
(In)approximability Results for Pattern Matching

Problems

Raphaël Clifford and Alexandru Popa

Department of Computer Science
University of Bristol

Merchant Venturer’s Building
Woodland Road, Bristol, BS8 1UB

United Kingdom
{clifford,popa}@cs.bris.ac.uk

Abstract. We consider the approximability of three recently introduced pattern
matching problems which have been shown to be NP-hard. Given two strings as input,
the first problem is to find the longest common parameterised subsequence between
two strings. The second is a maximisation variant of generalised function matching
and the third is a a maximisation variant of generalised parameterised matching. We
show that in all three cases there exists an ǫ > 0 such that there is no polynomial
time (1 − ǫ)-approximation algorithm, unless P = NP. We then present a polynomial
time

√

1/OPT -approximation algorithm for a variant of generalised parameterised
matching for which no previous approximation results are known.

1 Introduction

We investigate the complexity and approximability of three recently introduced
classes of pattern matching problems. Given two strings, typically termed the pat-
tern and text, the traditional pattern matching question is to determine the minimum
number of operations required to transform the pattern to either the whole or some
portion of the text. The challenge arises in the specific detail of the definition of an
operation or more generally in how the distance between two strings is measured.
Popular examples have included pattern matching under the Hamming norm [1,9]
and the edit distance [10,11] where efficient polynomial time algorithms are known.
The algorithms are highly dependent on the distance measure being considered. Re-
cent results have shown that when two or more different measures of distance are
combined, the resulting problem may be NP-hard despite the individual measures
sometimes permitting efficient linear time solutions [3,6].

The first problem we consider is known as longest common parameterised sub-
sequence (LCPS). This combined problem is introduced by Keller et. al. in [8] and
introduces the property of parameterisation into the classic and extensively studied
problem of determining the longest common subsequence (LCS) between two strings.
The term parameterisation, as introduced by Baker [5] in the pattern matching con-
text, refers to the relabelling of the characters of the input so as to transform the
pattern into a match for the text. A particular example given for LCPS is the prac-
tical question of comparing two code fragments, an original, and a suspected copy,
after the alleged copy has been edited both by inserting new code or comments and
also by possibly renaming variables. LCPS was previously shown to be NP-hard to
solve exactly. We prove a stronger bound. We show that it is also hard to approximate
within a (1 − ǫ) factor, for some ǫ > 0 unless P = NP. One consequence is that it is
unlikely that any PTAS can be found.

Raphaël Clifford, Alexandru Popa: (In)approximability Results for Pattern Matching Problems, pp. 52–62 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

R.Clifford, A. Popa: (In)approximability Results for Pattern Matching Problems 53

We then consider a class of problems introduced in 2004 by Amir and Nor where
individual characters in the pattern are permitted to match entire substrings of the
text [3]. These are called generalised matching problems and for optimisation vari-
ants of both generalised function matching (GFM) and generalised parameterised
matching (GPM) NP-hardness results are also known [6]. In generalised matching a
character of the pattern can be mapped to a substring of the text. The main differ-
ence between GFM and GPM is that in the latter case, no two characters can map to
the same substring. These problems arise from a natural extension of parameterised
matching and function matching, which was first considered by Amir et al. [2] and
can be applied to problems where one wants to determine the structure of a text in
terms of repeated patterns. For example, if t = annabobanna and p = ABA, then
the mapping A → anna and B → bob is valid both in the GFM and GPM models.
However, if t = bobbobbob and p = ABA, then A → bob and B → bob is permitted in
the GFM model, but not for GPM [6].

We show that GFM and GPM are also hard to approximate within a (1 − ǫ)

factor unless NP = P. Finally, we present the first polynomial time
√

1/OPT -
approximation algorithm for GPM, in the case when the length of the text is at least
twice the length of the pattern.

2 Hardness of the longest common parameterised
subsequence problem

The longest common parameterised subsequence (LCPS) problem attempts to com-
bine the LCS measure with parameterised matching. The definition of the LCPS
problem is the following:

Problem 1. [8] The input consists of two strings of the same length t = t1t2 . . . tn and
p = p1p2 . . . pn over an alphabet Σ. The goal is to find a permutation π : Σ → Σ
such that the LCS between π(t1)π(t2) . . . π(tn) and p1p2 . . . pn is maximized.

