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Abstract. For a given word w, all the square-free words that can be reached by suc-
cessive application of rewriting rules uu → u constitute w’s duplication root. One word
can have several such roots. We provide upper and lower bounds on the maximal num-
ber of duplication roots of words of length n that show that this number is at least
exponential in n.
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1 Repetitions and Duplication

A mutation,
.

which occurs frequently in DNA strands, is the duplication of a factor
inside a strand [19]. The result is called a tandem repeat, and the detection of these
repeats has received a great deal of attention in bioinformatics [1,20]. The recon-
struction of possible duplication histories of a gene is used in the investigation of the
evolution of a species [24]. Thus duplicating factors and deleting halves of squares
is an interesting algorithmic problem with some motivation from bioinformatics, al-
though squares do not need to be exact there. A very similar reduction was also
introduced in the context of data compression by Ilie et al. [10,11]. They, however
conserve information about each reduction step in the resulting string such that the
operation can also be undone again. In this way the original word can always be re-
constructed, which is essential for data compression. We will present their approach
in more detail in Section 3 and establish some relations between the two reductions.

So far, the interpretation of duplication as an operation on a string has mainly
inspired work in Formal Languages, most prominently the duplication closure. Dassow
et al. introduced the duplication closure of a word and showed that the languages
generated are always regular over two letters [7]. Wang then proved that this is not
the case over three or more letters [23]. These results had actually been discovered
before in the context of copy systems [8], [3]. It remains an open problem, whether
such duplication closures are always context-free or not. Later on, length bounds
for the duplicated factor were introduced [17], [15], and also the closure of language
classes under the duplication operations was investigated [12]. Finally, also a special
type of codes robust against duplications was investigated [16].

Besides considering duplication as a generative operation elongating strings, also
the effects of the inverse operation on words have been the object of investigations
[15]. Here duplications are undone, i.e. one half of them is deleted leaving behind
only the other half of the square. In this way words are reduced to square-free words,
which are in some sense primitive under this notion; this is why we call the set of all
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square-free words reachable from a given word w the duplication root of w in analogy
to concepts like the primitive root or the periodicity root of words. Duplication roots
of languages were studied already in earlier work by the present author [14].

Here we will focus on duplication roots of single words. Mainly the following
question is addressed: how many different duplication roots can a word have? We
establish an exponential lower bound for this number as well as an upper bound.
Besides any possible applications, this study of how repetitions in a sequence can be
nested follows important lines of study in Combinatorics of Words, where repetitions
have been in the center of attention from the very start in the work of Thue [22].

2 Definitions

We assume the reader to be familiar with fundamental concepts from Formal Lan-
guage Theory such as alphabet, word, and language, which can be found in many
standard textbooks like the one by Harrison [9]. The length of a finite word w is
the number of not necessarily distinct symbols it consists of and is written |w|. The
number of occurrences of a certain letter a in w is |w|a. The i-th symbol we denote
by w[i]. The notation w[i . . . j] is used to refer to the part of a word starting at the
i-th position and ending at the j-th position.

A word u is a prefix of w if there exists an i ≤ |w| such that u = w[1 . . . i]; if
i < |w|, then the prefix is called proper. The set of all prefixes is pref(w). Suffixes
are the corresponding concept reading from the back of the word to the front and
they are denoted by suff. We define the letter sequence seq(u) of a word u as follows:
any word u can be uniquely factorized as u = xi1

1 xi2
2 · · ·xiℓ

ℓ for some integers ℓ ≥ 0
and i1, i2, . . . , iℓ ≥ 1 and for letters x1, x2, . . . , xℓ such that always xj 6= xj+1; then
seq(u) := x1x2 · · ·xℓ. Intuitively speaking, every block of several adjacent occurrences
of the same letter is reduced to just one occurrence.

