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Abstract. A repetition is an important property of a string. In this paper we consider
the average number of occurrences of primitively rooted repetitions in necklace. First,
we define circular square and circular run for a string and show the average number
of them. Using these results, we obtain the average number of squares, the average
number of runs and the average sum of exponents of runs in a necklace, exactly.
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1 Introduction

A repetition is a fundamental property of a string. It can be applied to string process-
ing or data compression. We are interested in run (as known as maximal repetition),
which is non-extendable repetition. Kolpakov and Kucherov showed that the maximal
number ρ(n) of runs in a string of length n is ρ(n) ≤ cn for some constant c [6]. The
exact value of ρ(n) is still unknown and it is conjectured that ρ(n) < 1. The current
best upper bound is ρ(n) < 1.029n [3,4]. On the other hand, there are approaches to
show the lower bounds of ρ(n) constructing run-rich strings. The best lower bound
is ρ(n) > 0.945 [9,11]. A repetition count of a run is called an exponent. It is proved
that the maximal sum of exponents is also linear and the current best upper bound
is 2.9n [2]. It is conjectured that the sum is less than 2n [7].

A square is a substring of the form u2. We consider the primitively rooted square
and count occurrences of squares instead of distinct squares. Counting squares in this
way, it is known that the maximal number of squares is O(n log n) [1].

Although the maximal number of runs is unknown, the average number of runs
in a string of length n is shown exactly as follows [10]:

Rs (n, σ) =

n
2

∑

p=1

σ−2p−1 ((n − 2p + 1)σ − (n − 2p))
∑

d|p

µ
(p

d

)

σd,

where σ is alphabet size and µ (n) is the Möbius function. The average number of
squares and the average sum of exponents of runs are also presented [8]:
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In [9,11], to construct run-rich strings they considered repeated strings or necklace.
Therefore we focus on the average number of repetitions in necklace. To obtain the
average number of repetitions in necklace we define circular square and circular run

for string and show the average number of them, exactly.
In Section 2 we give some definitions and basic facts. In Section 3 we show the

average number of circular squares and circular runs and the average sum of exponents
of circular runs in a string. In Section 4 we derive the average numbers of squares,
the average number of runs and the average sum of exponents of runs in a necklace.

2 Preliminary

Let Σ = {a, b, . . . } be an alphabet of size σ. We denote the set of all strings of length
n on Σ by Σn and the length of a string w by |w|. For a string w = xyz, strings x,
y and z are called prefix, substring and suffix of w, respectively. We denote ith letter
of a string w by w[i] and a substring w[i]w[i + 1] . . . w[j] of w by w[i..j].

A necklace is a word which can be obtained by joining the ends of a string. We
denote a necklace of a string w by 〈w〉.

For a string w of length n and positive integer p < n, we say that w has a period
p if and only if w[i] = w[i + p] holds for any i, 1 ≤ i ≤ n − p. We denote the set of
periods of w by period (w). For periods of strings, the following lemma is known [5].

Lemma 1. Let p and q be periods of a string w. If |w| ≥ p + q − gcd(p, q), w has

also period gcd(p, q).

A string w is primitive if w can not be written as w = uk by string u and integer
k ≥ 2.

We call a substring w[i..j] a repetition if w[i..j] has the smallest period p ≤ j−i+1
2

and denote the substring by triplet 〈i, j, p〉. We say that w[i..p] is the root of the
repetition. By Lemma 1, the root of a repetition is primitive. The exponent of the
repetition is j−i+1

p
.

A square is a repetition whose exponent is exactly 2. We consider only squares
which have a primitive root. A run is a repetition which has non-extendability, that
is, a run 〈i, j, p〉 in w satisfies the following two conditions:

i = 1 or w[i − 1] 6= w[i + p − 1],

j = n or w[j + 1] 6= w[j − p + 1].