The problem is introduced by Keller et. al. in [8] where they show it is NP-hard.
In this paper we prove that the problem is hard to approximate within (1 − ǫ), for
some ǫ > 0.

Before we present the main result, we give the definition of gap-preserving re-
duction between two maximisation problems. A similar definition is presented in [12]
for the case when the first problem is a minimisation problem and the second is a
maximisation problem.

Definition 2. Assume Π1 and Π2 are maximisation problems. A gap-preserving re-
duction from Π1 to Π2 comes with four parameters (functions) f1, α, f2 and β. Given
an instance x of Π1 it computes in polynomial time, an instance y of Π2 such that:

OPT (x) ≥ f1(x) ⇒ OPT (y) ≥ f2(y)

OPT (x) < α(|x|)f1(x) ⇒ OPT (y) < β(|y|)f2(y)

In our proofs we make use of the following remark which is also stated in [12].

Remark 3. [12] A gap-preserving reduction from Π1 to Π2 with the above parameters
implies that if problem Π1 cannot have a polynomial-time α-approximation, then
problem Π2 cannot have a polynomial-time β-approximation.

54 Proceedings of the Prague Stringology Conference 2010

To prove the inapproximability result for the LCPS problem we use a gap-preser-
ving reduction from MAX-3SAT(13) to LCPS. MAX-3SAT(13) is a variant of MAX-
SAT problem in which each clause has exactly three literals (where a literal is either a
variable or its negation) and each variable appears in at most 13 clauses. In [4] Arora
proves that MAX-3SAT(13) cannot be approximated within a factor of 1 − δ/19, if
MAX3-SAT cannot be approximated within a factor of 1− δ [4]. In [7] H̊astad proves
that MAX3-SAT cannot be approximated within a factor better than 7/8 and thus,
MAX-3SAT(13) cannot be approximated within a factor of 151/152, unless P = NP.

Consider a MAX-3SAT(13) instance φ with n variables and m clauses. The al-
phabet Σ of the LCPS instance consists of a special character $ which has the role of
a delimiter between different blocks of text (the usefulness of this character becomes
clearer when we present the reduction) and two characters corresponding to each
variable x of φ, xT and xF . We denote by $15 the string formed by concatenating 15
$ symbols.

The reduction is the following. For each variable x we add to the text t the gadget
xT xF xT xF $15 and to the pattern p the gadget xT xF xF xT $15. Then, for each clause
x1 ∨x2 ∨x3 we add to the pattern the gadget x3T x2T x1T $15 (notice that the variables
are placed in reverse order), and to t, the gadget x1V x2V x3V $15, where xiV , for every
i = {1, 2, 3} is:

xiV =

{
xiT if xi is a non-negated variable
xiF if xi is a negated variable

Example 4. Consider the formula:

φ = (x ∨ y ∨ z) ∧ (x ∨ ȳ ∨ z)

The corresponding instance of the LCPS problem is:

t = xT xF xT xF $15yT yF yT yF $15zT zF zT zF $15xT yT zT $15xT yF zT $15

p = xT xF xF xT $15yT yF yF yT $15zT zF zF zT $15zT yT xT $15zT yT xT $15

Theorem 5 summarises the main inapproximability result for LCPS.

Theorem 5. There exists an ǫ > 0 such that the LCPS problem does not have a
(1 − ǫ)-approximation algorithm, unless P = NP.

Proof. We have to prove that this is a gap-preserving reduction from MAX-3SAT(13).
Specifically, we prove that there exists a constant σ > 0 such that:

OPT (φ) = m ⇒ OPT (t, p) = f(|t|, |p|) (1)

OPT (φ) < (1 − ǫ)m ⇒ OPT (t, p) < (1 − σ)f(|t|, |p|) (2)

where OPT (φ) is the optimal value of MAX-3SAT(13) problem on the instance φ,
OPT (t, p) is the maximum LCPS on the text t, and pattern p constructed using the
above reduction, and f(|t|, |p|) = 3n + 15(n + m) + m. These implications, together
with Remark 3 prove the theorem.