We call a word w square-free iff it does not contain any non-empty factor of the
form u2, where exponents of words refer to iterated catenation, and thus ui is the
i-fold catenation of the word u with itself. A word w has a positive integer k as a
period, if for all i, j such that i ≡ j(modk) we have w[i] = w[j], if both w[i] and w[j]
are defined.

For applying duplications to words we use string-rewriting systems. In our nota-
tion we mostly follow Book and Otto [2] and define such a string-rewriting system R

on Σ to be a subset of Σ∗×Σ∗. Its single-step reduction relation is defined as u →R v

iff there exists (ℓ, r) ∈ R such that for some u1, u2 we have u = u1ℓu2 and v = u1ru2.
We also write simpler just →, if it is clear which is the underlying rewriting system.

By
∗→ we denote the relation’s reflexive and transitive closure, which is called the

reduction relation or rewrite relation. The inverse of a single-step reduction relation
→ is →−1:= {(r, ℓ) : (ℓ, r) ∈ R}. Further notation that will be used is IRR(R) for
the set of words irreducible for a string-rewriting system R. With this we come to the
definition of duplications.

The string-rewriting system we use here is the duplication relation defined as
u♥v :⇔ ∃z[z ∈ Σ+ ∧ u = u1zu2 ∧ v = u1zzu2]. Notice how the symbol ♥ nicely
visualizes the operation going from one origin to two equal halves. If we have length
bounds |z| ≤ k or |z| = k on the factors to be duplicated we write ♥≤k or ♥k

respectively; the relations are called bounded and uniformly bounded duplication re-
spectively.



Peter Leupold: Reducing Repetitions 227

♥∗ is the reflexive and transitive closure of the relation ♥. The duplication closure
of a word w is then w♥ := {u : w♥∗u}. The languages w♥≤k and w♥k are defined
analogously. Because our main topic is the reduction of squares, we will mainly use
the inverse of ♥ and will denote it by

.

:= ♥−1; the notations for length-bounded
versions and iterated applications are used accordingly. Notice that for

. ≤k the length
bound does not refer to the length of the rules’ left sides, but rather to half that length.
This makes sense, because otherwise for all even k we would have

. ≤k =
. ≤k+1,

and because this way the relations
. ≤k and ♥≤k correspond. We will use a similar

convention when talking about squares. Thus we will say that a square u2 is of length
|u|; in this case u will be called the base of this square.

With this we have all the prerequisites for defining the central notion of this work,
the duplication root.

Definition 1. The duplication root of a non-empty word w is

♥
√

w := IRR(
.

) ∩ {u : w
.

∗ u}.

As usual, this notion is extended in the canonical way from words to languages such
that

♥
√

L :=
⋃

w∈L

♥
√

w.

The roots ♥≤k
√

w and ♥k
√

w are defined in completely analogous ways, and also these
are extended to entire languages in the canonical way. When we want to contrast the
duplication (root) without length bound to the bounded variants we will at times call
it general duplication (root).

When talking about the elements of a word’s duplication root, we will also call
them simply roots; no confusion should arise. Similarly, where we say “the num-
ber of roots” we mean the root’s cardinality. Though not completely correct, these
formulations are more compact and in many cases easier to understand.

Finally, notice that all words in a duplication root are square-free, and over an
alphabet of two letters only the seven square-free words {λ, a, b, ab, ba, aba, bab} exist.
They are uniquely determined by their first letter, the last letter, and the set of letters
occurring in them. Thus most problems about duplication roots are trivial unless we
have at least three letters. Therefore, unless otherwise stated, we will suppose an
alphabet of size at least three in what follows. First off, we illustrate this definition
with an example that also shows that duplication roots are in general not unique,
i.e., the set ♥

√
w can contain more than one element as we will see further on.

Example 2. By undoing duplications, i.e., by applying rules from
.

, we obtain from
the word w = abcbabcbc the words in the set {abc, abcbc, abcbabc} ; in a first step either
the prefix (abcb)2 or the suffix (bc)2 can be reduced, only the former case results in a
word with another square, which can be reduced to abc.