We denote a string of infinite length, obtained by repeating string w to both left
and right, by wω. For a string w of length n and integer i, wω[i] = w[i%n], where the
operator x%y represents a number z such that 1 ≤ z ≤ y and z ≡ x (mod y). In this
paper, we define a circular run (circular square, resp.) for a string w as a run (square,
resp.) in wω and which starts between 1 and |w|. We denote the number of circular
squares by csqr (w), the number of circular runs in a string w by crun (w) and the
sum of exponents of runs by cexp (w). For a necklace 〈w〉, we define number of runs
run (〈w〉), number of squares sqr (〈w〉) and sum of exponents of runs sqr (〈w〉) as
follows:

run (〈w〉) = crun (w) ,

sqr (〈w〉) = csqr (w) ,

exp (〈w〉) = cexp (w) .
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3 Average number of circular repetitions in a string

For a string of length n and alphabet size σ, the average number of circular squares,
the average number of circular runs and the average sum of exponents of circular runs
are defined as:

Sc (n, σ) =
1

|Σn|

∑

w∈Σn

csqr (w) ,

Rc (n, σ) =
1

|Σn|

∑

w∈Σn

crun (w) ,

Ec (n, σ) =
1

|Σn|

∑

w∈Σn

cexp (w) .

3.1 Average number of circular squares

To obtain these values, we count repetitions in all strings of length n. We consider
repetitions classified according to their position and period. For the position, it is
sufficient to consider only repetitions at one position. The total number of occurrences
can be obtained as the product of this number and the length of strings.

Lemma 2. For a string f and integer i, let Σf,i be the set of string w of length n

such that wω contains f at i. For any integer i and j, |Σf,i| = |Σf,j|.

Proof. We may assume without loss of generality that i ≤ j. If w is an element of Σf,i,
then w[i%n]w[(i+1)%n] . . . w[(i+|f |)%n] = f . Let w′ = w[n−(j−i)+1..n]w[1..j−i].
Since w′ satisfies the condition w′[j%n]w′[(j + 1)%n] . . . w′[(i + |f |)%n] = f , w′ is in
Σf,j.

Although the circular repetition is defined as the repetition in an infinity string,
the period of the primitive rooted repetition is not so long.

Lemma 3. Let w be the string of length n. The period of circular square in w is at

most n.

Proof. Let 〈i, j, p〉 be the circular run in w. If we suppose that p > n, the substring
wω[i..j] of length 2p has two periods n and p. By Lemma 1, it also has period gcd(n, p),
which is less than p and the divisor of p. So the primitive root wω[i..i + p− 1] can be
written as wω[i..i+p−1] = uk using a string u and integer k = p

q
> 1, a contradiction.

The length of the circular square in string of length n can be longer than n. For
example, the string abaab of length 5 contains the circular square 〈1, 6, 3〉 of length
6.

We consider the number of circular squares in all strings of length n at the position
1. Let Sf1(p, σ) be the set of squares of period p and alphabet size σ; that is,

Sf1(p, σ) = {vv : v ∈ Primp,σ}.

Since a string wω may contain at most one elements of Sf1(p, σ) at the position 1,
the number of circular squares of period p in Σn equals to the number of the strings
w such that wω contains the element of Sf1(p, σ) at the position 1. More generally,
we consider the set of strings of length l, instead of Sf1(p,Σ).
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Lemma 4. Let F be a subset of Σl. For the number NF (n, σ) of strings w such that

|w| = n and wω[1..l] ∈ F ,

NF (n, σ) =

{

|F |σn−l if l ≤ n,

|G| if l > n,

where the set G is a subset of F and whose elements have the period n; that is

G = {w ∈ F : n ∈ period(w)}.

Proof.

1. Case l ≤ n

The string wω contains the element of F at the position 1 if and only if w[1..l] ∈ F .
Let C be the set of such strings. We have

C = {uv : u ∈ F, v ∈ Σn−l}.

The number of elements of C is |F |σn−l.
2. Case l > n

Since wω has the period n, the substring wω[1..l] also has period n. For the element
g of G, the suffix g[n + 1..l] is the repetition of g[1..n]. Therefore, the prefixes of
length n of the elements of G are different. So, NF (n, σ) = |G|.

Let Sf2(n, p, σ) be the set of squares of length p and alphabet size σ and which
can be contained in a repetition of string of length n; that is

Sf2(n, p, σ) = {w : w ∈ Sf1(p, σ), n ∈ period (w)}.

