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Abstract. We present a method for compressing binary images via monochromatic
pattern substitution. Monochromatic rectangles inside the image are compressed by a
variable length code. Such method has no relevant loss of compression effectiveness if
the image is partitioned into up to a thousand blocks and each block is compressed
independently. Therefore, it can be implemented in parallel on both small and large
scale arrays of processors with distributed memory and no interconnections. We experi-
mented the procedure with up to 32 processors of a 256 Intel Xeon 3.06 GHz processors
machine (avogadro.cilea.it) on a test set of large topographic bi-level images. We
obtained the expected speed-up of the compression and decompression times, achiev-
ing parallel running times about twenty times faster than the sequential ones. In the
theoretical context of unbounded parallelism, we show experimentally that interproces-
sor communication is needed when we scale up the distributed system. It results that
compression effectiveness has a bell-shaped behaviour which is again competitive with
the sequential performance when the highest degree of parallelism is reached.
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1 Introduction

The best lossless image compressors are enabled by arithmetic encoders based on
the model driven method [2]. The model driven method consists of two distinct and
independent phases: modeling [17] and coding [16]. Arithmetic encoders are the best
model driven compressors both for binary images (JBIG) [13] and for grey scale and
color images (CALIC)[24], but they are often ruled out because they are too complex.

As far as the model driven method for grey scale and color image compression
is concerned, the modeling phase consists of three components: the determination
of the context of the next pixel, the prediction of the next pixel and a probabilistic
model for the prediction residual, which is the value difference between the actual
pixel and the predicted one. In the coding phase, the prediction residuals are en-
coded. The use of prediction residuals for grey scale and color image compression
relies on the fact that most of the times there are minimal variations of color in the
neighborood of one pixel. LOCO-I (JPEG-LS) [22] is the current lossless standard
in low-complexity applications and involves Golomb-Rice codes [12], [15] rather than
the arithmetic ones. A low-complexity application compressing 8x8 blocks of a grey-
scale or color image by means of a header and a fixed-length code is PALIC [6], [7]
which can be implemented on an arbitrarily large scale system at no communication
cost. As explained in [7], parallel implementations of LOCO-I would require more
sophisticated architectures than a simple array of processors. PALIC achieves 80 per-
cent of the compression obtained with LOCO-I and is an extremely local procedure
which is able to achieve a satisfying degree of compression by working independently
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on different very small blocks. On the other hand, no local low-complexity binary
image compressor has been designed so far. BLOCK MATCHING [18], [19] is the
best low-complexity compressor for binary images and extends data compression via
textual substitution to two-dimensional data by compressing sub-images rather than
substrings [14], [20], achieving 80 percent of the compression obtained with JBIG.
However, it does not work locally since it applies a generalized LZ1-type method
with an unrestricted window.

In this paper, we present a method for compressing binary images via monochro-
matic pattern substitution. Monochromatic rectangles inside the image are com-
pressed by a variable length code. Such monochromatic rectangles are detected by
means of a raster scan (row by row). If the 4 x 4 subarray in position (i, j) of the
image is monochromatic, then we compute the largest monochromatic rectangle in
that position else we leave it uncompressed. The encoding scheme is to precede each
item with a flag field indicating whether there is a monochromatic rectangle or raw
data. The procedure for computing the largest monochromatic rectangle with left
upper corner in position (i, j) takes O(M log M) time, where M is the size of the
rectangle. The positions covered by the detected rectangles are skipped in the linear
scan of the image and the sequential time to compress an image of size n by rectangle
matching is Ω(n log M). The analysis of the running time of this algorithm involves a
waste factor, defined as the average number of matches covering the same pixel. We
experimented that the waste factor is less than 2 on realistic image data. Therefore,
the heuristic takes O(n log M) time. On the other hand, the decoding algorithm is
linear. The compression effectiveness of this technique is about the same as the one of
the rectangular block matching technique [19], which still requires Ω(n log M) time.
However, in practice it is about twice faster.

