
Improving Automata Efficiency by Stretching and

Jamming

Noud de Beijer1, Loek Cleophas1,2, Derrick G. Kourie1, and Bruce W. Watson1⋆

1 FASTAR Research Group, Department of Computer Science, University of Pretoria,
0002 Pretoria, Republic of South Africa, http://www.fastar.org

2 Software Engineering & Technology Group, Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

http://www.win.tue.nl/set

nouddebeijer@gmail.com, loek@loekcleophas.com, dkourie@cs.up.ac.za,

bruce@fastar.org

Abstract. In recent years, the range of alphabet sizes typically used in applications
of finite automata has grown considerably, now ranging from DNA alphabets—whose
symbols are representable using 2 bits—to Unicode alphabets—whose symbol represen-
tation may take up to 32 bits. As automata traditionally use symbol encodings taking
8 bits, the different alphabet and symbol sizes bring up the question whether they
may be exploited to either decrease memory use for the automata’s transition tables
or to decrease string processing time. In [3], stretching and jamming were introduced
as transformations on finite automata. Given a finite automaton, we can stretch it by
splitting each single transition into two or more sequential transitions, thereby intro-
ducing additional intermediate states. Jamming is the inverse transformation, in which
two or more successive transitions are joined into a single transition, thereby remov-
ing redundant intermediate states. In this paper, we only consider a restricted form
of stretching and jamming, in which a fixed factor is used to stretch (jam) transitions
(transition paths) in a given automaton, and in which transition symbols are assumed
to be encoded as bit strings. We consider improved versions of the algorithms that were
presented in [3] for this particular form of stretching and jamming. The algorithms were
implemented in c++ and used to benchmark the transformations. The results of this
benchmarking indicate that, under certain conditions, stretching may be beneficial to
memory use to the detriment of processing time, while jamming may be beneficial to
processing time to the detriment of memory use. The latter seems potentially useful in
the case of DNA processing, while the former may be for Unicode processing.

Keywords: finite automata; transformation; split transition; join transition; transition
table size; string processing time

1 Introduction

In recent years, the range of alphabet sizes typically used in applications of finite auto-
mata has grown considerably. The alphabet typically used to be restricted to (some
subset of) the 256 symbol ASCII set or a similarly sized alphabet. Nowadays the
prevalence of data processing in bioinformatics and the frequent use of internation-
alisation in text processing have lead to the frequent use of much smaller alphabets
for DNA, RNA and proteins on the one hand and of much larger alphabets for var-
ious encodings of Unicode on the other hand. Such alphabets require quite different
numbers of bits to encode, ranging from 2 bits for DNA to up to 32 bits for cer-
tain encodings of Unicode. As automata representations typically used symbols of 8

⋆ This author is now also with the Department of Information Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa, http://www.informatics.sun.ac.za

Noud de Beijer, Loek Cleophas, Derrick G. Kourie, Bruce W. Watson: Improving Automata Efficiency by Stretching and Jamming, pp. 9–24 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

10 Proceedings of the Prague Stringology Conference 2010

bits, this begs the question whether it makes sense to consider multiple automata
transitions on symbols from e.g. a 2 bit alphabet as a single transition for a new,
larger 8 bit alphabet, or a single transition on a symbol from e.g. a 32 bit alphabet as
multiple transitions from a smaller 8 bit alphabet. The aim of such transformations
would be to either decrease memory use for the transition tables or to decrease string
processing time.

In [3], stretching and jamming were introduced as transformations on finite auto-
mata. Given a finite automaton, we can stretch it by splitting each single transition
into two or more sequential transitions, thereby introducing additional intermediate
states while decreasing the size of the alphabet. Jamming is the inverse transforma-
tion, in which two or more successive transitions are joined into a single transition,
thereby removing redundant intermediate states yet increasing the size of the alpha-
bet. Here, we mainly consider a restricted form of stretching and jamming, in which
a fixed factor is used to stretch (jam) every transition in a given automaton, and
in which transition symbols are assumed to be encoded as bit strings. We consider
slightly improved versions of the algorithms presented for this type of stretching and
jamming in [3]. The improved version of the stretching algorithm does not introduce
(additional) nondeterminism during stretching. For jamming, we consider situations
in which the original algorithm is not applicable and discuss a number of solutions for
this situation. The algorithms were implemented in c++ and used to benchmark the
transformations. Our benchmarking results indicate that, under certain conditions,
stretching may be beneficial for memory use to the detriment of processing time,
while jamming may be beneficial for processing time to the detriment of memory use.

As far as we are aware, with the exception of the earlier paper by de Beijer et
al [3], no work on this topic has been published so far, although some work on the
upper bound on the number of states [5] has been done.

2 Preliminaries

In this section we present the basic notions used in this paper. Most of the notation
used is standard (see for example [4]) but some new notation is introduced.

A deterministic finite automaton or DFA, is a 5-tuple M = (Q,Σ, δ, q0, F), where
Q is a finite set of states, Σ is the alphabet, δ : Q×Σ 9 Q is the (partial) transition

function, q0 is the initial state and F is a subset of Q whose elements are final states.
|Q| is the number of states and |Σ| is the number of elements in the alphabet, or
alphabet size.