Now, we explain why the two implications are true. The reduction forces the $
symbol to be matched with itself under the permutation of the alphabet. Suppose
that the $ symbol is matched with another character, say x. In this case the LCPS
can be at most 4n + 3m (this is the number of the characters in the text and in the

R.Clifford, A. Popa: (In)approximability Results for Pattern Matching Problems 55

pattern which are different from $), assuming that we can ideally match everything
else. However a longer LCPS can be achieved by simply matching the $ symbols alone.

The mapping $ to $ imposes a lot of structure on the other possible mappings: each
pair (xT , xF) is either matched to (xT , xF), meaning that the variable x is assigned
to True in the formula φ, or is matched to (xF , xT), meaning that the variable x is
assigned to False. Since each variable appears in at most 13 clauses it is not optimal to
match xT or xF with a character corresponding to any other variable y. This matching
stops a block of 15 $ symbols from the text to match a block of 15 $ symbols from
the pattern, but it can add no more than 13 to the LCPS length.

Thus, each variable gadget adds 3 to the final LCPS. Then, each block of dollars
adds 15 to the final LCPS, independent of the other matchings. Finally, a gadget
corresponding to a satisfied clause contributes exactly one to the LCPS. It cannot
contribute more than one, if more than one literal is true in that clause, since we have
placed the literals in reverse order in the pattern.

Therefore, if all the m clauses of φ can be satisfied, then the LCPS length has to
be equal to 3n + 15(m + n) + m. On the other hand, if at most 1− ǫ clauses of φ can
be satisfied, then LCPS is at most 3n+15(m+n)+ (1− ǫ)m, since the best strategy
is to match a character according to the assignment of the corresponding variable: if
a variable x is set to true in the assignment that maximises the number of satisfied
clauses, then π(xT) = xT ; otherwise π(xT) = xF .

To complete the proof of the second implication, we now explicitly calculate the
value of σ. Since the optimal value of the LCPS is less than 3n+15(m+n)+(1−ǫ)m,
we want the latter to be equal to (1−σ)(3n+15(m+n)+m). By solving this equation
we find the value of σ. Formally:

3n + 15(m + n) + (1 − ǫ)m = (1 − σ)(3n + 15(m + n) + m)

Therefore,

σ = 1 − 3n + 15(m + n) + (1 − ǫ)m

3n + 15(m + n) + m
=

ǫm

3n + 15(m + n) + m

Since each variable appears in at most 13 clauses we can set m = 13n and we get
σ = 13ǫ/76.

Therefore, the LCPS problem cannot be approximated within a factor of 0.99887,
unless P = NP. ⊓⊔

3 Hardness of Generalised Function Matching

The two problems we consider in this section are termed generalised function match-
ing (GFM) and generalised parameterised matching (GPM). Their formal definitions
follow:

Problem 6. [6](GFM) Given a pattern p over an alphabet Σp and a text t over an
alphabet Σt, determine if there exists a mapping f from Σp to Σ+

t such that t =
f(p1)f(p2) . . . f(pm).

Problem 7. [6](GPM) The problem of generalised parameterised matching (GPM) is
defined in an analogous way to GFM except that f is now required to be an injection.

56 Proceedings of the Prague Stringology Conference 2010

Recently, Clifford et. al. [6] prove that the two problems are NP-Complete under
a wide range of conditions. They also define an optimisation version of the GFM
problem, which is connected to the classical Hamming distance.

The Hamming similarity between two strings of the same length is the number
of positions in which the two strings are equal. For input text t and pattern p, we
are interested in the maximum Hamming similarity between p and any string p′ of
the same length which has a GFM match with t. As the original GFM problem is
NP-Complete, this optimisation problem is NP-Hard. In the rest of the paper we
refer to the “Hamming similarity”, simply as “similarity”.

To simplify the description of our approximation algorithms, we introduce the
idea of a wildcard symbol which we define here.

Definition 8. A wildcard is a special character which can be mapped to any substring
of the text.