Compression via monochromatic pattern substitution by the variable length code
presented here has no relevant loss of effectiveness if the image is partitioned into up
to a thousand blocks and each block is compressed independently. Therefore, it can
be implemented in parallel on both small and large scale arrays of processors with dis-
tributed memory and no interconnections. We experimented the procedure with up to
32 processors of a 256 Intel Xeon 3.06 GHz processors machine (avogadro.cilea.it)
on a test set of large topographic bi-level images. We obtained the expected speed-up
of the compression and decompression times, achieving parallel running times about
twenty times faster than the sequential ones. Similar results were obtained in [10], [8],
[9] on the same machine for the version of block matching compressing squares. How-
ever, although the square block matching technique [18] has a linear sequential time
it has slower compression and decompression running times in practice. Moreover, it
has a lower effectiveness and it is not scalable.

In the theoretical context of unbounded parallelism, interprocessor communication
is needed when we scale up the distributed system. Parallel algorithms are shown in
[1], [4], [5], [10], [9] for the rectangular block matching heuristic. In [5], a variable
length coding technique similar to the one presented in this paper is described for the
sequential implementation of the rectangular block matching method. The technique
encodes bounded size two-dimensional patterns and has not been employed in the
theoretical parallel implementations. We employed it in the experimental results of
this paper on compression effectiveness since the bound to the pattern dimensions
is large enough with respect to the size of realistic image data. It resulted that the
compression effectiveness has a bell-shaped behaviour which is again competitive with
the sequential performance when the highest degree of parallelism is reached.
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Previous work on the square block matching heuristic is reported in section 2.
Compression via monochromatic pattern substitution is described in section 3. In
section 4, we present the parallel implementations and the experimental results on
the speed-up. In section 5, we show how parallel implementations can be realized in
the theoretical context of unbounded parallelism by means of interprocessor communi-
cation. Section 6 presents the experimental results relating scalability to compression
effectiveness. Conclusions and future work are given in section 7.

2 Previous Work

As mentioned in the introduction, the square block matching procedure has been so
far the only low-complexity lossless binary image compression technique implemented
in parallel at no communication cost [10], [8], [9]. Such technique is a two-dimensional
extension of Lempel-Ziv compression [14] and simple practical heuristics exist to
implement Lempel-Ziv compression by means of hashing techniques [3], [11], [21],
[23].

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 76 39 19 11 6 3

2 81 40 23 11 5 3

3 78 39 24 12 6 3

4 79 44 24 11 5 3

5 77 38 22 10 5 4

Avg. 78.2 40 22.4 11 5.4 3.2

Figure 1. Compression times of the block matching procedure (cs.)

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 43 22 11 6 4 2

2 44 22 12 7 3 2

3 43 22 15 7 4 2

4 43 30 12 7 3 2

5 41 32 15 6 3 2

Avg. 42.8 25.6 13 6.6 3.4 2

Figure 2. Decompression times of the block matching procedure (cs.)

The hashing technique used for the two-dimensional extension is even simpler [18].
The square matching compression procedure scans an m x m′ image by a raster scan.
A 64K table with one position for each possible 4x4 subarray is the only data struc-
ture used. All-zero and all-one squares are handled differently. The encoding scheme
is to precede each item with a flag field indicating whether there is a monochromatic
square, a match, or raw data. When there is a match, the 4x4 subarray in the current
position is hashed to yield a pointer to a copy. This pointer is used for the current
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c = pr,j ;

r = i;

width = m′;

length = 0;

side1 = side2 = area = 0;

repeat

Let pr,j · · · pr,j+ℓ−1 be the longest string in (r, j) with color c and ℓ ≤ width;

length = length + 1;

width = ℓ;

r = r + 1;

if (length ∗ width > area) {

area = length ∗ width;

side1 = length;

side2 = width;