The n-closure of an alphabet is the set of all symbols that consist of concatenating
n symbols from Σ. Σ+ is the plus-closure of the alphabet, the set of symbols obtained
by concatenating one or more symbols from Σ. We use the special alphabet B =
{0, 1}, the single bit alphabet. The n-closure of this alphabet allows us to define an
alphabet of sequences of n bits: B

n.
|Q||Σ| is the theoretical transition table size. Note that since cells represent states,

the minimum cell size is determined by the minimum space requirements to represent
a state, which is in turn determined by the total number of states. Although stretching
and jamming will change the number of states in an automaton we will assume that
the transition table cell size does not change in either transformation. We expect that
in most cases the practical effects of this assumption are unlikely to be significant.
Preliminary benchmarking results indicate that our theoretical transition table size
is indeed a good estimate for the real transition table size.

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 11

A transition in a DFA M from p to q with label a will be denoted by (p, a, q) where
(p, a, q) ∈ Q × Σ × Q and q = δ(p, a). We will also use the notation ((p, a), q) ∈ δ.

A path of length k in a DFA M is a sequence 〈(r0, a0, r1), . . . , (rk−1, ak−1, rk)〉,
where (ri, ai, ri+1) ∈ Q×Σ×Q and ri+1 = δ(ri, ai) for 0 ≤ i < k. The string, or word

a0a1 · · · ak−1 ∈ Σk is the label of the path.

The extended transition function of a DFA M , δ̂ : Q×Σ+
9 Q, is defined so that

δ̂(ri, w) = rj iff there is a path from ri to rj, labeled w.
A nondeterministic finite automaton, NFA, is a 5-tuple M = (Q,Σ, δ, q0, F), de-

fined in the same way as a DFA, with the following exception: δ : Q × Σ 9 P(Q) is
the transition function. Note that P(Q) is the powerset of Q. For present purposes,
ǫ-transitions can be ignored without loss of generality.

A transition in an NFA M from p to q with label a will also be denoted by (p, a, q)
where (p, a, q) ∈ Q × Σ × Q and q ∈ δ(p, a).

A path of length k in an NFA M is a sequence 〈(r0, a0, r1), . . . , (rk−1, ak−1, rk)〉,
where (ri, ai, ri+1) ∈ Q × Σ × Q and ri+1 ∈ δ(ri, ai) for 0 ≤ i < k.

In an NFA M , the extended transition function, δ̂ : Q × Σ+
9 P(Q), is also

defined so that rj ∈ δ̂(ri, w) iff there is a path from ri to rj, labeled w.
To stretch a transition we need to split up one symbol into 2 or more sub-symbols.

Therefore, we conceive of alphabet elements as strings of subelements (typically
bits). If alphabet element a ∈ Σ has length |a| then we number the subelements
a.0, . . . , a.(|a| − 1). Thus, if a = 0111 then a.0 = 0, a.1 = 1, a.2 = 1 and a.3 = 1.

We use square brackets to denote a substring of an alphabet element. For a ∈ Σ,
f a factor or divisor of |a| (not to be confused with a factor or substring of a word)

and 0 ≤ i < f , we use a[f, i] to denote a.(i |a|
f

) · · · a.((i + 1) |a|
f
− 1)). The length of

the substring depends on the factor f used in stretching; every substring of symbol a
has exactly length |a|/f . If there is no confusion, we sometimes leave out the factor
f and use just a[i] instead of a[f, i]. So for example, if FA0 is stretched by a factor
2 and a = 0111 (so |a| = 4), then a[0] = 01 and a[1] = 11. If FA0 is stretched by a
factor 4 then a[0] = 0, a[1] = 1, a[2] = 1 and a[3] = 1.

By definition, a word is a string of symbols over an alphabet. We also number
the individual symbols of a word. For the word w ∈ Σk, we number the individual
symbols w.0 · · ·w.(k− 1). Note that we use the same notation for the subelements of
a single symbol as for those of a word. Which of these is meant will always be clear
from the context.

3 Stretching and jamming

Stretching and jamming were first defined in [3] and [2]. There, successively more
restrictive definitions of stretching and jamming were provided, starting from general
definitions, via stretching or jamming by a fixed factor per automaton, to stretching
and jamming at the bit level (i.e. relying on the fact that characters are typically
encoded as or represented by bit strings). Here, we present the transformations suc-
cinctly yet informally, focusing on the last, most restricted and practical kind of
stretching and jamming.

One way in which we can stretch an automaton is by splitting each transition into
k sequential transitions. This stretching operation on a single transition is pictured
in Figure 1.

12 Proceedings of the Prague Stringology Conference 2010

p qa

p i0 i1 ik−2
q

a0 a1 ak−1

Figure 1. Stretching transition (p, a, q) into k sequential transitions.