We can replace the wildcard characters with regular characters as follows. In the
GFM, just replace the wildcards with distinct characters. In the GPM, we partition
the pattern alphabet into groups by which substring of the text they are mapped to.
Each partition has only one non-wildcard character in it. Replace all the wildcard
characters in a partition by the single non-wildcard character that are in the same
partition.

We now show that there exists an ǫ > 0 such that the problem of generalised
function matching does not have a (1− ǫ)-approximation algorithm, unless P = NP,
via a gap preserving reduction from MAX3-SAT(13).

Consider a MAX-3SAT(13) instance φ with n variables and m clauses. The con-
struction starts by placing m + n $ symbols to the beginning of both the pattern
and the text. The text alphabet Σt has only two symbols, $ and 0 with $ serving
as a delimiter in both the pattern and text. The pattern alphabet Σp includes the
delimiter, a pair ai and Ai for each variable and a distinct symbol ci for each clause.
The Ai’s represent the negation of the variables ai. The constructed pattern and text
contain an equal number of $ characters which forces $ to map to $ under any valid
function. Also, as we show later, replacing some of the $ symbols with wildcards
cannot yield to an optimal strategy. We prove that the minimal Hamming distance
between the pattern and the text is achieved when exactly one variable from each
unsatisfied clause is replaced by a wildcard, where a wildcard, as we mention before,
is a special character which is allowed to match any non-empty substring of the text.

For each variable ai, we add to the text the string $13000$13 13 times and to
the pattern $13aiAi$

13 13 times. In this way a variable can be mapped to 00 or 0.
Replacing all the 13 variables with wildcards is not optimal since a variable appears in
at most 13 clauses and, therefore, at most 13 clauses can be satisfied. To fix notation
we say that 0 represents True and 00 represents False. For each clause, we add to the
text the string $13000000$13 (6 zeros) and to the pattern the string $13xyzci$

13 where
x, y, z are the variables from the clause (or their negations, as appropriate) and ci is
a different symbol for each clause.

Example 9. Consider the following instance of MAX3-SAT(13),

(x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) .

The GFM input is the following:

t = $$$$$

13
︷ ︸︸ ︷

$13000$13 . . . $13000$13

13
︷ ︸︸ ︷

$13000$13 . . . $13000$13

R.Clifford, A. Popa: (In)approximability Results for Pattern Matching Problems 57

13
︷ ︸︸ ︷

$13000$13 . . . $13000$13 $13000000$13$13000000$13

p = $$$$$

13
︷ ︸︸ ︷

$13xX$13 . . . $13xX$13

13
︷ ︸︸ ︷

$13yY $13 . . . $13yY $13

13
︷ ︸︸ ︷

$13zZ$13 . . . $13zZ$13 $13xyzc1$
13$13XyZc2$

13

The inapproximability result for the GFM problem is stated in Theorem 10.

Theorem 10. There exists an ǫ > 0 such that the GFM problem does not have a
(1 − ǫ)-approximation algorithm, unless P = NP.

Proof. We have to prove that this is a gap-preserving reduction from MAX-3SAT(13).
Specifically, we prove that there exists a constant σ > 0 such that conditions (1)
and (2) from the proof of Theorem 5 are satisfied, where OPT (φ) is the optimal
value of the MAX-3SAT(13) problem on the instance φ, OPT (t, p) is the maximum
similarity on the text t, and the pattern p constructed using the above reduction, and
f(|t|, |p|) = (n + m) + 26 · 13n + 26m + 2 · 13n + 4m. These implications, together
with Remark 3 prove the theorem.

Now, we explain why the two implications are true. If φ is satisfiable, then there
must be a GFM solution for p and t. This follows as we are guaranteed that not all
the symbols from a clause can be mapped to 00 and therefore ci can be matched to
a nonempty substring in each clause gadget.

Now, suppose that at most (1− ǫ)m clauses of φ can be satisfied. Then, we must
have at least ǫm wildcards in order to have a valid matching, one wildcard for each
unsatisfied clause. This wildcard replaces one of the variables in that clause and
matches only one 0 (notice that since this is an unsatisfied clause all the variables are
matched to 00 and the dummy variable ci does not have any 0’s to be matched to)
and gives the possibility of the last variable to be matched to a 0.

