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Abstract. Denote by sq(w) the number of distinct squares in a string w and let S
be the class of standard Sturmian words. They are generalizations of Fibonacci words
and are important in combinatorics on words. For Fibonacci words the asymptotic
behaviour of the number of runs and the number of squares is the same. We show
that for Sturmian words the situation is quite different. The tight bound 8

10
|w| for the

number of runs was given in [3]. In this paper we show that the tight bound for the
maximal number of squares is 9

10
|w|. We use the results of [11] where exact (but not

closed) complicated formulas were given for sq(w) for w ∈ S and we show:

(1) for all w ∈ S sq(w) ≤ 9

10
|w| + 4,

(2) there is an infinite sequence of words wk ∈ S such that

lim
k→∞

|wk| = ∞ and lim
k→∞

sq(wk)

|wk|
=

9

10
.

Surprisingly the maximal number of runs is reached by the words with recurrences of
length only 5. This contrasts with the situation of Fibbonaci words, though standard
Sturmian words are natural extension of Fibonacci words. If this length drops to 4,
the asymtotic behaviour of the maximal number of squares falls down significantly
below 9

10
|w|. The structure of Sturmian words rich in squares has been discovered by

us experimentally and verified theoretically. The upper bound is much harder, its proof
is not a matter of simple calculations. The summation formulas for the number of
squares are complicated, no closed formula is known. Some nontrivial reductions were
necessary.

1 Introduction

A square in a string is a subword of the form ww, where w is nonempty. The squares
are a simplest form of repetitions, despite the simple formulation many combinato-
rial problems related to squares are not well understood. The subject of computing
maximal number of squares and repetitions in words is one of the fundamental topics
in combinatorics on words [18,22] initiated by A. Thue [28], as well as it is important
in other areas: lossless compression, word representation, computational biology, etc.
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Let sq(w) be the number of distinct squares in the word w and sq(n) be the
maximal number of distinct squares in the word of length n. The behaviour of the
function sq(n) is not well understood, though the subject of squares was studied by
many authors, see [9,10,17]. The best known results related to the value of sq(n) are,
see [13,15,16]:

n − o(n) ≤ sq(n) ≤ 2n − O(log n).

In this paper we concentrate on the asymptotic behaviour of the maximal number of
squares in class of standard Sturmian words S. We show: for all w ∈ S sq(w) ≤ 9

10
|w|

and there is an infinite sequence of strictly growing words {wk} ∈ S such that

lim
k→∞

sq(wk)

|wk|
=

9

10
.

There are known efficient algorithms for the computation of integer powers
in words, see [2,6,11,23,24]. The powers in words are related to maximal repeti-
tions, also called runs. It is surprising that the known bounds for the number of
runs are much tighter than for squares, this is due to the work of many people
[3,7,8,14,19,20,25,26,27].

One of interesting questions related to squares is the relation of their number to
the number of runs. In case of Fibonacci words the number of squares and runs differ
only by 1.

The results of this paper show that the maximal number of squares and the max-
imal number of runs are possibly not closely related, since in case of well structured
words (Sturmian words) the density ratio of squares (the asymptotic quotient of the
maximal number of squares by the size of the string) is 9

10
and for runs it is 8

10
.

2 Standard Sturmian words

The standard Sturmian words (standard words, in short) are generalization of Fi-
bonacci words and have a very simple grammar-based representation which has some
algorithmic consequences.

Let S denote the set of all standard Sturmian words. These words are defined over
a binary alphabet Σ = {a, b} and are described by recurrences (or grammar-based
representation) corresponding to so called directive sequences: integer sequences

γ = (γ0, γ1, . . . , γn),

where γ0 ≥ 0, γi > 0 for 0 < i ≤ n.

The word xn+1 corresponding to γ, denoted by Sw(γ), is defined by recurrences:

x−1 = b, x0 = a,

x1 = x
γ0

0 x−1, x2 = x
γ1

1 x0,

. . . . . .

xn = x
γn−1

n−1 xn−2, xn+1 = xγn

n xn−1.