To obtain the size of Sf2(n, b, σ), for integer d of divisor of p, we define Sf3(n, p, d, σ)
and Sf4(n, p, d, σ) as follows:

Sf3(n, p, d, σ) =
{

u
2p

d : u ∈ Primd,σ, n ∈ period
(

u
2p

d

)}

,

Sf4(n, p, d, σ) =
{

u
2p

d : u ∈ Σd, n ∈ period
(

u
2p

d

)}

.

We see that Sf2(n, p, σ) = Sf3(n, p, p, σ). Since any string can be written uniquely as
an integer power of a primitive string, Sf4(n, p, d, σ) =

⋃

d|p Sf3(n, p, d, σ).

First, we consider Sf4(n, p, d, σ).

Lemma 5. For the element u
2p

d of Sf4(n, p, d, σ), u
p

d has a period n − p.

Proof. Let v = u
p

d . By the definition of Sf4(n, p, d, σ), for any position 1 ≤ i ≤ 2p−n,
v2[i] = v2[i + n]. For any position 1 ≤ j ≤ p − (n − p), v[j] = v2[j] = v2[j + n] =
v[j + n − p].

For u
2p

d ∈ Sf4(n, p, d, σ), the string u
p

d of length p has two periods d and n− p. If

d+(n−p) ≤ p such that d ≤ 2p−n, from lemma 1, u
p

d also has a period gcd(d, n−p).
In the other case, u

p

d has another period.

Lemma 6. For the element u
2p

d of Sf4(n, p, d, σ), if d > 2p − n, u
p

d has a period

d − (2p − n).
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Proof. For any position 1 ≤ i ≤ d − (d − (2p − n)), u[i] = u
2p

d [i] = u
2p

d [i + n] =
u[i + n − (2p − d)] = u[i + d − (2p − n)].

Therefore,

Sf4(n, p, d, σ) =

{

{s
2p

gcd(d,n−p) : s ∈ Σgcd(d,n−p)} if d ≤ 2p − n,

{s
2p

d−2p+n : s ∈ Σd−2p+n} if d > 2p − n.

The number of elements of Sf4(n, p, d, σ) can be written as

|Sf4(n, p, d, σ)| = δs (n, p, d, σ) ,

where

δs (n, p, d, σ) =

{

σgcd(d,n−p) if d ≤ 2p − n,

σd−2p+n if d > 2p − n.

Lemma 7. The number of elements of Sf2(n, p, σ) is as follows:

|Sf2(n, p, σ)| =
∑

d|p

µ
(p

d

)

δs (n, p, d, σ) .

Proof. Since

Sf4(n, p, p, σ) =
⋃

d|p

Sf3(n, p, d, σ),

we see that

|Sf4(n, p, p, σ)| =
∑

d|p

|Sf3(n, p, d, σ)| .

Applying the Möbius inversion formula to this equation we have that

|Sf2(n, p, σ)| = |Sf3(n, p, p, ) |

=
∑

d|p

µ
(p

d

)

|Sf4(n, p, d, σ)|

=
∑

d|p

µ
(p

d

)

δs (n, p, d, σ) .

By Lemma 4 and 7 we can derive the following theorem.

Theorem 8. For any positive integer n and σ, the average number of circular squares

in a string of length n and alphabet size σ is

Sc (n, σ) =
n

σn

n
∑

p=1

∑

d|p

µ
(p

d

)

δs (n, p, d, σ) .
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3.2 Average number of circular runs

In this subsection, we show the average number of circular runs in string of length n

and alphabet size σ.
Unlike circular squares, whether a substring is a circular run or not depends on

the characters next to the substring. For example, the repetition 〈2, 5, 2〉 is a run in
aabab, while the repetition is not a run in babab since the repetition can be extended
to left. Instead of the set Sf1(n, p)σ, we consider a set Rf1(n, p)σ of string such that

Rf1(p, σ) = {cvv : c 6= v[p], v ∈ Primp,σ}.

There is a circular run in w at the position i if and only if wω contains an element of
Rf1(n, p)σ at the position i − 1.

