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Abstract. It is not known that the maximum number of runs in a word of length n
is attained by a binary word though it seems likely that this is the case. In this note,
we report observations on runs in ternary words, in which every small factor contains
all three letters.

1 Introduction

A run of period p in a word z is a factor x[i..j] with least period p, length at least
2p and such that neither x[i — 1..j] nor x[i..j + 1] has period p. Runs are also called
maximal repetitions. Let r(z) be the number of runs in z. In recent years there
has been great interest in the maximum number of runs that can occur in a word
of length n which we call p(n). In 2000 Kolpakov and Kucherov [§] showed that
p(n) = O(n) but their method gave no information about the size of the implied
constant. Since then a number of authors have obtained upper and lower bounds on
p(n), the best to date being that
0.944 < JLngopf) < 1.029 (1)
The upper bound here is due to Crochemore, Ilie and Tinta [1,2], and the lower
bound to Kusano et al [§] and Simpson [§]. It is known [4] that that lim, .. p(n)/n
exists. It is also known that the expected number of runs in binary words of length n
tends to about 0.412n as n goes to infinity and for ternary words to about 0.305n [7].

It is not known that the maximum number of runs in a word of length n is
attained by a binary word though it seems likely that this is the case. Between
lengths 17 and 35, all the words with the maximum number of runs are binary [3].
More generally, the high density words we know about are binary and [[i] showed the
expected density decreases with alphabet size.

Part of the problem is that whatever you can do with a two letter alphabet you
can do with a three letter alphabet by just not using the third letter. Even if we insist
that each letter be used we can achieve the same asymptotic run density with three
letters as with two by taking a good binary word on the alphabet {a, b} and attaching
¢ to the front. Insisting that the frequency of each letter is greater than some bound
doesn’t help. We could take a binary word of length n/3, make three copies of it using
the alphabets {a, b}, {b, ¢} and {c, a} then concatenate them. This will give a word of
length n with the same run density as the original word and with each letter having
frequency n/3. In both these cases we are dealing with binary words in disguise.
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To make a word really ternary, we use the following definition. Let k£ be an integer
with k& > 3. A ternary word of order k is a word on the alphabet {a,b,c} in which
each factor of length k contains at least one occurrence of each letter.

Say that the maximum number of runs in such a word of length n is p(k,n). We
have

p(n) > p(k -+ 1,m) > p(k, n)
and, when the order goes to the infinity, p(k,n) will approach p(n). Showing that

lim p(n) > lim plkm)
n—oo n—oo

for all £ would be equivalent to showing that, for bounded order, two letters are better
than three. Towards this aim we have obtained upper and lower bounds for p(k,n)
for various values of k.

2 Lower bound

In [6] some of us used a search technique to find long run-rich words. The basic idea
of this was to start with n run-rich words, augment each by adding a or b to its
end giving 2n words. Then select the n most run-rich words from this collection and
repeat the process. Using these techniques, we constructed a ternary word of order 9
and length 9686 containing 7728 runs. Concatenating this with itself infinitely often
(which gives an extra 11 runs for each copy) produces an infinite order 9 word having
run density 7739/9686 =~ 0.798988. The word begins:

aabbccaabbecbbecaabbecaabbecbbecaabbecaacaabbecaabbecbbecaabbe
caabbcebbecaabbecaaccaabbecaabbeebbecaabbecaabbecbbecaabbecaac
aabbccaabbecbbecaabbecaabbecbbecaabbecaaccaabbecaabbecbbecaabb
ccaacaabbccaabbeebbecaabbecaabbecbbecaabbecaacaabbecaabbecbbec
aabbccaabbecbbecaabbecaaccaabbecaabbecbbecaabbecaabbecbbecaabb
ccaacaabbccaabbecbbecaabbecaabbecbbecaabbecaaccaabbecaabbecbbe
caabbccaacaabbecaabbecbbecaabbecaabbecbbecaabbecaaccaabbecaabb

ccbbecaabbecaabbecbbecaabbecaacaabbecaabbecbbecaabbecaabbecbbe
caabbccaaccaabbecaabbeebbecaabbecaabbecbbecaabbecaacaabbecaabb
ccbbecaabbecaabbecbbecaabbecaaccaabbecaabbecbbecaabbecaacaabbe
caabbecbbecaabbecaabbecbbecaabbecaacaabbecaabbecbbecaabbecaabb

cebbecaabbecaaccaabbecaabbeebbecaabbecaabbecbbecaabbecaacaabbe

Thus we have:

TCD) > (0.793988

n—oo n
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3 Upper bound

To get an upper bound on p(k,n), we used the techniques of [4] for various values

of k. These techniques give an exact bound on the number of runs with period less

than some bound p and then use a result of Crochemore and Ilie [1] which states that

the number of runs with period greater than or equal to p in a word of length n is

at most 6n/p. Results for different values of k are given in the following table, which

used p = 9. Concerning runs with period less than 9, even ternary words of order
=19 do not achieve the 11/13 maximal run density for binary words [4].

Order Exact bound Upper bound
k (period <9) on p(k,n)/n

3 0/1 0.6000
4 7/13 1.1385 cabcabcecabeabbeabecabbecabeaabeabeaabeabe
5 7/11 1.2364 abbccaabbea
6 7/11 1.2364
7 2/3 1.2667 aacaabbcaabbcbbcaabbe
8 17/24 1.3083 bbccaabaabbecaabbecbecaa
9 17/24 1.3083
10 17/24 1.3083
11 17/24 1.3083
12 17/24 1.3083
13 17/24 1.3083
14 17/24 1.3083
15 3/4 1.3500 acaaccaacaabaabbaabaabbcbbecbbebbeca
16 3/4 1.3500
17 3/4 1.3500
18 3/4 1.3500
19 25/33 1.3576
—+00 11/13 1.4462 aababbabaabab

Table 1. Upper bounds on p(k,n) for various orders k. The second column gives the
exact bound on the number of such runs with period at most 9. The third column
adds this to 6/(9+1), the bound on the run density of runs with period greater than
9, to give the required upper bound. The last column shows examples of strings, that,
concatenated with themselves infinitely often, give the exact bound.

For example, we have:
im

n—00 n

< 1.3083

Our results are not strong enough to be more than suggestive. To get more con-
vincing evidence for the superiority of binary words, we would need to get the upper
bound on p(k,n) to be less than the lower bound on p(n) given in (I)). Perhaps this
can be done using the more powerful techniques of Crochemore and Ilie.

4 Other remarks

We mention another condition on run-rich words which is suggested by experimental
evidence. This is that run-rich words do not need to contain cubes, in particular the
cubes aaa and bbb. This is not necessary since, for example, the word aaa contains
the maximum possible number of runs for a 3 letter word, but we could use instead
the word aab which has the same number of runs but no cube.
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We also note the following observation which is in the other direction to our earlier
results. Let x be a string of size n on the binary alphabet {a,b}. Let & be the string
obtained by rewriting x with the as replaced by bs and the bs by as. The words x and
Z have the same number of runs.

For a binary word y of length p, consider the word 7(y) of size (n + 1)p obtained
by the rewriting 7(a) = cx and 7(b) = ¢Z. The word 7(y) is of ternary order n + 2. It
can be shown that no run is lost with such rewriting, thus

r(t(y)) = r(y) +p-r(z)

If we select 2 and y to be run-maximal, that is r(z) = r(Z) = p(n) and r(y) = p(p),
then we have

p(n+2,(n+1)p) > r(r(y)) > p(p) +p-p(n)

thus 5 .
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