
Crochemore’s repetitions algorithm revisited –

computing runs

Frantisek Franek⋆ and Mei Jiang

Department of Computing & Software
Faculty of Engineering
McMaster University
Hamilton, Ontario
Canada L8S 4K1

franek@mcmaster.ca jiangm5@mcmaster.ca

Abstract. Crochemore’s repetitions algorithm introduced in 1981 was the first
O(n log n) algorithm for computing repetitions. Since then, several linear-time worst-
case algorithms for computing runs have been introduced. They all follow a similar
strategy: first compute the suffix tree or array, then use the suffix tree or array to com-
pute the Lempel-Ziv factorization, then using the Lempel-Ziv factorization compute
all the runs. It is conceivable that in practice an extension of Crochemore’s repetitions
algorithm may outperform the linear-time algorithms, or at least for certain classes of
strings. The nature of Crochemore’s algorithm lends itself naturally to parallelization,
while the linear-time algorithms are not easily conducive to parallelization. For all
these reasons it is interesting to explore ways to extend the original Crochemore’s
repetitions algorithm to compute runs. We present three variants of extending the
repetitions algorithm to compute runs: two with a worsen complexity of O(n(log n)2),
and one with the same complexity as the original algorithm. The three variants are
tested for speed of performance and their memory requirements are analyzed. The third
variant is tested and analyzed for various memory-saving alterations. The purpose of
this research is to identify the best extension of Crochemore’s algorithm for further
study, comparison with other algorithms, and parallel implementation.

Keywords: repetition, run, string, periodicity, suffix tree, suffix array

1 Introduction

An important structural characteristic of a string over an alphabet is its periodicity.
Repetitions (tandem repeats) have always been in the focus of the research into
periodicities. The concept of runs that captures maximal fractional repetitions which
themselves are not repetitions was introduced by Main [12] as a more succinct notion
in comparison to repetitions. The term run was coined by Iliopoulos et al. [8]. It was
shown by Crochemore in 1981 that there could be O(n log n) repetitions in a string
of length n and an O(n log n) time worst-case algorithm was presented [3] (a variant
is also described in Chapter 9 of [4]), while Kolpakov and Kucherov proved in 2000
that the number of runs was O(n) [9].

Since then, several linear-time worst-case algorithms have been introduced, all
based on linear algorithms for computing suffix trees or suffix arrays. Main [12] showed
how to compute the leftmost occurrences of runs from the Lempel-Ziv factorization
in linear time, Weiner [14] showed how to compute Lempel-Ziv factorization from a
suffix tree in linear time. Finally, in 1997 Farach [6] demonstrated a linear construction

⋆ Supported in part by a research grant from the Natural Sciences and Engineering Research Council
of Canada.

Frantisek Franek, Mei Jiang: Crochemore’s repetitions algorithm revisited – computing runs, pp. 214–224.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic



F. Franěk, M. Jiang: Crochemore’s repetitions algorithm revisited – computing runs 215

of suffix tree. In 2000, Kolpakov and Kucherov [9] showed how to compute all the
runs from the leftmost occurrences in linear time. Suffix trees are complicated data
structures and Farach construction was not practical to implement for sufficiently
large n, so such a linear algorithm for computing runs was more of a theoretical
result than a practical algorithm.

In 1993, Manber and Myers [13] introduced suffix arrays as a simpler data struc-
ture than suffix trees, but with many similar capabilities. Since then, many researchers
showed how to use suffix arrays for most of the tasks suffix trees were used with-
out worsening the time complexity. In 2004, Abouelhoda et al. [1] showed how to
compute in linear time the Lempel-Ziv factorization from the extended suffix array.
In 2003, several linear time algorithms for computing suffix arrays were introduced
(e.g. [10,11]). This paved the way for practical linear-time algorithms to compute
runs. Currently,there are several implementations(e.g. Johannes Fischer’s, Univer-
sität Tübingen, or Kucherov’s, CNRS Lille) and the latest, CPS, is described and
analyzed in [2].