In this example we see that transition (p, a, q) is stretched into k sequential tran-
sitions and k − 1 new states are introduced. In this sequence of transitions we call p
and q the original states, and i0, . . . , ik−2 the additional intermediate states.

Jamming is the inverse transformation, in which k sequential transitions are joined
into a single transition. In Figure 1 this can be seen as performing a transformation
in the opposite direction to stretching. This means that the intermediate states are
removed. In the case of jamming we call these states redundant intermediate states.

If NFA FA0 can be stretched into NFA FA1, we call FA1 a stretch of FA0. The
set of states of FA1 consists of a subset S1 of original states and a subset I of newly
introduced additional intermediate states. Stretching requires

– An injection τ from the alphabet of FA0, Σ0, to Σ+

1 , the plus-closure of the al-
phabet of FA1.

– A bijection ϕ between the original states of FA0 and the original states of FA1.
This bijection connects the start states of FA0 and FA1 and defines a one-to-one
relationship between the final states of both automata. It also ensures that for
every transition from state p to q with label a in FA0 there exists a path from
ϕ(p) to ϕ(q) with label τ(a) in FA1, which travels from ϕ(p) in S1 via a number
of intermediate states to ϕ(q) in S1. The inverse of this property is also true.

We define jamming as the inverse transformation of stretching.
If NFA FA0 is jammed into NFA FA1 (FA1 is a jam of FA0) then FA0 is a stretch of

FA1. The set of states of FA0 consists of a subset S0 of original states and a subset R
of redundant intermediate states. These redundant intermediate states are removed
by the jamming transformation.

The preceding requirements are very general, in that they allow every single tran-
sition to be stretched into a different number of sequential transitions—i.e. k can have
a different value for every single transition of the original automaton. We therefore
restrict stretching (and hence jamming) to stretching (jamming) by a fixed factor f :

If NFA FA0 is stretched by a factor f into NFA FA1, we call FA1 an f-stretch of
FA0. This means that the relation τ specialises to a one-to-one relationship between
the alphabet of FA0 and the f -closure of the alphabet of FA1. Furthermore, for each
transition in FA0 there are exactly f sequential transitions in FA1.

Jamming by a factor f is defined analogously to stretching by a factor f . Note
that, by definition, jamming by a factor f is not always possible. NFA FA0 can only
be jammed if there exists an NFA FA1 which can be stretched into FA0. In such a
case, we call FA0 an f-jam of FA1. In Section 3.2 we consider this problem as well as
some possible solutions to it.

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 13

As indicated in the introduction, alphabet symbols are typically represented as or
encoded by a sequence of bits. We therefore only consider automata in which each
element of the alphabet is a bit string. An n-bit automaton is an automaton whose
alphabet consists of all the 2n bit strings of length n.

Property 1. Let f be a factor of n. Then we can f -stretch the n-bit DFA FA0 into
NFA FA1 in the following way:

– FA1 is an n
f
-bit NFA.

– There is a bijection between Σ0 and Σf
1 i.e. for every bit string of length n in Σ0

there is a sequence of f bit strings of length n
f

in Σf
1 and vice versa.

– For every transition in FA0 there are f sequential transitions in FA1, obeying the
above bijection between Σ0 and Σf

1 for the labels of the transitions.

Of course, this specialisation of stretching is only allowed if n is divisible by f . In
that case we call the DFA f-stretchable. Again, jamming is the inverse transformation:
if an n-bit NFA is f-jammable, the resulting automaton is an nf-bit DFA.

Example 2. To illustrate the stretching of n-bit automata we give an example. The
2-bit DFA FA0 of Figure 2 can be stretched by a factor 2 into the 1-bit NFA FA1 of
Figure 4. (We leave out the explicit definition of τ and ψ, both of which are implicitly
defined by the figures.) Also, the 1-bit NFA FA1 can be jammed into the 2-bit DFA
FA0.

a

b

c

d

e

00

01

10

11

Figure 2. DFA FA0

00 01 10 11
a b c - -
b - - d e
c - - - -
d - - - -
e - - - -

Figure 3. Transition table of DFA FA0

a

b

c

d

e
i0

i1

i2

i3
0

0

0
1

1
0

1
1

Figure 4. NFA FA1, a 2-stretch of DFA
FA0

0 1
a {i0,i1} -
i0 {b} -
i1 - {c}
b - {i2,i3}
i2 {d} -
i3 - {e}
c - -
d - -
e - -

Figure 5. Transition table of NFA FA1

Note that in the previous example, we stretched a transition by using the most
significant bit (MSB) first. For example, we stretched transition (a, 01, c) into (a, 0, i1)
and (i1, 1, c), taking the 0 first and then the 1. In practice, we will often use the least
significant bit (LSB) first. This is due to the little-endianness of processor architec-
tures such as the Intel x86 family. As this choice only has a minor influence on the
stretching and jamming algorithms, it will not be considered further in this paper.

14 Proceedings of the Prague Stringology Conference 2010

3.1 Stretching and nondeterminism

We can stretch NFAs as well as DFAs. In general, NFAs can be stretched and the
result of such transformations will also be NFAs. Because DFAs are a subset of NFAs,
the stretching of DFAs is automatically defined.