Thus we have the root ♥
√

abcbabcbc = {abc, abcbabc}. Exhaustive search of all
shorter words shows that this is a shortest possible example of a word with more
than one root over three letters.

Other examples with cardinalities of the root greater than two are the words
w3 = babacabacbcabacb where

♥
√

w3 = {bacabacb, bacbcabacb, bacb},
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and w5 = ababcbabcacbabcabacbabcab where

♥
√

w5 = {abcbabcabacbabcab, abcbabcab, abcacbabcab, abcabacbabcab, abcab},

As the examples have finite length, the bounded duplication root is in general
not unique either. The uniformly bounded duplication root, however, is known to be
unique over any alphabet [15].

As already stated in the Introduction, so far research on duplication has mainly
focused on its language theoretic properties. We recall the most important results on
these from [14].

Theorem 3. The closure properties of the classes of regular and context-free lan-
guages under the three duplication roots are as follows:

♥k
√

L
♥≤k
√

L
♥
√

L

REG Y Y N
CF ? ? N

The symbol Y stands for closure, N stands for non-closure, and ? means that the
problem is open.

Here our focus is different. We will look in more detail at the duplication roots of
single words. One interesting question is how ambiguous it can be in relation to a
word’s length.

Before we take a closer look at this question, however, we will now recall a notion
that is very closely related to our reduction.

3 The Relation to Repetition Complexity

In an effort to define a new measure for the complexity of words, Ilie et al. [10,11]
defined a reduction relation very similar to undoing duplications, which however re-
members the steps it takes, and in this way the original word can be restored from
the reduced one. For the definition let D = {0, 1, . . . 9} be the set of decimal digits,
and Σ be an alphabet disjoint from D. The alphabet for the reduction relation is
T := Σ ∪ D ∪ {〈, 〉, ^}. For a positive integer n let dec n denote its decimal rep-
resentation. Then the reduction relation ⇒ is defined by u ⇒ v iff u = u1x

nu2,
v = u1 〈x〉 ^〈dec n〉u2 for some u1, u2 ∈ T ∗, x = Σ+, n > 2. Finally, let h be the
morphism erasing all symbols except the letters from Σ.

We illustrate in a simple example the different way of operation of the two rela-
tions.

Example 4. For the word ababcbc there are two irreducible forms under ⇒, namely

〈ab〉〈2〉 cbc and aba 〈bc〉〈2〉. Under
.

, however, the images of both words under h

are further reducible to a common normal form: both ababcbc
.

abcbc
.

abc and
ababcbc

.

ababc
.

abc are possible reductions leading to abc. Notice how the brack-
ets block the further reduction of abab in aba 〈bc〉 ^〈2〉 and of bcbc in 〈ab〉 ^〈2〉cbc.

There are two main differences between the two relations.

1. A reduction un ⇒ 〈u〉 ^〈n〉 is done in a single step while the reduction un
.

∗ u

will always take n − 1 steps.
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2. If w ⇒∗ u then w
.

∗ h(u), but the reverse does not hold, see Example 4.

Despite these differences, the similarities are evident, and ⇒∗ can be embedded in
.

∗ . We state a further relation.

Proposition 5. For a word w, if ♥
√

w ⊆ {h(u) : w ⇒∗ u} then | ♥
√

w| = 1.

Proof. Let p and q be two different words in ♥
√

w. Then there exist words u, p′, q′ such
that w

.

∗ u, u
.

p′
.

∗ p, u
.

q′
.

∗ q, but no reductions p′
.

∗ q or q′
.

∗ p exist.
Intuitively this means that the paths to p and q divide in the point u, which thus is
a greatest lower bound of {p, q} in the set w . with

.

∗ as partial order. The two
unduplications in u

.

p′ and u
.

q′ must overlap, otherwise there would be a word
v such that p′

.

v and q′
.

v. Let the two factors that are reduced be u2
p and u2

q,
where |up| > |uq| without loss of generality; notice that |up| = |uq| would result in
p′ = q′.