Though suffix arrays are much simpler data structures than suffix trees, these
linear time algorithms for computing runs are rather involved and complex. In com-
parison, Crochemore’s algorithm is simpler and mathematically elegant. It is thus
natural to compare their performances. The strategy of Crochemore’s algorithm re-
lies on repeated reffinements of classes of equivalence, a process that can be easily
parallelized, as each reffinement of a class is independent of the other classes and
their reffinements, and so can be performed simultaneously by different processors.
The linear algorithms for computing runs are on the other hand not very conducive
to parallelization (the major reason is that all linear suffix array constructions rely
on recursion). For these reasons we decided to extend the original Crochemore’s algo-
rithm based on the most memory efficient implementation by Franek et.al. [4]. In this
report we discuss and analyze three possible extensions of [4] for computing runs and
their performance testing: two variants with time-complexity of O(n(log n)2) and one
variant with time-complexity of O(n log n). Two diffierent menthods to save mem-
ory for the third variant are tested and analyzed. The purpose of this study was to
identify the best extension of Crochemore’s repetitions algorithm to compute runs
for comaprison with other runs algorithm and for parallel implementation.

2 Basic notions

Repeat is a collection of repeating substrings of a given string. Repetition, or tandem
repeat, consists of two or more adjacent identical substrings. It is natural to code
repetitions as a triple (s, p, e), where s is the start or starting position of the repetition,
p is its period , i.e. the length of the repeating substring, and e is its exponent (or
power) indicating how many times the repeating substring is repeated. The repeating
substring is referred to as the generator of the repetition. More precisely:

Definition 1. (s, p, e) is a repetition in a string x[0..n−1] if
x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)].
A repetition (s, p, e) is maximal if it cannot be extended to the left nor to the right,
i.e. (s, p, e) is a repetition in x and x[(s−p+1)..(s−1)] = x[s..(s+p−1)] and
x[(s+(e−1)p)..(s+ep−1)] = x[(s+ep)..(s+(e+1)p−1)].

In order to make the coding of repetitions more space efficient, the repetitions with
generators that are themselves repetitions are not listed; for instance, aaaa should be



216 Proceedings of the Prague Stringology Conference 2009

reported as (0,1,4) just once, there is no need to report (1,2,2) as it is subsumed in
(0,1,4).
Thus we require that generator of a repetition be irreducible, i.e. not a repetition.

Consider a string abababa, there are maximal repetitions (0,2,3) and (1,2,3). But,
in fact, it can be viewed as a fractional repetition (0,2,3+1

2
). This is an idea of a run

coded into a quadruple (s, p, e, t), where s, p, and e are the same as for repetitions,
while t is the tail indicating the length of the last incomplete repeat. For instance,
for the above string we can only report one run (0,2,3,1) and it characterizes all
the repetitions implicitly. The notion of runs is thus more succinct and more space
efficient in comparison with the notion of repetitions. More precisely:

Definition 2. x[s..(s+ep+t)] is a run in a string x[0..n−1] if
x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)] and
x[(s+(e−1)p)..(s+(e−1)p+t)] = x[(s+ep)..(s+ep+t)], where 0 ≤ s < n is the start
or the starting position of the run, 1 ≤ p < n is the period of the run, e ≥ 2 is the
exponent (or power) of the run, and 0 ≤ t < p is the tail of the run. Moreover, it
is required that either s = 0 or that x[s−1] 6= x[s+2p−1] (in simple terms it means
that it cannot be extended to the left) and that x[s+(ep)+t+1] 6= x[s+(e+1)p+t+1]
(in simple terms it means that the tail cannot be extended to the right). It is also
required, that the generator be irreducible.

3 A brief description of Crochemore’s algorithm

Let x[0..n−1] be a string. We deffine an equivalence ≈p on positions {0, . . . , n−1}
by i ≈p j if x[i..i+p−1] = x[j..j+p−1]. In Fig. 1, the classes of ≈p, p = 1..8 are
illustrated. For technical reasons, a sentinel symbol $ is used to denote the end of the
input string; it is considered to be the lexicographically smallest character. If i, i+p
are in the same class of ≈p (as illustrated by 5,8 in the class {0, 3, 5, 8, 11} on level 3,
or 0,5 in class {0, 5, 8} on level 5, in Fig. 1) then there is a tandem repeat of period p
(thus x[5..7] = x[8..10] =aba and x[0..4] = x[5..9] =abaab). Thus the computation of
the classes and identiffication of repeats of the same “gap” as the level (period) being
computed lay in the heart of Crochemore’s algorithm. A naive approach following
the scheme of Fig. 1 would lead to an O(n2) algorithm, as there are potentially ≤ n
classes on each level and there can be potentially ≤ n

2
levels.

The first level is computed directly by a simple left-to-right scan of the input
string - of course we are assuming that the input alphabet is {0, . . . , n−1}, if it is
not, in O(n log n) the alphabet of the input string can be transformed to it.

