
Formal Characterizations of FA-based String

Processors

Ernest Ketcha Ngassam1,2,⋆, Bruce W. Watson3, and Derrick G. Kourie3

1 SAP Meraka UTD, Pretoria, South Africa
2 School of Computing University of South Africa

Pretoria 0001
ernest.ngassam@sap.com

3 Department of Computer Science, University of Pretoria
South Africa, Pretoria 0002

{dkourie,bwatson}@cs.up.ac.za

Abstract. We rely on the denotational semantics of algorithms to suggest an abstrac-
tion of a string recognizer. The abstraction provides a unified formalism for representing
FA-based string recognizers as an instance of a parameterized function. It also forms
the basis for theoretical investigations on implementations of FA-based recognizers, and
represents a framework for the identification of new algorithms for further studies.

1 Preliminaries and Characterization

An acceptor (or a string recognizer) of a finite automaton is an algorithm that relies
on the finite automaton’s transition function in order to determine whether a string
is part of the language modeled by the FA or not. An acceptor of the automaton
M = (Q,V , ∆,S,F), where: V and ∆ are the alphabet and transition function re-
spectively; L(M) ⊆ V∗ is the language of M; and P(X) is used to represent the power
set of a set X, can be characterized by the following function:
ρ : P(Q × V × Q) × V∗

9 B = {true, false} such that for ∆ ∈ P(Q × V × Q),
ρ(∆, s) = true if s ∈ L(M) or ρ(∆, s) = false if s /∈ L(M).
In fact, ρ is the denotational semantics of the acceptor [4] and is a partial function,
hence the mapping using the relation 9 . The denotational semantics indicates the
“meaning” of the algorithm in functional terms, but hides details about how the
algorithm that performs acceptance testing should actually work. At this level of
description, the acceptor is viewed as a “black box” that receives as input a transi-
tion set and a string, and later produces a boolean as output. There are, in fact, a
large number of ways in which this processing can take place, as extensively discussed
and implemented in [5]. In fact, three core algorithms were discussed; namely the
table-driven (TD), hardcoded (HC), and a hybrid version of the two referred to as
mixed-mode (MM). Furthermore, a range of implementation strategies were investi-
gated and implemented with their performance analyzed. Those strategies intended
to optimize cache memory usage in order to improve the performance of the rec-
ognizer. The strategies discussed were Dynamic State Allocation (DSA), Allocated
Virtual Caching (AVC) and State pre-Ordering (SpO). It was proven that by imple-
menting each strategy or their combination based on any given core algorithm, the
performance of the recognizer would improve [5].

In order to refine the generic definition of ρ above, let ∆t denotes the transition
set that is used in the TD part of an MM implementation. Similarly, let ∆h be the

⋆ Supported in part by the South African National Research Foundation (NRF).

Ernest Ketcha Ngassam, Bruce W. Watson, Derrick G. Kourie: Formal Characterizations of FA-based String Processors, pp. 183–185 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

184 Proceedings of the Prague Stringology Conference 2010

transition set that is used in the TD part. Clearly, ∆t and ∆h must be a partition of
the original transition set, ∆, i.e. ∆t ∪ ∆h = ∆ and ∆t ∩ ∆h = ∅. Now let ρ

C
be the

function to represent the denotational semantics of a recognizer based on one of the
core algorithms, TD, HC or MM. Letting T = P(Q × V × Q), this function can be
defined as follows: ρ

C
: T × T × V∗

9 B such that ρ
C
(∆t, ∆h, s) = ρ(∆, s).

In order to obtain a generic formalism that takes into consideration the various
foregoing implementation strategies, appropriate parameters are necessary. In fact,
DSA and AVC would each require two variables Dt and Dh (resp. Vt and Vh) which
are natural numbers that reflect the extent to which the TD part (resp. HC part) of
the recognizer will be table-driven (resp. hardcoded). Similarly, for the SpO strategy,
two boolean parameters Pt and Ph are required. They indicate whether the TD part
(resp. the HC part) of the algorithm requires pre-ordering.

By putting all the strategies together, we may now characterize a recognizer as
a new function, ρ

CDPV
, that is parameterised by: its transition sets ∆t and ∆h; all

its strategies (Dt, Dh, Pt, Ph, Vt and Vh); and its input string s. Therefore, once the
transitions sets have been specified, given an arbitrary input string, one may choose
to implement ρ

CDPV
using any of the strategies or some combination of them, as long

as the necessary conditions on strategies are respected. A recognizer’s denotational
semantics is now formally expressed in general as follows:
ρ

CDPV
: T × T × N × N × B × B × N × N × V∗

9 B such that

if

(∆t ∪ ∆h = ∆) ∧ (∆t ∩ ∆h = ∅)
(0 ≤ Dt ≤ |Qt|) ∧ (0 ≤ Dh ≤ |Qh|)
(Pt ∈ B) ∧ (Ph ∈ B)
(0 ≤ Vt < |Qt|) ∧ (0 ≤ Vh < |Qh|)

then ρ
CDPV

(∆t, ∆hDt, Dh, Pt, Ph, Vt, Vh, s) = ρ(∆, s)

The recognizer defined as such shows that, the strategies used depend on the nature
of the transition set itself. Arguments subscripted with t are associated to the TD
algorithm, whereas those subscripted with h are associated to the HC algorithm. The
high-level formalisms associated with each type of algorithm may be used in obtaining
of new algorithms using appropriate instances of their associated strategy variables.

2 Conclusion and Future Work

This paper suggested a formal characterization of FA-based string processor taking
into consideration a range of strategies that could be explored for leveraging the
performance of the recognizer at run-time. Such characterization could be explored
theoretically in order to determine appropriate properties of each strategic variables
employed. The suggested formalism relied only on investigations conducted in [5]
for cache optimization strategies. As a matter of future work, we consider exploring
other aspects such computing platform (OS) and appropriate computational medium.
It also worth mentioning that many of the algorithms formalized in this paper based
on implementation strategies have proven to be more efficient that their core counter-
parts. Work on further investigation on other algorithms is still ongoing and results
presenting their performance can be found in [1,2,3,5].

E.Ngassam, B.Watson, D.Kourie: Formal Characterizations of FA-based String Processors 185

References

1. E. N. Ketcha, D. G. Kourie, and B. W. Watson: Reordering finite automatata states

for fast string recognition, in Proceedings of the Prague Stringology Conference, Prague, Czech
Republic, August 2005, Czech Technical University in Prague.

2. E. N. Ketcha, D. G. Kourie, and B. W. Watson: A taxonomy of DFA-based string pro-

cessors, in Proceedings of the SAICSIT Conference, Gordon’s Bay, South Africa, October 2006,
ACM, pp. 111–121.

3. E. N. Ketcha, B. W. Watson, and D. G. Kourie: On implementations and performances

of table-driven FA-based string processors, in Proceedings of the Prague Stringology Conference,
Prague, Czech Republic, August 2006, Czech Technical University in Prague.

4. B. Meyer: Introduction to the Theory of Programming Languages, Prentice Hall, C.A.R Hoare
series ed., 1990.

5. E. K. Ngassam: Towards Cache Optimization in Finite Automata Implementations, PhD thesis,
Department of Computer Science, Pretoria, South Africa, November 2006.