The Lemma 2 can be applied to the element of Rf1(p, σ). From Lemma 3 the
period of a circular run in a string of length n does not exceed n, since a circular run
contains at least one circular square. We consider the number of occurrences of the
element of Rf1(p, σ) in wω for all strings w of length n.

We define, for d of divisor of p, Rf2(n, p, σ), Rf3(n, p, d, σ) and Rf4(n, p, d, σ) as
follows:

Rf2(n, p, σ) = {w ∈ Sf1(p, σ) : n ∈ period (w)},

Rf3(n, p, d, σ) =
{

cu
2p

d : c 6= u[d], u ∈ Primd,σ, n ∈ period
(

cu
2p

d

)}

,

Rf4(n, p, d, σ) =
{

cu
2p

d : c 6= u[d], u ∈ Σd, n ∈ period
(

cu
2p

d

)}

.

Since d is a divisor of p, we see that u
p

d = u[d].
The Lemma 5 and 6 also hold for Rf4(n, p, d, σ). The condition c 6= u[d] sometimes

makes Rf4(n, p, d, σ) be empty.

Lemma 9. If either d ≤ 2p − n or d ≡ 0 (mod d − (2p − n)), the set Rf4(n, p, d, σ)
is empty.

Proof. For the element cu2pd ∈ Rf4(n, p, d, σ), u
p

d has the period n − p and d. If

d ≤ 2p−n that is d+(n−p) ≤ p, from Lemma 1, u
p

d also has period t = gcd(d, n−p).
In this case, c = u

p

d [n − p] = u[d] and the condition c 6= u[d] does not hold.

For the case d > 2p − n, c = u
2p

d [n] = u[n − (2p − d)] = u[d − (2p − n)]. Lemma
6 says that u has the period d − (2p − n) such that u[d] = u[d%(d − (2p − n))].
If d ≡ 0 (mod d − (2p − n)), we have that d − (2p − n) = d%(d − (2p − n)) and
c = u[d − (2p − n)] = [d%(d − (2p − n))] = u[d].

For the case d > 2p− n and d 6≡ 0 (mod d− (2p− n)), the set Rf4(n, p, d, σ) can
be written as:

Rf4(n, p, d, σ) =
{

cs
2p

d−2p+n : c 6= s[d − 2p + n], s ∈ Σd−2p+n
}

.

Therefore,
|Rf4(n, p, d, σ)| = δr (n, p, d, σ) ,

where

δr (n, p, d, σ) =

{

(σ − 1)σd−2p+n−1 if d > 2p − n and d 6≡ 0 (mod d − (2p − n)),

0 otherwise.
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We can derive |Rf2(n, p, σ)| as follows:

|Rf2(n, p, σ)| = |Rf3(n, p, p, ) |

=
∑

d|p

µ
(p

d

)

|Rf4(n, p, d, σ)|

=
∑

d|p

µ
(p

d

)

δr (n, p, d, σ) .

Theorem 10. For any positive integers n and σ, the average number of circular runs

in a string of length n and alphabet size σ is

Rc (n, σ) =
n

σn

n
∑

p=1

∑

d|p

µ
(p

d

)

δr (n, p, d, σ) .

3.3 Average sum of exponents of circular runs

A circular run contains circular squares of same period. For example, for string w =
abaabaab, a circular run 〈1, 8, 3〉 contains three circular squares 〈1, 6, 3〉, 〈2, 7, 3〉 and
〈3, 8, 3〉. The number of circular squares depends on period and exponent of the run.

Lemma 11. A circular run of period p and exponent e contains (e− 2)p+1 circular

squares of period p.

Proof. Let 〈i, j, p〉 be a circular run in string w. For any position i ≤ k ≤ j − p,
w[k] = w[k+p] and a substring w[k..k+p] is primitive since w[k..k+p] is a conjugate
of primitive string w[i..i + p]. The number of circular squares contained the run is
j − 2p− i + 2. The exponent of the run is e = j−i+1

p
. The number of circular squares

can be written as (e − 2)p + 1.