}

until area ≥ width ∗ (i − k + 1) or pr,j <> c

Figure 3. Computing the largest monochromatic rectangle match in (i, j)

0 0 0 0 0 0 1 step 1

0 0 0 0 1 0 0 step 2

0 0 1 1 1 0 0 step 3

0 0 1 0 1 1 0 step 4

0 0 1 0 1 0 0 step 5

0 1 0 0 1 1 0 step 6

1 0 1 0 1 1 0

Figure 4. The largest monochromatic match in (0,0) is computed at step 5

greedy match and then replaced in the hash table by a pointer to the current posi-
tion. The procedure for computing the largest square match with left upper corners
in positions (i, j) and (k, h) takes O(M) time, where M is the size of the match. Ob-
viously, this procedure can be used to compute the largest monochromatic square in
a given position (i, j) as well. If the 4 x 4 subarray in position (i, j) is monochromatic,
then we compute the largest monochromatic square in that position. Otherwise, we
compute the largest match in the position provided by the hash table and update
the table with the current position. If the subarray is not hashed to a pointer, then
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Figure 5. Image 1

Figure 6. Image 2

it is left uncompressed and added to the hash table with its current position. The
positions covered by matches are skipped in the linear scan of the image. We wish
to point out that besides the proper matches we call a match every square of the
parsing of the image produced by the heuristic. We also call pointer the encoding of
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Figure 7. Image 3

Figure 8. Image 4

a match. Therefore, each pointer starts with a flag field indicating whether there is
a monochromatic match (0 for the white ones and 10 for the black ones), a proper
match (110) or a raw match (111).
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Figure 9. Image 5

We were able to partition an image into up to a hundred areas and to apply
the square block matching heuristic independently to each area with no relevant loss
of compression effectiveness on both the CCITT bi-level image test set and to the
set of five 4096 x 4096 pixels half-tone images of figures 5-9. Moreover, in order to
implement decompression on an array of processors, we needed to indicate the end of
the encoding of a specific area. So, we changed the encoding scheme by associating the
flag field 1110 to the raw match so that 1111 could indicate the end of the sequence of
pointers corresponding to a given area. Then, the flag field 1110 is followed by sixteen
bits uncompressed, flag fields 0 and 10 by the size of the square side while flag field
110 is also followed by the position of the matching copy. The values following the
flag fields are represented by a fixed length code.

In [10], [8], [9] we showed the compression and decompression times of the par-
allel procedure applied to the five images of figures 5-9, doubling up the number of
processors of the avogadro.cilea.it machine from 1 to 32 (figures 1 and 2). In the next
section, we present a lossless compression technique for binary images which is imple-
mentable at no communication cost on both small and large scale parallel systems,
differently from the one described in this section.

3 Compression via Monochromatic Pattern Substitution

The technique scans an image row by row. If the 4 x 4 subarray in position (i, j) of
the image is monochromatic, then we compute the largest monochromatic rectangle
in that position. We denote with pi,j the pixel in position (i, j). The procedure for
finding the largest rectangle with left upper corner (i, j) is described in figure 3. At
the first step, the procedure computes the longest possible width for a monochromatic
rectangle in (i, j) and stores the color in c. The rectangle 1 x ℓ computed at the first
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step is the current detected rectangle and the sizes of its sides are stored in side1
and side2. In order to check whether there is a better match than the current one,
the longest sequence of consecutive pixels with color c is computed on the next row
starting from column j. Its length is stored in the temporary variable width and the
temporary variable length is increased by one. If the rectangle R whose sides have
size width and length is greater than the current one, the current one is replaced
by R. We iterate this operation on each row until the area of the current rectangle
is greater or equal to the area of the longest feasible width-wide rectangle, since no
further improvement would be possible at that point.