(1)

Fibonacci words are standard Sturmian words given by the directive sequences
of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds to a sequence of



M. Pia֒tkowski, W. Rytter: Asymptotic Behaviour of the Maximal Number of Squares in. . . 239

n ones). We consider here standard words starting with the letter a, hence assume
γ0 > 0. The case γ0 = 0 can be considered similarly.

For even n > 0 a standard word xn has the suffix ba, and for odd n > 0 it has the
suffix ab. The number N = |xn+1| is the (real) size, while n+1 can be thought as the
compressed size.

Example 1.

Consider directive sequence γ = (1, 2, 1, 3, 1). We have:

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab

x−1 = b, x0 = a, x1 = x1
0x−1 = a b, x2 = x2

1x0 = ab ab a,

x3 = x1
2x1 = ababa ab, x4 = x3

3x2 = ababaab ababaab ababaab ababa,

x5 = x1
4x3 = ababaabababaabababaabababa ababaab

The grammar-based compression consists in describing a given word by a context-
free grammar G generating this (single) word. The size of the grammar G is the
total length of all productions of G. In particular each directive sequence of a stan-
dard Sturmian word corresponds to such a compression – the sequence of recurrences
corresponding to the directive sequence. In this case the size of the grammar is pro-
portional to the length of the directive sequence.

For some lexicographic properties and structure of repetitions of standard Stur-
mian words see [5,3,1,4].

3 Summation formulas for the number of squares

The exact formulas for the number of squares in standard Sturmian words were given
by Damanik and Lenz in [11]. In this section we reformulate their formulas to have
compact version more suitable for the asymptotic analysis. The formulas are rather
complicated and such an analysis is nontrivial. It will be done in the section 5.

Denote qi = |xi|, where xi are as in equation (1). The following lemma charecterize
the possible lengths of periods of squares in Sturmian words.

Lemma 2. ([11])
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Each primitive period of a

square in w has the length kqi for 1 ≤ k ≤ γi or kqi + qi−1 for 1 ≤ k < γi.

The squares in standard Sturmian word w with period of the length kqi for 1 ≤
k ≤ γi or kqi + qi−1 for 1 ≤ k < γi are said to be of type i.

Example 3.

Consider the word from Example 1:

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.

We have:

one square of type 0: a·a,

three squares of type 1 (period 2, 3): ab·ab, ba·ba, aba·aba,

three squares of type 2 (period 5): ababa·ababa, babaab·babaab, abaab·abaab,

and eleven squares of type 3 (with periods 7,14):
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ababaab·ababaab, babaaba·babaaba, abaabab·abaabab, baababa·baababa,

aababab·aababab, abababa·abababa, bababaa·bababaa,

ababaabababaab·ababaabababaab, babaabababaaba·babaabababaaba,

abaabababaabab·abaabababaabab, baabababaababa·baabababaababa.

Let sqi(γ0, γ1, . . . , γn), for 1 ≤ i ≤ n, be the number of squares of the type i and
let sq0(γ0, γ1, . . . , γn) be the number of squares with period of the form a+ in the
word Sw(γ0, γ1, . . . , γn).

We slightly abuse the notation and denote sq(γ0, γ1, ..., γn) = sq
(

Sw(γ0, γ1, ..., γn)
)

.

Denote d(0) =
⌊

γ0+1

2

⌋

and for 1 ≤ i ≤ n and γ = (γ0, γ1, . . . , γn):

d1(i) =

{

γi

2
qi + qi−1 − 1 for even γi

γi

2
qi + 1

2
qi for odd γi

d(i) = d1(i) + γi qi − qi − γi + 1.

Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then sq(γ0, γ1, . . . , γn) is
determined as follows, see [11]:

Summation formulas:

(1) sq(γ0, γ1, . . . , γn) =
∑n

i=0
sqi(γ0, γ1, . . . , γn).

(2) (0 ≤ i ≤ n − 3) or (i = n − 2 & γn ≥ 2) ⇒ sqi(γ) = d(i).