If one replaces all the dollar signs from the beginning with a wildcard the number
of wildcards used is n + m, which is not optimal. If you replace with wildcards a
block of 13 $’s which separates the variable gadgets, then you can satisfy at most 13
new clauses, at a price of 13 wildcard symbols, which is not an improvement to the
strategy presented in the previous paragraph. If you replace with wildcards a block of
13 $’s which separates the clause gadgets, then you can satisfy at most 2 new clauses.
The last option is to try to allow a variable to have an inconsistent assignment in
order to satisfy more clauses, but to do this you need to place at least 13 wildcards
and since a variable appears in at most 13 clauses, then this is not optimal.

Therefore, if at most (1 − ǫ)m clauses of φ can be satisfied, then the maximum
similarity has to be less or equal to (n + m) + 26 · 13n + 26m + 2 · 13n + 4(1 − ǫ)m.
We want:

(n + m) + 26 · 13n + 26m + 2 · 13n + 4(1 − ǫ)m =

(1 − σ)((n + m) + 26 · 13n + 26m + 2 · 13n + 4m)

As before, we can set m = 13n and, therefore:

(1 − σ) =
716 + 52(1 − ǫ)

768

58 Proceedings of the Prague Stringology Conference 2010

Therefore, the GFM problem cannot be approximated within a factor of 0.99955,
unless P = NP. ⊓⊔

4 Hardness of Generalised Parameterised Matching

In this section we present an inapproximability result for a maximum similarity vari-
ant of GPM. In this variant, for input text t and pattern p, we are interested in the
maximum similarity between p and any string p′ of the same length which has a GPM
match with t.

We now show that there exists an ǫ > 0 such that the problem of generalised
parameterised matching does not have a (1 − ǫ)-approximation algorithm, unless
P = NP, via another gap preserving reduction from MAX3-SAT(13).

Consider a MAX-3SAT(13) instance φ with n variables and m clauses. Fix an
ordering of the variables and for a variable x define L(x) to be the position of this
variable according to this ordering. Fix also an ordering of the clauses and for a
clause c we define L(c) to be the position of the clause according to this ordering (we
overload the notation from the variables and it should be clear from the context to
which one we are referring to).

The text alphabet Σt has n + m + 1 symbols, $ and 1, 2, . . . , n + m, with $
serving as a delimiter in both the pattern and text. The pattern alphabet Σp includes
the delimiter $, two characters x, X for each variable x and two characters for each
clause c, wL(c) and w′

L(c). X represents the negation of the variable x. The constructed

pattern and text contain an equal number of $ characters which forces $ to map to
$ under any valid injective function. Also, as we show later, replacing some of the $
symbols with wildcards cannot yield to an optimal strategy.

The construction starts by placing m + n $ symbols to the beginning of
both the pattern and the text. For a variable x, we add to the text the string
$13L(x)L(x)L(x)$13 13 times and to the pattern $13xX$13 13 times. In this way the
variable x can be mapped either to L(x) or L(x)L(x). Replacing all the 13 variables
with wildcards is not optimal since a variable appears in at most 13 clauses and,
therefore, at most 13 clauses can be satisfied. To fix notation we say that for a
variable x, L(x) represents True and L(x)L(x) represents False.

For the clauses we have the following construction. Consider that a clause c has
literals x, y, z. Then we add to the text the string $13L(x)L(x)n + L(c)L(y)L(y)n +
L(c)L(z)L(z)n+L(c)$13 and to the pattern the string $13xwL(c)ywL(c)zwL(c)$

13 where
x, y, z are the variables from the clause, or their negations, as appropriate.

In the end we add for each clause the string $13n + L(c)$13 13 times to the text
and the string $13w′

L(c)$
13 13 times to the pattern. In this way the character w′

L(c) is

forced to match with n + L(c) and no other characters can match L(c). Also, if we
want to make other characters to match L(c) by replacing w′

L(c) with wildcards, then

the cost is too high (at least 13).

Example 11. Consider the following instance of MAX3-SAT(13),

(x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) .