If we stretch a DFA, in some cases the resulting automaton may have more than
one transition with the same label from a given state and therefore the result of
stretching a DFA might be an NFA. This is apparent in the example, in which our
choice of τ(00) = 0 · 01 and τ(01) = 0 · 1 causes two outgoing transitions with label
0 from state a to appear in FA1 resulting from stretching FA0. Therefore FA1 is an
NFA. Because of symmetry, if we jam certain NFAs the result will be a DFA.

We can easily prevent the introduction of such (additional) nondeterminism by
checking for already created transitions during the stretching process, and following
such transitions whenever possible. The stretching algorithm in Section 4 uses this
approach.

3.2 Jamming and path lengths

Because of the symmetry in our definitions of stretching and jamming, jamming is
only defined on the subset of NFAs that are stretched NFAs. This means that some
NFAs are not jammable. For example, the NFA in Figure 6 clearly is not a stretched
NFA and can therefore not be jammed according to the earlier definition.

a b c0 1

0

Figure 6. NFA FA0 = ({a, b, c}, B, δ0, a, {c})

Let us now consider how to jam any NFA by a factor f . If we want to jam NFA
FA0 by a factor f into NFA FA1, we essentially want to make f transitions in one
step, instead of one transition at a time. We can achieve this if we find all paths of
length f from the start state q0 to states t0, . . . , ti. Then we can add all transitions
(q0, wj, tj) to FA1, where wj is the label of the path from q0 to tj, (0 ≤ j ≤ i). Next,
we repeat the same process for states t0, . . . , ti, and so on until no more new states
are found.

Unfortunately, a transition added to the jammed NFA, FA1, cannot always be
guaranteed to represent a path whose length is f . For example, if there is an (ex-
tendable or non-extendable) path of length m (m < f), in FA0 from state s to a final
state t with label w, the path with label w to this final state must be added in order
to accept the word with label w in the jammed NFA. In the example in Figure 6, this
occurs if we want to jam the automaton by say f = 2, as there is a path of length 1
from state a to final state c. We can solve this problem by creating a special final state
⊥ in FA1 with no outgoing transitions. Then we can add transition (s, w$f−m,⊥) to
FA1, where $f−m is used as padding to make the label w$f−m exactly size f .

To illustrate this new approach to jamming an NFA, we give an example.

1 Note that argument 00 represents a single symbol from the original automaton’s alphabet.

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 15

Example 3. NFA FA0 of Figure 7(a) can be jammed by a factor 2 into NFA FA1 of
Figure 7. We do this by finding all paths of length 2, as described before. For example,
if we look at all such paths from state a in FA0 we find a path with label 00 to state a
itself, one with label 00 to state b, and one with label 01 to state c. If we look at the
paths of length 2 from state b in FA0 we find that on the path with label 11 ending
in state c, c also occurs as a final state inside the path. Therefore, we have to add a
transition to FA1 from state b to state ⊥ with label 1$.

a b c

0

0 1

1

1

(a) NFA FA0 = ({a, b, c}, B, δ0, a, {c})

a b c

⊥

00

00

01
11

11

1$ 11

10

1$

10

11

(b) NFA FA1 = ({a, b, c, ⊥}, B2 ∪
{0$, 1$}, δ1, a, {c,⊥})

Figure 7. NFA FA0 and NFA FA1, a 2-jam of FA0

The main disadvantage of the above solution is that substrings of input strings are
not always recognised. For example, if the bit string 0111 is used as input for FA0 of
the previous example, both 0111 and its proper substrings 01 and 011 are accepted.
However, if the same bit string is used as input for FA1 only the bit string itself and
the single proper substring 01 are accepted. The substring 011 is not accepted in
this case because 2-bit value 01 leads to state c and subsequently 11 leads back to
state a again—since we jammed by a factor of 2, no transition on the single original
symbol 1 from state c exists and the match for 011 is not detected. This would make
jamming unsuitable for cases where substrings must always be recognised e.g. for
pattern matching. Various solutions to this secondary problem exist:

– One option is to not only process each jammed symbol s = s0 . . . sf−1, but also
the f − 1 padded prefix symbols s0 . . . sf−1−m$m for all m (1 ≤ m < f)—i.e. the
f − 1 padded prefixes of s’s encoding. Clearly, this would completely negate any
savings in string processing time one would hope to achieve in the first place by
using jamming.

– A second option would be to mark states that have outgoing transitions on not
only a jammed symbol s, but also on one or more of its f−1 padded prefix symbols.
Upon reaching such a marked state, before continuing with regular processing of
the next padded symbol from the input, say s, the state’s outgoing transitions on
padded prefix symbols should be processed to see whether they lead to accepting
states.

– A third option is a variant of the second one, in which, instead of marking the
state having the outgoing transition on jammed symbol s, the state to which this
transition leads is marked. This state could then simply be annotated with exactly
those of the padded prefix symbols derived from s that should be accepted.