(3) γn = 1 ⇒ sqn−2(γ) =

{

d(n − 2) − qn−3 + 1 for even γn−2

d(n − 2) − qn−2 + qn−3 + 1 otherwise

(4) γn = 1 ⇒ sqn−1(γ) =

{

d1(n − 1) − qn−2 + 1 for even γn−1

d1(n − 1) − qn−1 + qn−2 − 1 otherwise

(5) γn > 1 ⇒ sqn−1(γ) =

{

d(n − 1) − qn−2 + 1 for even γn−1

d(n − 1) − qn−1 + qn−2 − 1 otherwise

(6) sqn(γ) =

{

d1(n) − qn + 2 for even γn

d1(n) − qn otherwise
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4 Sturmian words with many squares

In this section we present and analyse the sequence {wk} of Sturmian words achieving
asymptotically maximal ratio:

lim
k→∞

|wk| = ∞ and lim
k→∞

squares(wk)

|wk|
=

9

10
.

Recall that the squares with periods kqi for 1 ≤ k ≤ γi or kqi + qi−1 are said to
be of the type i.

Consider the words
wk = Sw(k, k, 2, 1, 1).

Example 4.

w1 = Sw(1, 1, 2, 1, 1) = (aba)2ab(aba)3ab,

w2 = Sw(2, 2, 2, 1, 1) =
(

(aab)2a
)2

aab
(

(aab)2a
)3

aab,

w3 = Sw(3, 3, 2, 1, 1) =
(

(aaab)3a
)2

aaab
(

(aaab)3a
)3

aaab.

Sw(3, 3, 2, 1, 1) is illustrated in Figure 1.

a a a ba a a b a a a b a a a a ba a a b a a a b a a a a b a a a b a a a b a a a ba a a a b a a a ba a a ba a a a b a a a ba a a ba a a a b
1 1 0

1 1 0

2

3

2

Figure 1. The squares in word Sw(3, 3, 2, 1, 1) with their shifts and types.

Theorem 5.
We have sq(k, k, 2, 1, 1) −→ 9

10
·
∣

∣

∣
Sw(γ0, γ1, . . . , γn)

∣

∣

∣
for k −→ ∞.

Proof.

Let γ = (k, k, 2, 1, 1). We have:

Sw(γ) =
(

(akb)ka
)2

akb
(

(akb)ka
)3

akb

and
|Sw(γ)| = 5k2 + 7k + 7.

We compute separately the number of squares for each type 0 ≤ i ≤ 4.

There are two cases depending on the parity of k and we can assume that k > 1.
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Case 1: k is odd.

We have (according to our formulas):

sq0(γ) =
1

2

(

k + 1
)

,

sq1(γ) =
1

2

(

3k2 + 1
)

,

sq2(γ) = 2k2 + 2k + 1,

sq3(γ) = k2 + k,

sq4(γ) = 0,

sq(γ) =
1

2

(

9k2 + 7k + 4
)

.

Finally

lim
k→∞

sq(γ)

|Sw(γ)|
= lim

k→∞

9k2 + 7k + 4

10k2 + 14k + 14
= 0.9 .

Case 2: k is even.

We have (according to our formulas):

sq0(γ) =
1

2
k,

sq1(γ) =
1

2

(

3k2 − k
)

,

sq2(γ) = 2k2 + 2k + 1,

sq3(γ) = k2 + k,

sq4(γ) = 0,

sq(γ) =
1

2

(

9k2 + 6k + 2
)

.

Finally

lim
k→∞

sq(γ)

|Sw(γ)|
= lim

k→∞

9k2 + 6k + 2

10k2 + 14k + 14
= 0.9.

This concludes the proof.

5 Asymptotic behaviour of the maximal number of squares

The formulas (1-6) from the section 3 give together the value of sq(γ), however there
is no close simple formula. Therefore tight asymptotic estimations are nontrivial. We
start with an estimation for short γ. The proof of the following simple lemma is
omitted in this version.

Lemma 6. [Short γ]
sq(γ0, γ1, γ2) ≤

7

3
|Sw(γ0, γ1, γ2)| and sq(γ0, γ1, γ2) ≤ |Sw(γ0, γ1, γ2)| − 4.
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For a word w of length at least 2 denote by exch2(w) the word resulting from w by
exchanging the last two letters.