For example, in figure 4 we apply the procedure to find the largest monochromatic
rectangle in position (0, 0). A monochromatic rectangle of width 6 is detected at step
1. Then, at step 2 a larger rectangle is obtained which is 2 x 4. At step 3 and step
4 the current rectangle is still 2 x 4 since the longest monochromatic sequence on
row 3 and 4 comprises two pixels. At step 5, another sequence of two pixels provides
a larger rectangle which is 5 x 2. At step 6, the procedure stops since the longest
monochromatic sequence is just one pixel and the rectangle can cover at most 7 rows.
It follows that the detected rectangle is 5 x 2 since a rectangle of width 1 cannot have
a larger area. Such procedure for computing the largest monochromatic rectangle in
position (i, j) takes O(M log M) time, where M is the rectangle size. In fact, in the
worst case a rectangle of size M could be detected on row i, a rectangle of size M/2
on row i + 1, a rectangle of size M/3 on row i + 2 and so on.

If the 4 x 4 subarray in position (i, j) of the image is not monochromatic, we do
not expand it. The positions covered by the detected rectangles are skipped in the
linear scan of the image. The encoding scheme for such rectangles uses a flag field
indicating whether there is a monochromatic match (0 for the white ones and 10 for
the black ones) or not (11). If the flag field is 11, it is followed by the sixteen bits of
the 4 x 4 subarray (raw data). Otherwise, we bound by twelve the number of bits to
encode either the width or the length of the monochromatic rectangle. We use either
four or eight or twelve bits to encode one rectangle side. Therefore, nine different
kinds of rectangle are defined. A monochromatic rectangle is encoded in the following
way:

– the flag field indicating the color;
– three or four bits encoding one of the nine kinds of rectangle;
– bits for the length and the width.

Four bits are used to indicate when twelve bits or eight and twelve bits are needed
for the length and the width. This way of encoding rectangles plays a relevant role
for the compression performance. In fact, it wastes four bits when twelve bits are
required for the sides but saves four to twelve bits when four or eight bits suffice.

4 The Parallel Implementations

The variable length coding technique expained in the previous section has been ap-
plied to the CCITT test set of bi-level images and has provided a compression ratio
equal to 0.13 in average. The images of the CCITT test set are 1728 x 2376 pixels. If
these images are partitioned into 4k sub-images and the compression heuristic is ap-
plied independently to each sub-image, the compression effectiveness remains about
the same for 1 ≤ k ≤ 5 with a 1 percent loss for k = 5. Raw data are associated
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with the flag field 110, so that we can indicate with 111 the end of the encoding of
a sub-image. For k = 6, the compression ratio is still just a few percentage points
of the sequential one. This is because the sub-image is 27 x 37 pixels and it still
captures the monochromatic rectangles which belong to the class encoded with four
bits for each dimension. These rectangles are the most frequent and give the main
contribution to the compression effectiveness. On the other hand, the compression
ratio of the square block matching heuristic when applied to the CCITT test set is
about 0.16 for 1 ≤ k ≤ 3 and it deteriorates in a relevant way for k ≥ 4.

The compression effectiveness of the variable-length coding technique depends on
the sub-image size rather than on the whole image. In fact, if we apply the parallel
procedure to the test set of larger binary images as the 4096 x 4096 pixels half-tone
topographic images of figures 5-9 we obtain about the same compression effectiveness
for 1 ≤ k ≤ 5. The compression ratio is 0.28 with a 2 percent loss for k = 6. This
means that actually the approach without interprocessor communication works in
the context of unbounded parallelism as long as the elements of the image partition
are large enough to capture the monochromatic rectangles encoded with four bits
for each dimension. On the other hand, the compression ratio of the square block
matching heuristic is 0.31 and depends on how the match size compares to the whole
image. In fact, the compression effectiveness is again about the same for 1 ≤ k ≤ 3
and deteriorates in a relevant way for k ≥ 4.