The overlap of the unduplications must be greater than |uq|. Otherwise there is a
w′ such that the unduplications are applied to a factor upw

′uq or uqw
′up and the effect

can be seen as the deletion of up and uq; both would be possible consecutively. Further,
the maximal repetition of up were it is reduced must be less than u3

p, otherwise the
factor uq would still be present after deletion of one up. This means that a reduction
under ⇒ can only result in 〈up〉 ^〈2〉, no higher exponent, and no factor up can follow
on either side.

There can be no factor u2
q directly preceding or following 〈up〉 on the side of the

overlap. Otherwise, again derivations p′
.

v and q′
.

v would have been possible.
This means that the square u2

q in h(p′) cannot be reduced, neither can an equivalent
reduction leading to the same result be done. Analogous reasoning holds for the case
that first u2

q is reduced to 〈uq〉 ^〈2〉, and thus {h(u) : w ⇒∗ u} cannot contain any
square-free word.

⊓⊔

Intuitively this means that if ⇒ can reduce a word to a square-free one, then the
overlaps of its repetitive factors must be so minor that they do not lead to ambiguous
duplication roots either. Already Example 4 shows that the converse of Proposition
5 does not hold.

From the proof of Proposition 5 we can extract an important property of the
relation

.

∗ that characterizes the situation, when two strings derived from the
same word can become incomparable.

Definition 6. Let w be a word. We will call two squares p2 and q2 a pair of critical
squares in w, if w has a factor u such that

1. p2 ∈ pref(u),
2. q2 ∈ suff(u),
3. |u| ≤ 2(max(|p|, |q|)) + min(|p|, |q|) − 1.

Without further proof we state the following.

Lemma 7. Let w, p, and q be words such that w
.

p and w
.

q.
If {v : p

.

∗ v} ∩ {v : q
.

∗ v} = ∅, then w contains a pair of critical squares.
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4 The Number of Duplication Roots

A decisive question for any algorithmic problem related to duplication is the one
about the possible number of duplication roots of a word with respect to its length.
To find an exact bound seems to be a very intricate problem, and so we try to find
good upper and lower bounds on this number. More formally, we try to find bounds
for the function defined as

duproots(n) := max{| ♥
√

w| : |w| = n}.
The function duproots is monotonically growing. For any word w, duplicate one of its
letters to obtain a word w′ of length |w| + 1. Clearly w′

.

w and thus ♥
√

w ⊆ ♥
√

w′.
Consequently we have duproots(n) ≤ duproots(n + 1) for all n > 0. Therefore writing
|w| = n in the definition is equivalent to writing |w| ≤ n.

Because it has often turned out to be very useful to consider problems about
duplications with a length restriction, we also define the function

bduproots≤ k(n) := max{| ♥≤k
√

w| : |w| = n}.

By definition we have bduproots≤k ≤ duproots and bduproots≤k ≤ bduproots≤k+1 for
all k > 0. We now try to characterize the growth of the function duproots more
exactly.

4.1 Bounding from Above

Obviously, rules from
.

can only be applied on square factors. Thus the number of
squares is the number of possible distinct rule applications in a string. However, when
we are interested in rule applications with distinct result and thus with potentially
distinct roots, the number of runs captures this more exactly.

Recall that a run is a maximal repetition of exponent at least two in a string. It
is known that the number of runs in a string of length n is linearly bounded by n

[13]. A great deal of work has been done to determine the constant c such that c · n
is the exact bound. The most recent results indicate that c lies between 1.6 [6] and
0.94 [18]. The following fact shows how this number plays a role for the number of
possible reductions via

.

and thus for the number of duplication roots.

Fact 8. Let w be a word with period k. Then all applications of rules from
. k will

result in the same word, i.e. {u : w
. k u} is a singleton set.

As a consequence of this, the number of distinct descendants of w with respect to
.

is equal to the number of runs in w. In this way. the number of runs seems to play
an important role for the computation of the maximal number of duplication roots.