Lemma 7. sq(w) ≤ sq
(

exch2(w)
)

+ 4.

Proof.

It is known, see [13], that there are at most two last occurrences of different squares at
a single position in a string. If we reverse the word then this corresponds to the end-
positions of the first occurrences. Hence at the last two positions at most 4 different
squares can end which do not appear earlier in the same word with the last two letters
removed. This completes the proof.

The next two lemmas allows us to restrict the values of last two elements of the
directive sequence in the asymptotic estimation of sq(γ).

Lemma 8. [Reduction of γn]
Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. If γn > 1 then

sq(γ0, . . . , γn−1, γn) ≤ sq(γ0, . . . , γn−1, γn − 1, 1) + 4.

Proof.

The words Sw(γ0, . . . , γn − 1, 1) and Sw(γ0, . . . , γn) differ only on the last two letters,
see [18]. Hence

Sw(γ0, . . . , γn − 1, 1) = exch2

(

Sw(γ0, . . . , γn)
)

.

Now the thesis follows from the Lemma 7.

Lemma 9. [Reduction of γn−1]
Let x = SW (γ0, . . . , γn−2, γn−1, 1), x′ = SW (γ0, . . . , γn−2, 1, 1),
x′′ = SW (γ0, . . . , γn−2, 2, 1).
Then

(

sq(x′) ≤
9

10
|x′| and sq(x′′) <

9

10
|x′′|

)

⇒ sq(x) ≤
9

10
|x|.

Proof.

If γn−1 is odd then let ∆ = γn−1 − 1 otherwise let ∆ = γn−1 − 2.
Consider what happens when we change γn−2 by the quantity ∆.
The increase of the number of squares is ∆

2
qn−1, while the increase in the length of

the word is ∆ qn−1. The increase of squares is amortized by half of the increase of the
length. Therefore we can subtract ∆ from γn−1.

Observation

d(i) ≤























(

3

2
γi − 1

)

qi + qi−1 − 1 for even γi

(

3

2
γi −

1

2

)

qi for odd γi



244 Proceedings of the Prague Stringology Conference 2009

Lemma 10.
For 2 ≤ r ≤ n − 3 we have

r
∑

i=0

d(i) <
3

2
qr+1 + qr.

Proof.

According to the observation above and implication

γi ≥ 2 ⇒ qi−1 − qi < −
1

2
qi,

we have:

d(i) ≤
3

2
γi qi −

1

2
qi.

Observe now that γi qi = qi+1 − qi−1. Hence for r ≥ 2:

r
∑

i=1

γi qi = qr+1 + qr − q0 − q1.

Consequently

r
∑

i=0

d(i) < d(0) +
3

2

r
∑

i=1

γi qi −
1

2
qr

≤ d(0) +
3

2

(

qr+1 + qr − q0 − q1

)

−
1

2
qr

≤
3

2
qr+1 + qr.

This completes the proof.

Now we are ready to prove the tight bound for the number of squares in standard
Sturmian words.

Theorem 11.
Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then

sq(γ0, γ1, . . . , γn) ≤
9

10
·
∣

∣

∣
Sw(γ0, γ1, . . . , γn)

∣

∣

∣
+ 4.

Proof.

First assume that:

γn = 1 and γn−1 ∈ {1, 2}

Let us shorten the notation and denote:

A = qn−2, B = qn−3, α = γn−2.

We have, due to Lemma 10, the following fact (in terms of A and B):
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Claim 1.
n−3
∑

i=0

sqi(γ) =
n−3
∑

i=0

d(i) ≤
3

2
A + B.

This, together with the fact that sqn(γ0, γ1, . . . , γn−1, 1) = 0, implies:

Claim 2.

sq(γ) ≤ Φ(γ)
def
=

3

2
A + B + sqn−1(γ) + sqn−2(γ).

Our goal is to prove the inequality

Φ(γ) ≤
9

10
|w|.