We wish to remark at this point that parallel models have two types of complex-
ity, the interprocessor communication and the input-output mechanism. While the
input/output issue is inherent to any parallel algorithm and has standard solutions,
the communication cost of the computational phase after the distribution of the data
among the processors and before the output of the final result is obviously algorithm-
dependent. So, we need to limit the interprocessor communication and involve more
local computation to design a practical algorithm. The simplest model for this phase
is, of course, a simple array of processors with no interconnections and, therefore,
no communication cost. Obviously, the compression and decompression procedures
described here are suitable for such a model and implementable on both small (about
100 processors) and large (about 1000 processors) scale distibuted systems.

Image 1 proc. 2. proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 41 22 12 7 4 2

2 40 23 14 7 4 2

3 42 22 15 8 4 2

4 42 25 15 7 4 2

5 41 22 13 7 4 3

Avg. 41.2 22.8 13.8 7.2 4 2.2

Figure 10. Compression times of the new procedure (cs.)

We show in figures 10 and 11 the compression and decompression times of the
parallel procedure applied to the five images of figures 5-9, doubling up the number
of processors of the avogadro.cilea.it machine from 1 to 32. We executed the com-
pression and decompression on each image several times. The variances of both the
compression and decompression times were small and we report the greatest run-
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Image 1 proc. 2. proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 20 11 6 4 2 1

2 20 11 7 4 2 1

3 21 11 8 4 2 1

4 21 13 8 4 2 1

5 20 11 7 4 2 1

Avg. 20.4 11.4 7.2 4 2 1

Figure 11. Decompression times of the new procedure (cs.)

ning times, conservatively. As it can be seen from the values on the tables, also the
variance over the test set is quite small. The decompression times are faster than
the compression ones and in both cases we obtain the expected speed-up, achieving
running times about twenty times faster than the sequential ones. Images 1 and 5
have the smallest compression time, while image 2 has the greatest one. Image 2
also has the greatest sequential decompression time while image 5 has the smallest
one. The greatest compression time with 32 processors is given by image 5 while the
decompression time with 32 processors is the same for all images.

5 A Massively Parallel Algorithm

Compression and decompression parallel implementations are presented, requiring
O(α log M) time with O(n/α) processors for any integer square value α ∈ Ω(log n)
on a PRAM EREW. As in the previous section, we partition an m x m′ image I in
x x y rectangular areas, where x and y are Θ(α1/2). In parallel for each area, one
processor applies the sequential parsing algorithm so that in O(α log M) time each
area is parsed into rectangles, some of which are monochromatic. In the theoretical
context of unbounded parallelism, α can be arbitrarely small and before encoding
we wish to compute larger monochromatic rectangles. The monochromatic rectangles
are computed by merging adjacent monochromatic areas without considering those
monochromatic matches properly contained in some area. We denote with Ai,j for
1 ≤ i ≤ ⌈m/x⌉ and 1 ≤ j ≤ ⌈m′/y⌉ the areas into which the image is partitioned. In
parallel for 1 ≤ i ≤ ⌈m/x⌉, if i is odd, a processor merges areas A2i−1,j and A2i,j pro-
vided they are monochromatic and have the same color. The same is done horizontally
for Ai,2j−1 and Ai,2j. At the k-th step, if areas A(i−1)2k−1+1,j, A(i−1)2k−1+2,j, · · · Ai2k−1,j,
with i odd, were merged, then they will merge with areas Ai2k−1+1,j, Ai2k−1+2,j, · · ·
A(i+1)2k−1,j, if they are monochromatic with the same color. The same is done horizon-
tally for Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, · · · Ai,j2k−1 , with j odd, and Ai,j2k−1+1, Ai,j2k−1+2,
· · · Ai,(j+1)2k−1 . After O(log M) steps, the procedure is completed and each step takes
O(α) time and O(n/α) processors since there is one processor for each area. Therefore,
the image parsing phase is realized in O(α log M) time with O(n/α) processors on
an exclusive read, exclusive write shared memory machine. The interested reader can
see how the coding and decoding phase are designed in [1], [10], since similar proce-
dures are subroutines of the parallel block matching compression and decompression
algorithms. As in the previous section, the flag field 110 corresponds the raw data so
that we can indicate with 111 the end of the sequence of pointers corresponding to a
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given area. Since some areas could be entirely covered by a monochromatic rectangle
111 is followed by the index associated with the next area by the raster scan. Under
some realistic assumptions, implementations with the same parallel complexity can
be realized on a full binay tree architecture [1], [10].