Although any circular run contains circular squares, some circular squares are not
contained in a run of the same period. For example, for a string w = abc, there are
circular runs 〈1, 6, 3〉, 〈2, 7, 3〉 and 〈3, 8, 3〉 and there are no circular run containing
the squares. For a string w = abab, such circular squares are 〈1, 4, 2〉, 〈2, 5, 2〉, 〈3, 6, 2〉
and 〈4, 7, 2〉.

Lemma 12. For a primitive string u of length p and integer k, uk contains n circular

squares of period p which is not contained in a circular run of period p.

Proof. Let w = uk. For any position i, 〈i, i + 2p − 1, p〉 is a circular square, since
w[i..i + p− 1] = w[i + p..i + 2p− 1] and w[i..i + p− 1] is primitive by the definition of
w. There is n circular squares of length p. There is no circular run of period p in w,
since, for any position i, wω[i] = wω[i + p] and a repetition of period p cannot satisfy
non-extendability.

By contradiction, we show that there is no circular square of period p′ 6= p which
contained in a circular run of period p′. Assume that w contains a circular square
〈i, j, p′〉. If there is no circular run of period p′ containing 〈i, j, p′〉, the repetition
〈i, j, p′〉 can extend to both left and right infinitely. It mean that wω has the period
p′. From Lemma 1 wω also has a period t = gcd(p′, p). The period p′ is not multiple
of p since p′ is the period of a circular square. The period t is less than p and a divisor
of p, a contradiction.



174 Proceedings of the Prague Stringology Conference 2010

From Lemma 11 and 12, we can derive the average sum of exponents of circular
runs.

Theorem 13. For positive integers n and σ, the average sum of exponents of circular

runs in a string of length n and alphabet size σ is

Ec (n, σ) =
n

σn





n
∑

p=1

1

p

∑

d|p

µ
(p

d

)

δs (n, p, d, σ)

+
n

∑

p=1

(

2 −
1

p

)

∑

d|p

µ
(p

d

)

δr (n, p, d, σ)

−
∑

p|n

1

p

∑

d|p

µ
(p

d

)

σd



 .

Proof. Consider a string w of length n. A string w can be uniquely written as w = uk

where u is primitive string and k is integer. Let csqrp (w), crunp (w) and cexpp (w)
be the number of circular squares of period p in w, the number of circular runs of
period p in w and the sum of exponents of circular runs of period p in w, respectively.
Applying Lemma 11 for each circular runs in w we have

csqrp (w) − n [k = p] = (cexpp (w) − 2crunp (w))p + crunp (w)

cexpp (w) =
1

p
csqrp (w) +

(

2 −
1

p

)

crunp (w) −
1

p
n [k = p] ,

where [k = p] is defined as 1 if k = p and 0 if k 6= p. The number of circular squares
not to be contained circular run of the same period is n [k = p]. Summing them up for
each strings and each periods, from Theorem 8 and 10, we can obtain Ec (n, σ). The
number of strings of length n which can be written as w = uk equals to the number
of primitive strings of length p = n

k
. It is known that the number is

∑

d|p µ
(

p

d

)

σd.

4 Average number of repetitions in necklace

Although we defined the number of repetitions in a necklace 〈w〉 equals to the number
of circular repetitions in the string w, the average number of repetitions in a necklace
of length n and the average number of circular repetitions in a string of length n are
different.

Example 14. Let length n = 4 and alphabet size σ = 2. All strings of length n and
the numbers of circular runs they contain are as follows:

aaaa 0 aaab 1 aaba 1 aabb 2 abaa 1 abab 0 abba 2 abbb 1
baaa 1 baab 2 baba 0 babb 1 bbaa 2 bbab 1 bbba 1 bbbb 0

Thus, the average number of circular runs in string is 16
16

= 1.
All necklaces of length n and the numbers of runs they contain are as follows:

〈aaaa〉 0 〈aaab〉 1 〈aabb〉 2 〈abab〉 0 〈abbb〉 1 〈bbbb〉 0

Thus, the average number of runs in necklace is 4
6

= 2
3
.
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If and only if a string w of length n is primitive, there is n strings v such that
〈v〉 = 〈w〉. Consider the number of repetitions in non-primitive string.