Using our terminology we can write:

(a)
∣

∣Sw(γ)
∣

∣ =

{

2 α A + A + 2B for γn−1 = 1
3 α A + A + 3B for γn−1 = 2

(b) sqn−2(γ) ≤

{

3

2
α A − A for even γn−2

3

2
α A − 3

2
A + B + 1 for odd γn−2

(c) sqn−1(γ) ≤

{

α A + B for γn−1 = 2
A − 1 for γn−1 = 1

There are 4 cases depending on γn−1 ∈ {1, 2} and the parity of α.

Case 1: (γn−1 = 1, α is even)

In this case inequality Φ(γ) ≤ 9

10
|w| reduces to:

3

2

(

α+1
)

A+B ≤
9

10

(

(2 α+1) A+2 B
)

.

This reduces to:
3

2

(

α + 1
)

≤
9

10

(

2 α + 1
)

.

The last inequality is reduced to 0.6 ≤ 0.3 α, which obviously holds for α ≥ 2.

This completes the proof of this case.
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Case 2: (γn−1 = 1, α is odd)

In this case the inequality Φ(γ) ≤ 9

10
|w| reduces to:

(

3

2
α+1

)

A+2 B ≤
9

10

(

(2 α+1) A+2 B
)

,

which holds for α ≥ 1, A > B > 0.

Case 3: (γn−1 = 2, α is even)

In this case

Φ(γ) ≤
(5

2
α +

1

2

)

A + 2 B.

Consequently the inequality Φ(γ) ≤ 9

10
|w| reduces to:

(

5

2
α+

1

2

)

A+2 B ≤
9

10

(

3 α A+A+3B
)

.

This holds since α ≥ 2, A > B > 0.

Case 4: (γn−1 = 2, α is odd)

In this case

Φ(γ) ≤
5

2
α A + 3 B + 1.

Now the inequality Φ(γ) ≤ 9

10
|w| reduces to:

5

2
α A + 3 B + 1 ≤

9

10

(

3 α A + A + 3B
)

.

This holds for α ≥ 1, A > B > 0.

We proved that

sq(γ0, γ1, . . . , γn−2, 1, 1) ≤
9

10
|Sw(γ0, γ1, . . . , γn−2, 1, 1)|

and

sq(γ0, γ1, . . . , γn−2, 2, 1) ≤
9

10
|Sw(γ0, γ1, . . . , γn−2, 2, 1)|.

This implies, that in general case, due to Lemma 8 and Lemma 9, we have

sq(γ0, γ1, . . . , γn) ≤
9

10
|Sw(γ0, γ1, . . . , γn)| + 4,

which completes the proof of the theorem.
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6 Final remarks

The maximal repetition (the run, in short) in a word w is a nonempty subword
w[i..j] = ukv (k ≥ 2), where u is of the minimal length and v is proper prefix
(possibly empty) of u, that can not be extended (neither x[i − 1..j] nor x[i..j + 1] is
a run with period |u|).

Let ρ(w) be the number of runs in the word w. For n-th Fibonacci word Fn we have:

sq(Fn) = 2|Fn−2| − 2,

ρ(Fn) = 2|Fn−2| − 3,

hence sq(Fn) = ρ(fn) + 1, see [12,21].

For standard Sturmian words the situation is different. We have:

ρ(w)

|w|
−→ 0.8 and

sq(w)

|w|
−→ 0.9,

see [3] for more details.

The maximal number of runs is reached for the standard Sturmian words of the
form vk = Sw(1, 2, k, k). Using the formulas (1-6) from the section 3 we have:

sq(vk) =

{

5

2
k2 + 5

2
k + 4 for even k

5

2
k2 + 5k − 5

2
for odd k

and

|vk| = 5k2 + 2k + 5,

consequently
sq(vk)

|vk|
−→

1

2
.

We have shown in the section 4 that the maximal number of squares is achieved for
the Sturmian words of the form wk = Sw(k, k, 2, 1, 1). Now we compute the number
of runs for wk using formulas from [3]. We have:

ρ(wk) = 9k + 7

and

|wk| = 5k2 + 7k + 7,

hence
ρ(wk)

|wk|
−→ 0.

The results above show that the maximal number of squares and the maximal
number of runs for standard Sturmian words are not closely related. The asymptotical
limits are close, but both are reached for different type of words.
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