16 Proceedings of the Prague Stringology Conference 2010

Although our current implementation and benchmarking results do not take the
above problems into account, it seems relatively straightforward to implement the
solution with the third option indicated above. We plan to do so as part of more
extensive benchmarking.

4 Algorithms

4.1 Stretch Algorithm

In this section we present an algorithm to stretch an n-bit DFA by a factor f . This
algorithm can easily be generalised to an algorithm that can stretch NFAs.

As indicated before, to stretch an automaton, we stretch each single transition
into f sequential transitions. Therefore, our algorithm must find each transition in
the automaton. This is done using a variant of the well known Breadth-First Search

(BFS) [1, Section 22.2]. Algorithm 5 starts in the start state and finds all outgoing
transitions. All found transitions are stretched and added to the stretched DFA. This
process is repeated for all states and transitions that are found by the algorithm.
In the algorithm, set I represents the intermediate states added, queue Q is used
to enqueue the ‘grey’ states as per the BFS algorithm, and set V represents the
‘non-white’ states as per that algorithm.

As indicated before, naive stretching of an automaton may introduce (additional)
nondeterminism. In our algorithm, we prevent this from happening. If we have to add
a transition with label a from a state p but such a transition exists already, then we
do not add it but instead we take the existing transition. We continue with this until
we have to add a transition that does not exist already. The innermost do-loop in
Algorithm 5 takes care of this process.

Property 4. Let FA0 = (S0, Σ0, δ0, q0, F0) be an n-bit DFA. Algorithm 5 will Stretch
FA0 by a factor f into n

f
− bit DFA FA1 = (S1, Σ1, δ1, q1, F1).

Algorithm 5 (STRETCH(FA0, FA1, f))

Pre : n ∈ Z
+ ∧ f ∈ Z

+\{1} ∧ n mod f = 0
Post : FA1 is an f -stretch of FA0

|[Q, V := ∅, ∅
;S1 := S0

;q1 := q0

;F1 := F0

;Σ1 := B
n
f

;δ1 := ∅
;enqueue(q0, Q)
;do Q 6= ∅ →

p := dequeue(Q)
;for all q, a : q = δ0(p, a) →

spq
0 := p

;i := 0
;do δ1(s

pq
i , a[i]) 6= ∅ → spq

i+1 := δ1(s
pq
i , a[i])

;i := i + 1

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 17

od
; let spq

i+1, . . . , s
pq
f−1

be new states
;I := I ∪ {spq

i+1, . . . , s
pq
f−1

}
;spq

f := q
;for j := i to f − 1 → δ1 := δ1 ∪ {((spq

j , a[j]), spq
j+1)} rof

;as q /∈ V → V := V ∪ {q}; enqueue(q,Q) sa
rof

od
]|

Proof. We need to prove that algorithm 5 will correctly stretch FA0.

– We have to prove there exists a bijection τ : Σ0 ↔ Σf
1 . Because Σf

1 = (B
n
f)f =

B
n = Σ0, there is a trivial bijection between the two sets. Intuitively, we can see

that every bit string of length n can be constructed from a unique sequence of f
bit strings of length n

f
.

– After the algorithm is executed, S1 = S0, q1 = q0 and F1 = F0. Therefore there
is an obvious bijection ϕ : S0 ↔ S1. Because the algorithm is based on the BFS
algorithm, all states p that are reachable from the start state are found. For each
such state p, all transitions (p, a, q) are found, for all symbols a and states q.
According to our definition of stretching, if we find transition (p, a, q) we have to

add one or more transitions such that δ̂1(p, w) = q, with τ(a) = w. We do this by
ensuring that, after stretching the transition, a path from state p to state q with
label a[0]a[1] · · · a[f − 1] exists, where a[0]a[1] · · · a[f − 1] = w. In this path, state
p and q are in set S1 and the rest of the states are in the set of intermediate states
I. DFA FA1 might already have a path from state p with label a[0], a[1] · · · a[i],
(0 ≤ i < f − 1). If this is the case, this path is followed and only the remaining
transitions are added to FA1. ⊓⊔

During a stretch operation a number of intermediate states is inserted for every
transition in the original automaton. Note that the number of states inserted by
Algorithm 5 is not necessarily minimal, as exemplified in Figure 8.

p q

00

10

p q

i0

i1

0

1

0

0

p qi0

0

1

0

Figure 8. Minimisation after a stretching operation

This problem is a standard minimisation problem for DFAs. Therefore, after
stretching a DFA, the resulting DFA can be minimised using one of the many DFA
minimisation algorithms. It is also possible to minimise incrementally, after all out-
going transitions from a certain state have been stretched.

18 Proceedings of the Prague Stringology Conference 2010

4.2 Jam Algorithm

If we want to jam NFA FA0 by a factor f into NFA FA1, we essentially want to make
f transitions in one step, instead of one transition at a time. We can achieve this if
we find all paths of length f from the start state q0 to states t0, . . . , ti. Then we can
add all transitions (q0, wj, tj) to FA1, where wj is the label of the path from q0 to tj,
(0 ≤ j ≤ i). Next, we repeat the same process for states t0, . . . , ti, and so on until no
more new states are found. To find all paths of length f from a give state p we can
use a variant of the Depth-First Search (DFS) algorithm [1].