To obtain a first approximation on this number, let us state the following: the
number of runs in a string of length n is bounded linearly by the string’s length.
Reducing one square leaves the word’s length in general in the order of n, thus also
the number of runs is again in the order of n.

On the other hand, every reduction via
.

removes at least one letter, thus there
can be at most n − 1 steps in the reduction of a word of length n. More precisely,
observe that deleting one half of a square cannot remove all copies of a letter from
a given string. Thus all roots of a word over three letters have at least three letters
themselves. Overall, there are up to n− 3 times up to n choices for reducing squares,
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and the number of different reduction paths lies in O(nn). Using the upper bound on
the number of runs we see that

duproots(n) ≤ (1.6n)n−3.

Of course, this gives a very rough upper bound. Most importantly, it disregards the
fact that many reductions starting in different points will converge again at some
point. Obviously, two rule applications in factors that do not overlap can be applied
in either order with identical result. Further, not all of the strings reachable during a
reduction will reach the maximum number of runs.

We recall a result from [14].

Lemma 9. If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also ♥
√

u =
♥
√

v = ♥
√

seq(u).

This means that we can first do all the possible reductions of the form x2 → x for
single letters x. So for possible splits to different duplication roots we can assume
that at least two letters are deleted in every step. Actually, also the fact that u from
Example 4 is the shortest possible word with at least two distinct duplication roots
shows that we need only consider applications of rules u2 → u with |u| ≥ 2. This

lowers our upper bound to (1.6n)
n−3

2 .
The improvement is not substantial, however. In the initial approach, in some

sense all possible paths from w to words in ♥
√

w in the Hasse diagram of the partial

order [w . ,
.

∗] are counted. The improved version counts only the paths starting
from seq(w) as depicted in Figure 1. The optimal case, however would be to count
only one path per element of ♥

√
w. We can take another step into this direction for

the partial order [w .

≤k,
. ≤k

∗]. As exemplary value for k we choose 30, the reason
for this will become evident in the next section.

Figure 1. 10 versus 2 paths for the word aabcbabcbbc, by first reducing one-letter
squares from left to right. The direction of reductions is top to bottom.

Lemma 7 characterizes the words, from which it may not be possible to rejoin
outgoing paths. They need to have a critical overlap. The involved squares’ bases
cannot be longer than 30. Further, one must be shorter than the other, but of length at
least two. So for a given square, there are at most 29 such candidates. They can overlap
on either side, which gives 56 possible combinations. The shorter square must have
more than one half of its length inside the other, and at least one letter must be outside
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the other. So for a square of length m we have m − 1 possible positions. The overall
number of possible configurations is therefore 2

∑

2≤i≤29
i − 1 = 2

∑

1≤i≤28
i = 812.

For calculating the number of possible roots of a word w, we now employ the
following tactics. Again, we first compute seq(w). Then we do not follow all possible
paths from seq(w), but rather select one random square. If it does not form part
of a pair of critical squares, then we simply reduce it and proceed further with the
next square. Otherwise, for all critical pairs we follow also the paths resulting from
reducing the possible partners in these pairs. As we have seen, a square of length 30
can form part of at most 812 critical pairs. The length of the paths is subject to the
same bound as for

.

, and thus we have to follow at most 812
n−3

2 paths, which is
the upper bound on bduproots≤30.

Clearly, especially the first bound of (1.6n)
n−3

2 is very far off the real value. Indeed,
all roots of a word w are shorter than w unless w is square-free. Let us label w’s letters
from the start to the end. We can look at a rule uu → u like the deletion of one copy
of u, so its labels disappear. Thus every word in ♥

√
w corresponds to a subset of the

set of |w| labels. There are only 2|w| such subsets, which gives us a much better upper
bound, also independent of the alphabet size. We still have given the construction of
our bound, because we feel that it bears potential for improvement even beyond 2|w|.
Intuitively, the linear bound on the number of runs in a string means that they must
be distributed rather evenly over the string’s length. Further, results like the Theorem
of Fine and Wilf suggest that one run can only form a very limited number of pairs of
critical squares, so that even in the case of unbounded duplication we should be able
to get an average constant bound like the one of 812 for

. ≤30. By careful analysis of
the possibilities, it should be possible to lower the bound even beyond 2|w|.