The GPM input is the following:

t = $$$$$

13
︷ ︸︸ ︷

$13111$13 . . . $13111$13

13
︷ ︸︸ ︷

$13222$13 . . . $13222$13

R.Clifford, A. Popa: (In)approximability Results for Pattern Matching Problems 59

13
︷ ︸︸ ︷

$13333$13 . . . $13333$13 $13114224334 $13115225335$13

13
︷ ︸︸ ︷

$134$13

13
︷ ︸︸ ︷

$135$13

p = $$$$$

13
︷ ︸︸ ︷

$13xX$13 . . . $13xX$13

13
︷ ︸︸ ︷

$13yY $13 . . . $13yY $13

13
︷ ︸︸ ︷

$13zZ$13 . . . $13zZ$13 $13xw1yw1zw1$
13$13Xw2yw2Zw2$

13

13
︷ ︸︸ ︷

$13w′
1$

13

13
︷ ︸︸ ︷

$13w′
2$

13

The inapproximability result for the GPM problem is stated in Theorem 12.

Theorem 12. There exists an ǫ > 0 such that the GPM problem does not have a
(1 − ǫ)-approximation algorithm, unless P = NP.

Proof. We have to prove that this is a gap-preserving reduction from MAX-3SAT(13).
Specifically, we prove that there exists a constant σ > 0 such that conditions (1)
and (2) are satisfied, where OPT (φ) is the optimal value of the MAX-3SAT(13)
problem on the instance φ, OPT (t, p) is the maximum similarity on the text t, and
the pattern p constructed using the above reduction, and f(|t|, |p|) = (n + m) + 26 ·
13n+26m+26 ·13m+2 ·13n+13m+4m. These implications, together with Remark 3
prove the theorem.

Now, we explain why the two implications are true. We first prove that if φ is
satisfiable, then there must be a GPM solution for p and t where exactly f(|t|, |p|)
characters are not replaced with wildcards. We describe such a matching. The $
symbol from the pattern matches the $ symbol from the text and w′

L(c) matches L(c)

for any clause c. If a variable x is assigned to True, then the character x matches L(x)
and X matches L(x)L(x). Otherwise, if a variable x is assigned to False, then the
character x matches L(x)L(x) and X matches L(x). Then, in every satisfied clause
c, the character wL(c) after the True literal (we choose one literal arbitrarily if there
are more than one True) is left unchanged an the other two are replaced with an
wildcard. Since all the clauses are satisfied, in a clause gadget four characters are not
replaced with a wildcard.

Now, suppose that at most (1− ǫ)m clauses of φ can be satisfied. Then, we must
have at least 3ǫm wildcards in order to have a valid matching, three wildcards for each
unsatisfied clause. These wildcards replace all three wL(c) characters in an unsatisfied
clause c.

If we replace all the dollar signs from the beginning with a wildcard the number
of wildcards used is n + m, which is not optimal. If we replace with wildcards a
block of 13 $’s which separates the variable gadgets, then you can satisfy at most 13
new clauses, at a price of 13 wildcard symbols, which is not an improvement to the
strategy presented in the previous paragraph. If we replace with wildcards a block of
13 $’s which separates the clause gadgets, then you can satisfy at most 2 new clauses.
If we replace the characters w′ with wildcards, then we have to use 13 wildcards to
satisfy one clause and again the cost is too high. The last option is to try to allow a
variable to have an inconsistent assignment in order to satisfy more clauses, but to
do this we need to place at least 13 wildcards. Since a variable appears in at most 13
clauses, this, again, is not optimal.

60 Proceedings of the Prague Stringology Conference 2010

Therefore, if at most (1 − ǫ)m clauses of φ can be satisfied, then the maximum
similarity has to be less or equal to (n + m) + 26 · 13n + 26m + 26 · 13m + 2 · 13n +
13m + (1 − ǫ)4m + 3ǫm. We want:

(n + m) + 26 · 13n + 26m + 26 · 13m + 2 · 13n + 13m + (1 − ǫ)4m + 3ǫm =

(1 − σ)((n + m) + 26 · 13n + 26m + 26 · 13m + 2 · 13n + 13m + 4m)

As before, we can set m = 13n and, therefore:

(1 − σ) =
5331 − 13ǫ

5331

Therefore, the GPM problem cannot be approximated within a factor of 0.999983,
unless P = NP. ⊓⊔

5 A
√

1/OPT -approximation algorithm for Generalised
Parameterised Matching

In this section we present a
√

1/OPT -approximation algorithm for the maximum
similarity for GPM in a special case where the text is at least twice as long as the
pattern, where OPT is the maximum similarity between the pattern and any string
p′ of the same length which has a GPM match with the text.