Lemma 15. For string w and integer k, csqr
(

wk
)

= k csqr (w), crun
(

wk
)

=

k crun (w) and cexp
(

wk
)

= k cexp (w).

Proof. By the definition of wω, wω and
(

wk
)ω

are the same strings. Shifting wω to left
or right by |w|, we get the same string. If there is a repetition in wω at the position
i, repetitions also exist at the positions i + |w|, i + 2|w|, . . . , i + (k − 1)|w|.

It is known that the number |NLn,σ| of necklaces of length n and alphabet size σ

is

|NLn,σ| =
1

n

∑

d|n

φ
(n

d

)

σd,

where φ (n) is the Euler’s phi function. The function φ (n) is defined to be the number
of integers less or equal to n which are coprime to n and can be written as:

φ (n) =
∑

d|n

µ
(n

d

)

d.

Using the method calculating the number of necklaces and Lemma 15, we can
obtain the number of squares in all necklaces.

Lemma 16. The number of squares in all necklaces of length n and alphabet size σ

is

|NLn,σ|Sn (d, σ) =
1

n

∑

d|n

φ
(n

d

) n

d
σdSc (d, σ) .

Proof. Let T be a multi set of strings obtained by cutting necklaces NLn,σ in n ways.
For example, for

NL4,2 = {〈aaaa〉 , 〈aaab〉 , 〈aabb〉 , 〈abab〉 , 〈abbb〉 , 〈bbbb〉}.

T is as follows:

T =







aaaa aaaa aaaa aaaa abab baba abab baba

aaab aaba abaa baaa abbb bbba bbab babb

aabb abba bbaa baab bbbb bbbb bbbb bbbb







.

We see that |T |=n|NLn,σ| and the number of circular squares in T is n |NLn,σ|Sn (d, σ).
The number of w ∈ Σn in T equals to the number of k such that 1 ≤ k ≤ n and

w = w[k + 1..n]w[1..k]. This equations holds if w can be written as w = u
n
|u| using

u ∈ Σgcd(k,n). Thus, from Lemma 15,

n |NLn,σ|Sn (d, σ) =
n

∑

k=1

n

gcd(k, n)
σgcd(k,n)Sc (gcd(k, n), σ) .
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Since gcd(k, n) is a divisor of n, this equation can be transformed, with d = gcd(k, n),
as follows:

|NLn,σ|Sn (p, σ) =
1

n

∑

d|n

n
∑

k=1

n

d
σdSc (d, σ) [d = gcd(k, n)]

=
1

n

∑

d|n

(

n

d
σdSc (d, σ)

n
∑

k=1

[

k

d
⊥

n

d

]

)

=
1

n

∑

d|n





n

d
σdSc (d, σ)

n
d

∑

k′=1

[

k′ ⊥
n

d

]





=
1

n

∑

d|n

n

d
σdSc (d, σ) φ

(n

d

)

.

From the number of necklaces and Lemma 16, we can derive the following theorem.

Theorem 17. For integers n and σ, the average number of squares in necklace of

length n and alphabet size σ is

Sn (p, σ) =

∑

d|n φ
(

n
d

)

n
d
σdSc (d, σ)

∑

d|n φ
(

n
d

)

σd
.

Similarly we obtain the average number and the average sum of exponents of runs
in necklace.

Theorem 18. For integers n and σ, the average number of runs in necklace of length

n and alphabet size σ is

Rn (p, σ) =

∑

d|n φ
(

n
d

)

n
d
σdRc (d, σ)

∑

d|n φ
(

n
d

)

σd
,

and the average sum of exponents of runs in necklace is

En (p, σ) =

∑

d|n φ
(

n
d

)

n
d
σdEc (d, σ)

∑

d|n φ
(

n
d

)

σd
.

5 Conclusion

In this paper we defined circular squares and circular runs in a string and considered
squares and runs in a necklace. They are useful for analysing ordinary squares and
runs, especially a lower bound of the number of them. We showed the average number
of runs, the average number of squares and the average number of sum of exponents
of runs in a necklace. It would also be interesting problem to analyse the average
number of distinct repetitions instead of their occurrences.
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