In the original DFS algorithm a set V is used for states that have already been
found. If the search encounters a state that has already been found it does not explore
the transitions out of that state. Because we need to find all paths, we also need to
explore transitions out of states that have already been found. Therefore, instead of
using a set V of states found, we use a variable c to indicate the current depth. If the
search reaches depth f we stop searching.

Our algorithm uses a recursive procedure to search all paths of length f . The
abstract algorithm can be described concisely and can be implemented easily. It is
possible to do the search with a non-recursive procedure, using a stack to store all
states found and the paths to these states.

Algorithm 6 (JAM(FA0, FA1, f))

Pre : n ∈ Z
+ ∧ f ∈ Z

+\{1}
Post : FA1 is an f -jam of FA0

|[Q := ∅
;S1 := {⊥}
;q1 := q0

;F1 := F0 ∪ {⊥}
;Σ1 := {x$nf−ni: x ∈ B

ni, 1 ≤ i ≤ f}
;δ1 := ∅
;enqueue(q0, Q)
;S1 := S1 ∪ {q0}
;do Q 6= ∅ → q := dequeue(Q)

;JAM-PATH(FA0, FA1, Q, q0, q0, f, 0, ǫ)
od

]|

Algorithm 7 (JAM-PATH(FA0, FA1, Q, r, p, d, c, l))

Pre : r, p ∈ S0 ∧ d ∈ Z
+ ∧ c ∈ N ∧ c ≤ d ∧ l ∈ Σc

0

Post : All paths in FA0 of length d, and starting in state r,
are jammed and added to FA1

|[if c < d → as p ∈ F0 → δ1 := δ1 ∪ {((r, l$d−c),⊥)} sa
;for all q, a : q ∈ δ0(p, a) →

JAM-PATH(FA0, FA1, Q, r, q, d, c + 1, la)
rof

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 19

[] c = d → as p /∈ S1 → S1 := S1 ∪ {p}; enqueue(p,Q) sa
;δ1 := δ1 ∪ {((r, l), p)}

f i
]|

Property 8. Let FA0 = (S0, Σ0, δ0, q0, F0) be an n-bit NFA. Algorithms 6 and 7 will
jam FA0 by a factor f into nf-bit NFA FA1 = (S1, Σ1, δ1, q1, F1).

Proof. The algorithm is based on the DFS algorithm, which is used to find all paths
of length f from the start state q0. All end states of the path, or in other words, all
states that are at distance f from q0, are added to the queue and for these states the
same process is repeated recursively.

The label of each path is recorded in variable l, and every time a new transition
(p, a, q) is found, the algorithm recursively calls itself with the new label la and new
state q. This way, the algorithm recursively descends into the NFA.

Variable c indicates the current depth of the path, so if depth d = f is reached,
a path of length f from state r to state p with label l has been found. This means a
new transition (r, l, p) can be added to the jammed NFA. If a final state is found on
a path that does not have length d = f , a transition (r, l,⊥) is added to FA1, where
r is the first state of the path, l the label, and ⊥ is the special final state introduced.

Therefore, if a string is processed by the jammed NFA, it can travel any path to
a final state as it would have done in the original NFA. This means the jammed NFA
will accept the same set of strings as the original NFA.

We conclude this proof by proving the correctness of the construction of the
alphabet. The original NFA FA0 has an n-bit alphabet. The algorithm finds all paths
of length f , but on each path a final state might be found. Therefore, paths of length
1, 2, . . . , f can be found. Because each symbol in the original NFA is n bits long, a
symbol in the new alphabet can have length n, 2n,. . . , fn bits. The alphabet symbols
of the jammed NFA must have bit-length nf , therefore padding with $ symbols is
added to the alphabet symbols if they do not have length nf . ⊓⊔

5 Implementation

The (improved) algorithms for stretching and jamming as presented in the preceding
section were implemented in c++. This language was chosen for its flexibility and
efficiency, in particular in combination with the Standard Template Library (STL).

Due to the similarities between DFAs and NFAs—both conceptual and hence in
implementation as well—the implementation uses a single abstract base class FA,
which in turn uses a class TransitionTable. Both are parameterised by the type of
the cells of the transition table—i.e. State for DFAs and set<State> for NFAs. Pa-
rameterised class TransitionTable inherits from class Matrix, which in turn is further
parameterised by the type of rows and columns to be used. Clearly, for a matrix used
as a transition table, these correspond to states and alphabet symbols. In turn, such
a matrix is naturally composed of vectors, hence the use of a parameterised type Vec.

Class FA, its derived classes and class TransitionTable have a method NextState
which uses the current state (which TransitionTable keeps track of) and the next input
symbol to advance to the next state(s). They also have methods to add transitions,
resize the transition table, determine whether an automaton was created by stretching
or jamming, and to return the size of the transition table or its density.