In [6] Clifford et. al. present a
√

k/OPT -approximation algorithm for the maxi-
mum similarity for GFM, for any fixed k. Unlike GFM, for the maximum similarity
for GPM, no approximation algorithms are known.

Informally, the
√

1/OPT -approximation algorithm works as follows. We define
the length of the text t to be n and the length of the pattern to be m. We divide
the input instances in two cases, which are treated separately: if the pattern alphabet
|Σp| ≥

√
m or if it is less than

√
m. The entire procedure is described by Algorithm 1.

Algorithm 1 A
√

1/OPT approximation for maximum GPM similarity
Input: A pattern p = p1p2 . . . pm over the alphabet Σp and a text t = t1t2 . . . tn over the alphabet
Σt.

1. If |Σp| ≥
√

m, then choose a set S of
√

m distinct characters from the pattern p and find a
generalised matching using Algorithm 2 and output it.

2. If |Σp| <
√

m, then:
(a) iterate over each character c ∈ Σp and each substring s of t;

i. create a new pattern pc,s from p by replacing every character different from c with a
wildcard;

ii. compute the maximum similarity between pc,s and t using Algorithm 3.
(b) output the pattern pc,s which has the highest maximum GPM similarity with t.

In the first case, select a set S of size
√

m distinct characters from p, which also
contains pm, the last character of the pattern, and process p from left to right. We
construct a new pattern that has similarity at least

√
m to p. If pi is not in S, then

just change it to the character in t to which it is currently aligned. If it is in S,
then leave it unchanged but skip 2, 3, 4, . . . places in the text. The mapping is from
characters to themselves for those positions that are not in S and from characters to
substrings of length 2, 3, 4, for those in S. Algorithm 2 presents this process.

R.Clifford, A. Popa: (In)approximability Results for Pattern Matching Problems 61

Algorithm 2 Computes a generalised parameterised matching of a pattern p, which
has at least

√
m distinct characters, with the text t

Input: A pattern p = p1p2 . . . pm over the alphabet Σp, a set S of exactly
√

m distinct characters
from p and a text t = t1t2 . . . tn over the alphabet Σt.

1. j := 1; k := 2
2. for i = 1 to m do:

(a) If i = m match pm with tjtj+1 . . . tn. return;
(b) If pi /∈ S, then change it to character tj and match it with tj . Set j := j + 1;
(c) If pi ∈ S, then match it with the string tjtj+1 . . . tj+k−1. Set j := j + k; k := k + 1

Output: The matching between p and t.

In the latter case we fix one character in turn and we replace everything else by
a wildcard. Then, we solve the problem independently for each substring s of the
text t and then we choose the substring for which the similarity is the highest. The
similarity is computed using dynamic programming (Algorithm 3). We define the
function f(i, j) to be the best solution to the problem for t1t2 . . . tj and p1p2 . . . pi.
When the algorithm finishes, the maximum similarity is stored in f(m,n).

We finally output the pattern pc,s with the maximum similarity over all characters
and all substrings.

Algorithm 3 Computes maximum GPM similarity of a pattern pc,s with the text t

Input: A pattern pc,s = pc,s
1 pc,s

2 . . . pc,s
m over the alphabet Σp with exactly one non-wildcard character

and a text t = t1t2 . . . tn over the alphabet Σt.

f(i, j) =







0, if i = 0 or i > j

max{f(i − 1, j − 1), f(i − 1, j − 2), . . . , f(i − 1, i − 1)}, if pc,s
i 6= c

maxk{f(i − 1, j − k) + I(tj−k+1 . . . tj = s)}, if pc,s
i = c

Output: f(m,n) - the maximum GPM similarity between pc,s and t.

