the
speed order of old algorithms has changed when switching to a new computer.

References

1. R. Baeza-Yates: Improved string searching. Softw. Pract. Exp., 19(3):257–271, 1989.
2. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Commun. ACM

35(10):74–82, 1992.
3. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results.

Proc. of the Prague Stringology Club Workshop ’99, Czech Technical University, Prague, Czech
Republic, Collaborative Report DC-99-05, pp. 16–28, 1999.

4. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10):762–
772, 1977.

5. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Tuning BNDM with q-grams. In Proc.
ALENEX09, Tenth Workshop on Algorithm Engineering and Experiments: 29–37, 2009.

6. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Information Processing Letters 110(4):148–152, 2010.

7. S. Faro and T. Lecroq: Efficient variants of the backward-oracle-matching algorithm. Inter-
national Journal of Foundations of Computer Science 20(6): 967–984, 2009.

8. S. Faro and T. Lecroq: An efficient matching algorithm for encoded DNA sequences and
binary strings. In Proc. CPM 2009, Combinatorial Pattern Matching, 20th Annual Symposium,
LNCS 5577: 106–115, Springer, 2009.

9. S. Faro and T. Lecroq: The exact string matching problem: a comprehensive experimental
evaluation. CoRR abs/1012.2547, 2010.

10. K. Fredriksson: Shift-or string matching with super-alphabets. Information Processing Let-
ters, 87(4):201–204, 2003.

11. J. Holub and B. Ďurian: Fast variants of bit parallel approach to suffix automata. Presen-
tation in: The Second Haifa Annual International Stringology Research Workshop.

12. R. N. Horspool: Practical fast searching in strings. Softw. Pract. Exp., 10(6):501–506, 1980.
13. A. Hume and D. M. Sunday: Fast string searching. Softw. Pract. Exp., 21(11):1221–1248,

1991.
14. P. Kalsi, H. Peltola, and J. Tarhio: Exact string matching algorithms for biological

sequences. In Proc. BIRD 2008, 2nd International Conference on Bioinformatics Research
and Development, Communications in Computer and Information Science 13:417–426, Springer,
2008.

15. J. Y. Kim and J. Shawe-Taylor: Fast string matching using an n-gram algorithm. Softw.
Pract. Exp., 24(1):79–88, 1994.

16. T. Lecroq: Fast exact string matching algorithms. Information Processing Letters, 102(6):229–
235, 2007.

17. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics (JEA), 5(4), 2000.

18. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching. In Proc.
SPIRE’03, 10th International Conference on String Processing and Information Retrieval, Lec-
ture Notes in Computer Science 2857:80–93, 2003.

19. D. M. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8):132–142, 1990.
20. J. Tarhio and H. Peltola: String matching in the DNA alphabet. Softw. Pract. Exp.,

27(7):851–861, 1997.
21. R. F. Zhu and T. Takaoka: On improving the average case of the Boyer–Moore string

matching algorithm. Journal of Information Processing, 10(3):173–177, 1987.