20 Proceedings of the Prague Stringology Conference 2010

Classes DFA and NFA have a method to stretch by a factor of f , passed as
a parameter together with a boolean indicating whether LSB and MSB should be
reversed compared to the default (which on the Intel x86 architecture is LSB before
MSB). Both methods return a new DFA/NFA object containing the stretched version
of the original DFA/NFA. Class DFA also has a method to jam by a factor of f , with
similar parameters. For NFAs, jamming has not yet been implemented.

Due to a technicality, jammed DFAs use additional data structures to represent
transitions on any of the newly added padded symbols. Jammed DFAs are therefore
represented by instances of class JammedDFA instead of those of class DFA. As
jamming for NFAs is currently not implemented, no class JammedNFA is needed.

6 Benchmarking Results

We have performed preliminary benchmarking experiments using the implementa-
tions from the preceding section. Due to lack of space, we only report some of the
results here. More details on the experiments, the environment and the results can
be found in [2, Chapter 7]. The experiments were focused on stretching and jamming
of DFAs. The experiments were used to compare DFAs’ transition table memory use
and their string processing time before and after stretching and jamming. To do so,
random DFAs were generated using a (pseudo-)random number generator, and the
computed memory use of their transition tables before and after stretching or jam-
ming were compared. Random paths from these DFAs were generated to measure
the DFAs’ string processing time, both before and after stretching or jamming. The
experiments were performed on an x86 family system running a version of Linux in
single user mode, on which the implementations had been compiled using GCC 3.3.2.
String processing time was measured using the CPU’s time stamp counter. Memory
use was computed based on the state set size, alphabet size, and resulting transition
table cell size, as the STL vectors used for the transition table implementations do
not guarantee the vector sizes not to be larger than needed to store just its current
elements. (Note that memory use is still dependent on the number of intermediate
states removed by jamming or inserted by stretching and therefore varies depending
on the original DFA’s structure.)

The benchmarking was performed with a range of parameters, and for each choice
of parameter values used, 100 runs of the benchmark were performed and the mean
and variance of memory use and processing time were collected. For both stretching
and jamming, factors of 2, 4, and 8 were used, and alphabet sizes 21, 22, 24 and 28 were
used. The generated DFAs had 10, 100 or 1000 states, with stretching (jamming) ob-
viously increasing (decreasing) these numbers. Transition densities considered ranged
from 1% - 100%. As input strings, strings of 8, 16, and 32 were considered. As we
will see, not all combinations of these parameter values were used (some do not even
make sense for all experiments).

Our theoretical analyses of the effects of the two transformations were reported
in [3, Section 4] and [2, Chapter 3]. They show that stretching is expected to reduce
memory use for low transition table densities: as few intermediate states will be
introduced at such densities, this will be more than offset by the decrease in alphabet
size, and hence the theoretical transition table size |Q||Σ| will decrease. Clearly,
jamming is primarily meant to reduce string processing time and expected to do so,
while stretching is expected to increase it. In the remainder of this section we will see

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 21

how the benchmarking confirms these expectations and briefly discuss under which
conditions stretching and jamming seem practically useful.

6.1 Stretching

Memory usage for random 8−bit DFAs of 1000 states

Density (%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
e

m
o

ry
 (

b
y
te

s
)

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000

375000

400000

425000

450000

475000

500000

525000

550000

Original

2−Stretch

4−Stretch

8−Stretch

Figure 9. Memory usage results for stretching 8-bit DFAs

String processing time for random 8−bit DFAs of 1000 states, 10% density

String Length (bytes)

8 16 32

T
im

e
 (

µ
s
e

c
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.55

0.92

1.7

0.55

0.92

1.70

1.10

2.02

3.90

1.10

2.02

3.90

2.05

3.94

7.97

2.05

3.94

7.97

3.07

6.41

13.38

3.07

6.41

13.38

Original

2−Stretch

4−Stretch

8−Stretch

Figure 10. String processing time results for stretching 8-bit DFAs

Figures 9 and 10 show some of the results of the benchmarks for stretching.
Figure 10 shows the influence of stretching on string processing time for a typical
case, i.e. for 8-bit DFAs with 1000 states. Results for fewer states and higher densities
are similar, and as expected density does not influence string processing time.

Figure 9 shows the impact on memory use, again for 8-bit DFAs with 1000 states.
For 10 or 100 states, the memory use graphs are roughly the same, albeit with break
even points in the 4−6% and 5−9% range, respectively. (Note the seemingly counter-
intuitive high memory use of 8-stretches compared to 4-stretches. We suspect this is
caused by memory allocation issues related to alignment and packing of objects, as
well as the memory consumption reporting mechanisms used.) For 4-bit DFAs, the
break even points are somewhat higher, ranging from 12 − 19% depending on the
number of states and stretch factor used. We therefore expect that benchmarking
DFAs using larger symbols such as typically needed for applications of Unicode will

22 Proceedings of the Prague Stringology Conference 2010

show that if such automata are of low density, memory use can be reduced manifold
by stretching, even if just stretching by a factor of 2. Since applications of Unicode in
automata tend to lead to large memory use because of the large number of symbols,
this might be a worthwhile avenue to explore further.