In order to prove the correctness of Algorithm 1 we need the following lemmas.

Lemma 13. If |t| ≥ 2|p| Algorithm 2 computes a GPM match between p and t.

Proof. The number of characters in S is
√

m. Each character which is not in S matches
only one character of the text and therefore the number of characters from the text
used is m − √

m. Characters from S use 2 + 3 + · · · +
√

m + 1 characters of the
text. Therefore, the total number of characters of the text used in the matching is
(
√

m+1)(
√

m+2)/2−1+m−√
m. Since n ≥ 2m, (

√
m+1)(

√
m+2)/2−1+m−√

m ≤
n. The matching is valid (i.e. all the characters are mapped injectively) since the
strings that are mapped to characters from S have different length. ⊓⊔
Lemma 14. Algorithm 3 computes the GPM similarity between pc,s

c and t.

Proof. We must first show that the dynamic programming procedure computes the
right function and then that it runs in polynomial time. We can see immediately
that f(0, i) = 0 ∀i because in this case the pattern is empty. Also, f(i, j) = 0 ∀i > j
because every character of the pattern must map at least one character from the text,
even if it is replaced by a wildcard. The computation of f(i, j) has two cases.

– pc,s
i 6= c. In this case we cannot increase the number of characters in our set that

can be mapped. However we know that pc,s
i is set to a wildcard and therefore we

find the maximum of the previous results for different length substrings that the
wildcard maps to.

62 Proceedings of the Prague Stringology Conference 2010

– pc,s
i = c. We can either map pc,s

i to s and increase the number of mapped characters
by one, which can only happen if tj−|sz |+1 . . . tj = s or we do the same as in the
previous case. ⊓⊔

We are now prepared to prove the main result of this section.

Theorem 15. Algorithm 1 is a
√

1/OPT -approximation algorithm if the length of t
is at least twice the length of p.

Proof. Let M be the maximum GPM-similarity over all pc,s. We know that OPT ≤
M · |Σp| since M is the maximum over all characters of p. Therefore, either M or |Σp|
have to be greater than or equal to

√
OPT . The total running time of the algorithm

is polynomial in n and m. ⊓⊔

Acknowledgments. The second author is funded by an EPSRC PhD studentship.

References

1. K. R. Abrahamson: Generalized string matching. SIAM journal on Computing, 16(6) 1987,
pp. 1039–1051.

2. A. Amir, A. Aumann, R. Cole, M. Lewenstein, and E. Porat: Function matching:
Algorithms, applications, and a lower bound, in Proceedings of the 30th International Colloquium
on Automata, Languages and Programming (ICALP), 2003, pp. 929–942.

3. A. Amir and I. Nor: Generalized function matching, in Proceedings of the 15th International
Symposium on Algorithms and Computation (ISAAC), 2004, pp. 41–52.

4. S. Arora: Probabilistic checking of proofs and the hardness of approximation problems, PhD
thesis, UC Berkeley, 1994.

5. B. S. Baker: A theory of parameterized pattern matching: algorithms and applications, in
Proceedings of the 25th Annual ACM Symposium on the Theory of Computing (STOC), 1993,
pp. 71–80.

6. R. Clifford, A. W. Harrow, A. Popa, and B. Sach: Generalised matching, in Proceedings
of the 16th International Symposium on String Processing and Information Retrieval (SPIRE),
2009, pp. 295–301.

7. J. Håstad: Some optimal inapproximability results. J. ACM, 48(4) 2001, pp. 798–859.
8. O. Keller, T. Kopelowitz, and M. Lewenstein: On the longest common parameterized

subsequence. Theoretical Computer Science, 410(51) 2009, pp. 5347–5353.
9. S. R. Kosaraju: Efficient string matching. Manuscript, 1987.

10. V. Levenshtein: Binary codes capable of correcting spurious insertions and deletions of ones.
Problems of Information Transmission, 1 1965, pp. 8–17.

11. V. Levenshtein: Binary codes capable of correcting insertions and reversals. Soviet Physics
Doklady, 10(8) 1966, pp. 707–710.

12. V. V. Vazirani: Approximation Algorithms, Springer, 2004.