4.2 Bounding from Below

The upper bound on the number of duplication roots is very high and raises the
question how far from the real number it is. By an example we now establish a lower
bound for this number, which is also exponential. Thus it shows that the upper bound
is not too bad.

Example 10. We construct an example of a sequence of words wn, which are simply
powers of a word w, namely wn := wn. The number of roots increases exponentially in
n. This is a modification of a construction used earlier to present a simple language
with infinite duplication root [14]. We start the construction of w from the word
u = abcbabcbc; in Example 2 we have seen that the root of u consists of the two words
u1 = abc and u2 = abcbabc. The basic idea is to concatenate copies of u; in every
factor there is the choice of u1 or u2 and thus every additional copy of u doubles the
number of roots. However, simple concatenation of u would allow further reductions.
Therefore we need to modify and separate the different copies of u in ways that
prevent the creation of further squares.

The first measure we take is permuting the letters. Let ρ be the morphism, which
simply renames letters according to the scheme a → b → c → a. Then ρ(u) has the
two roots ρ(u1) and ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

We will now use this ambiguity to construct the word w. This word over the
four-letter alphabet {a, b, c, d} is

w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d.
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Thus the duplication root of w contains among others the three words

wa = abc · d · bca · d · cabacab · d
wb = abc · d · bcacbca · d · cab · d
wc = abcbabc · d · bca · d · cab · d,

which are square-free. We now need to recall that a morphism h is called square-
free, iff h(v) is square-free for all square-free words v. Crochemore has shown that
a uniform morphism h is square-free iff it is square-free for all square-free words of
length 3 [5]. Here uniform means that all images of single letters have the same length,
which is given in our case.

The morphism we define now is ϕ(x) := wx for all x ∈ {a, b, c}. Thus to establish
the square-freeness of ϕ, we need to check this property for the images of all square-
free words up to length 3. These are

ϕ(aba) = abcdbcadcabacabdabcdbcacbcadcabdabcdbcadcabacabd

ϕ(abc) = abcdbcadcabacabdabcdbcacbcadcabdabcbabcdbcadcabd

ϕ(aca) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcadcabacabd

ϕ(acb) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcacbcadcabd

ϕ(bab) = abcdbcacbcadcabdabcdbcadcabacabdabcdbcacbcadcabd

ϕ(bac) = abcdbcacbcadcabdabcdbcadcabacabdabcbabcdbcadcabd

ϕ(bca) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcadcabacabd

ϕ(bcb) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcacbcadcabd

ϕ(cac) = abcbabcdbcadcabdabcdbcadcabacabdabcbabcdbcadcabd

ϕ(cab) = abcbabcdbcadcabdabcdbcadcabacabdabcdbcacbcadcabd

ϕ(cba) = abcbabcdbcadcabdabcdbcacbcadcabdabcdbcadcabacabd

ϕ(cbc) = abcbabcdbcadcabdabcdbcacbcadcabdabcbabcdbcadcabd,

where, of course, the images of all words shorter than three are contained in them.
All the twelve words listed here are indeed square-free as an eager reader can check,
and thus ϕ is square-free.

Now let t be an infinite square-free word over the letters a, b and c. Such a word
exists [22]. Then all the words in ϕ(pref(t)) are square-free, too. From the construction
of ϕ we know that for any word z of length i we can reach ϕ(z) from wi by undoing

duplications. Therefore ϕ(pref(t)) ⊆ ♥
√

w+. For two distinct square-free words t1 and
t2, also ϕ(t1) 6= ϕ(t2). Finally, notice that for all positive i ≤ n we have wn

.