6.2 Jamming

M
e
m

o
ry

 (
b
y
te

s
)

0

1500

3000

4500

6000

7500

9000

10500

12000

13500

15000

16500

18000

19500

21000

Density (%)

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Original

2−Jam

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000
Memory usage for random 2−bit DFAs of 1000 states

4−Jam

Figure 11. Memory usage results for jamming 2-bit DFAs

String processing time for random 2−bit DFAs of 100 states, 70% density

String Length (bytes)

8 16 32

T
im

e
 (

µ
s
e

c
)

0

1

2

3

4

5

6

1.34

2.57

5.03

1.34

2.57

5.03

0.97

1.78

3.45

0.97

1.78

3.45

0.41

0.72

1.35

0.41

0.72

1.35

Original

2−Jam

4−Jam

Figure 12. String processing time results for jamming 2-bit DFAs

Figures 11 and 12 show some of the results for jamming. Figure 11 shows the
impact of jamming on memory use, for the case of 2-bit DFAs of 1000 states. Results
for fewer states and smaller alphabets are again roughly similar. What stands out
immediately is the horizontal upper bound in the range of memory usage for all three

N. de Beijer et al.: Improving Automata Efficiency by Stretching and Jamming 23

factors of jamming. This is easily explained though, as even though jamming has the
potential to reduce the number of states by removing redundant intermediate states,
in the worst case no such states exist, while the alphabet size is always increased by
jamming. The average memory use approaches the upper bound as density increases,
as the likelihood of states being redundant decreases with an increase in transition
density. (Note that the fact that transition density does not start at 0% but starts
above 25% is due to our requirement that the DFAs generated be connected.)

Figure 12 clearly shows how jamming improves string processing time by 40−45%
when 2-jamming and reduces it by a further 2.3 − 2.6 times when comparing this to
4-jamming—i.e. by 3.2−3.7 times in total when going from the original 2-bit symbols
to 8-bit symbols. As the DNA alphabet corresponds to a 2-bit alphabet, the results
show the potential of using jamming for such an alphabet, provided memory use is
not an issue at all or transition density is not too high.

7 Conclusions and Future Work

We have presented stretching and jamming and given improved versions of the algo-
rithms from [3], which prevent nondeterminism from being introduced during stretch-
ing. Furthermore, we have sketched solutions to prevent jammed automata from no
longer detecting all matches the underlying original automata would detect. The pre-
liminary benchmarking studies reported here and in [2], for the case of DFAs, confirm
our theoretical analysis from [3]: while jamming increases memory use, particularly
for DFAs with a high transition table density, it reduces string processing time drasti-
cally. Conversely, stretching increases string processing time considerably, but reduces
memory use for DFAs with a low transition table density.

Our benchmarking results can be extended in multiple directions. Although the
benchmarking we performed already covers DNA and protein alphabets (which need
between 2 and 5 bits to represent a symbol), it does not cover Unicode alphabets
(needing up to 32 bits to represent a symbol). Extending the experiments to such
alphabets could therefore be considered. In particular, with an eye on when and
how to apply the transformations in practice, experiments with DFAs from practical
applications in DNA and Unicode text processing should be performed. In particular,
it should be investigated whether the increased memory use when jamming DNA
automata is acceptable when dealing with the amount of data resulting from current
high throughput DNA sequencing technologies. Furthermore, the experiments could
be extended to cover NFAs in addition to DFAs, using the solutions we sketched for
the match detection problem.

There are a number of additional problems that can be investigated further. We
only considered stretching or jamming the complete transition table. Transforming
only a small part of the transition table, in other words local stretching and jamming,
is an interesting problem for further research. So is the use of stretching and jamming
when sparse matrices are used to represent low density transition tables.

References

1. T. Cormen, C. Leiserson, and R. Rivest: Introduction to algorithms, McGraw-Hill, 2001.

2. A. de Beijer: Stretching and jamming of automata, Master’s thesis, Eindhoven University of
Technology, 2004.

24 Proceedings of the Prague Stringology Conference 2010

3. N. De Beijer, B. W. Watson, and D. G. Kourie: Stretching and jamming of automata, in
SAICSIT ’03: Proceedings of the 2003 annual research conference of the South African institute
of computer scientists and information technologists on Enablement through technology, South
African Institute for Computer Scientists and Information Technologists, 2003, pp. 198–207.

4. J. Hopcroft, R. Motwani, and J. Ullman: Introduction to automata theory, languages, and

computation, Addison-Wesley, 2001.
5. B. Melichar and J. Skryja: On the size of deterministic finite automata., in Proc. of the

Sixth International Conference on Implementation and Application of Automata (CIAA 2001),
B. Watson and D. Wood, eds., vol. 2494 of LNCS, Pretoria, South Africa, July 2001, pp. 202–213.