6 Scalability and Compression Effectiveness

Since the images of the CCITT test set are 1728 x 2376 pixels, they can be parti-
tioned into 4k sub-images for 1 ≤ k ≤ 8. For k = 8, the sub-image is 7 x 9 pixels. The
extremal case is when we partition the image into 4 x 4 subarrays. As we mentioned
in section 4, the compression ratio is 0.13 in average for 1 ≤ k ≤ 4 and 0.14 for
k = 5. For greater values of k, the compression effectiveness deteriorates. For k = 6,
k = 7 and k = 8 the compression ratio is 0.17, 0.23 and 0.51 respectively. For the
extremal case, the compression ratio is about 0.80. For k ≥ 6 and the extremal case,
we obviously have an improvement on the compression results if we use interproces-
sor communication to compute larger monochromatic rectangles with the procedure
explained in the previous section. As shown in figure 12, the improvements are con-
sistent but not satisfactory but for the extremal case. This is because we compute
larger monochromatic matches by merging adjacent monochromatic elements of the
image partition. This process implies that such matches are likely to be sub-arrays
of larger monochromatic rectangles with the margins included in non-monochromatic
elements of the partition. Yet, these rectangles are likely to be computed as matches
by the sequential procedure. Therefore, the smaller the elements are the better the
merging procedure works. A more sophisticated procedure would be to consider the
monochromatic matches properly contained in some element but such approach is
not very practical and does not provide a parallel decoder [5].

N. Pr. c. ratio c. ratio

≤ 44 .13 .13

45 .14 .14

46 .17 .16

47 .24 .19

48 .51 .29

∼ 49 .80 .15

comm. without with

Figure 12. Average compression and scalability on the CCITT images

As pointed out earlier, the compression effectiveness depends on the sub-image
size rather than on the whole image. In fact, if we apply the parallel procedures
with and without interprocessor communication to the test set of larger binary im-
ages of figures 5-9 we obtain the average results of figure 13. As we can see, the
compression effectiveness has still a bell-shaped behaviour which mantains the se-
quential performance to a higher degree of parallelism with respect to the CCITT
test set and is again competitive with the sequential procedure when the highest de-
gree of parallelism is reached by the extremal case. This confirms that actually the
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approach without interprocessor communication works in the context of unbounded
parallelism as long as the elements of the image partition are large enough to capture
the monochromatic rectangles encoded with four bits for each dimension. On the
other hand, interprocessor communication is effective only in the extremal case.

N. Pr. c. ratio c. ratio

≤ 45 .28 .28

46 .30 .29

47 .33 .33

48 .42 .39

49 .76 .60

∼ 410 .95 .30

comm. without with

Figure 13. Average compression and scalability on the 4096 x 4096 pixels images

7 Conclusions

We provided a parallel low-complexity lossless compression technique for binary im-
ages which is suitable for both small and large distributed memory systems at no
communication cost. The degree of locality of the technique is high enough to garan-
tee no loss of compression effectiveness when it is applied independently to blocks with
dimensions about 50 x 50 pixels. When the blocks are smaller, interprocessor commu-
nication is needed but it is not effective except for the extremal case of blocks with
dimensions 4 x 4 pixels. We presented experimental results with at most 32 processors
and obtained the expected linear speed-up. As future work, we wish to experiment
with more processors by implementing the procedure on a graphical processing unit.
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