∗ wi.
This means that all square-free words that are not longer than n lead to a different

duplication root of wn. Therefore bduproots≤30 ≤ s, where s(n) is the number of
ternary square-free words of length up to n. This function’s value is not known,
however, it was first bounded to 6 · 1.032n ≤ s(n) ≤ 6 · 1.379n by Brandenburg
[4]. A better lower bound was found by Sun s(n) ≥ 110

n

42 [21]. w itself is of length
3|u| + 3 = 30. So we see that bduproots≤30(n) ≥ 1

30
110

n

42 .

Example 10 leaves room for improvement in several respects.

– The word w is over a four-letter alphabet. The letter d is used to separate the
different blocks that introduce the ambiguities and only use the alphabet {a, b, c}.
The question is whether this function can also be fulfilled by an appropriate word
over {a, b, c}; computer experiments with candidate words have always led to
unwanted squares with some of the adjoining factors.
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– The ambiguity of u that we use is only two-fold. Using the words w3 and w5 from
Example 2, it might be possible to pack more choices into less room and thus
improve the initial constant of 1

5
with similar constructions. However, this would

not change the magnitude. On the other hand, the resulting morphism would not
be uniform, which would complicate the establishment of its square-freeness.

Summarizing this section up to this point, we have the following bounds for the
function duproots.

Proposition 11. 1

30
110

n

42 ≤ duproots(n) ≤ 2n for all n > 0.

Because Example 10 uses only rules from
. ≤30, its bound holds also for bduproots≤30.

So for this function we get a much sharper characterization of its growth.

Proposition 12. 1

30
110

n

42 ≤ bduproots≤30(n) ≤ max{812
n−3

2 , 2n} for all n > 0.

While this upper bound is still enormous, we have at least achieved a bounding be-
tween two exponential functions. So for this case the bounds are much tighter, though
still rather loose. For ternary alphabet, the upper bound 6 · 1.379n by Brandenburg
can replace 2n in both Propositions.

4.3 Computing the Number of Duplication Roots

Proposition 11 shows that the straight-forward approach to computing the function
duproots will lead to exponential runtime. But it seems reasonable to assume that
it is not necessary to actually compute the set ♥

√
w to determine its size. Example

4 suggests that it suffices to identify the number of critical overlaps in the original
word. In this case, even linear time might suffice. However, it remains to show that
no new critical pairs can come up during a reduction, or at least that their number
can be foreseen by looking a the original word.

5 Open Problems

The first and most evident problem is, of course, a better characterization of the
function duproots. We conjecture that in some way a bounding will be possible in a
way similar to that for bduproots, and thus also duproots can be bounded from above
and below by exponential functions. For this a refined analysis of pairs of critical
squares might be the key, just as for a linear time algorithm to actually compute
duproots.

Besides this, three more algorithmic problems related to the duplication root of a
word suggest themselves.

(i) Duplication Root: For a given word w, find one of its duplication roots.
(ii) Minimal Duplication Root: For a given word w, find one of the shortest of

its duplication roots.
(iii) Complete Duplication Root: For a given word w, find all of its duplication

roots.

To solve Problem (i) we can follow any reduction. As seen above, these can take up to
n steps. In each step one square must be detected and reduced. Therefore a runtime
of O(n2 log n) can be expected. An interesting question is whether Problem (ii) can
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be solved faster than Problem (iii), i.e. do we basically have to enumerate the entire
root to know which is its smallest element, or can, for example, a greedy strategy
eliminate many candidate reductions early on. No exact results on the complexity of
any of the three problems are known.

Another interesting field is finding restrictions on the general duplication which
are on the one hand motivated from practical considerations like possible tandem
repeats in DNA, and on the other hand make the problems described here more
tractable. Since tandem repeats cannot occur at arbitrary factors of a DNA strand,
there might be less than exponentially many possible duplication histories for DNA
strands.

Acknowledgments. The words w3 and w5 from Example 2 were found by Szilárd Zsolt
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