Each follow-up level is computed from the previous level by refinement of the
classes of the previous level (in Fig. 1 indicated by arrows). Once a class decreases to
a singleton (as {15} on level 1 , or {14} on level 2), it is not refined any further. After
a level p is computed, the equivalent positions with “gap” are identified, extended to
maximum, and reported. Note that the levels do not need to be saved, all we need
is a previous level to compute the new level (which will become the previous level
in the next round). When all classes reach its final singleton stage, the algorithm
terminates.

How to compute next level from the previous level – refinement of a class by
class. Consider a refinement of a class C on level L by a class D on level L: take
i, j ∈ C, if i+1, j+1 ∈ D, then we leave them together, otherwise we must separate
them. For instance, let us refine a class C = {0, 2, 3, 5, 7, 8, 10, 11, 13} by a class



F. Franěk, M. Jiang: Crochemore’s repetitions algorithm revisited – computing runs 217

Figure 1. Classes of equivalence and their refinements for a string abaababaabaabab

D = {1, 4, 6, 9, 12, 14} on level 1. 0 and 2 must be separated as 1,3 are not both in D,
0 and 3 will be in the same class, since 1,4 are both in D. In fact C will be refined into
two classes, one consisting of D shifted one position to the left ({0, 3, 5, 8, 11, 13}),
and the ones that were separated ({2, 7, 10}). If we use all classes for refinement, we
end up with the next level.

A major trick is not to use all classes for refinement. For each “family” of classes
(classes that were formed as a refinementof a class on the previous level – for instance
classes {2, 7, 10} and {0, 3, 5, 8, 11, 13} on level 2 form a family as they are a refine-
ment of the class {0, 2, 3, 5, 7, 8, 10, 11, 13} on level 1). In each family we identify the
largest class and call all the others small. By using only small classes for refinement,
O(n log n) complexity is achieved as each element belongs only to O(log n) small
classes.

Many linked lists are needed to be maintained to keep track of classes, families,
the largest classes in families, and gaps. Care must be taken to avoid traversing any
of these structure lest the O(n log n) complexity be compromised. It was estimated
that an implementation of Crochemore’s algorithm requires about 20 ∗ n machine
words. FSX03 [4] managed to trim it down to 14 ∗ n using memory multiplexing and
virtualization without sacrificing either the complexity or much of the performance.

4 Extending Crochemore’s algorithm to compute runs

One of the features of Crochemore’s algorithm is that

(a) repetitions are reported level by level, i.e. all repetitions of the same period are
reported together, and

(b) there is no order of repetition reporting with respect to the starting positions of
the repetitions (this is a byproduct of the process of refinement),



218 Proceedings of the Prague Stringology Conference 2009

Figure 2. Reporting repetitions for string abaababaabaabab

and thus the repetitions must be “collected” and “joined” into runs. For instance, for
a string x =abaababaabaabab, the order of repetitions as reported by the algorithm
FSX03 ([4]) is shown in Fig. 2; it also shows some of the repetitions that have to be
joined into runs.

The first aspect of Crochemore’s algorithm (see (a) above) is good for computing
runs, for all candidates of joining must have the same period. The second aspect (see
(b) above) is detrimental, for it is needed to check for joining two repetitions with
“neigbouring” starts.

4.1 Variant A

In this variant all repetitions for a level are collected, joined into runs, and reported.
The high level logic:

1. Collect the runs in a binary search tree based on the starting position. There is
no need to record the period, as all the repetitions and all the runs dealt with are
of the same period.

2. When a new repetition is reported, find if it should be inserted in the tree as a
new run, or if it should be joined with an existing run.

3. When all repetitions of the period had been reported, traverse the tree and report
all runs (if depth first traversal is used, the runs will be reported in order of their
starting positions).

The rules for joining:

1. Descend the tree as if searching for a place to insert the newly reported repetition.
2. For every run encountered, check if the repetition should be joined with it.

(a) If the repetition is a substring of the run, ignore the repetition and terminate
the search.

(b) If the run is a substring of the repetition, replace the run with the repetition
and terminate the search.

(c) If the run’s starting position is to the left of the starting position of the repe-
tition, if the run and the repetition have an overlap of size ≥ p, the run’s tail



F. Franěk, M. Jiang: Crochemore’s repetitions algorithm revisited – computing runs 219

must be updated to accommodate the repetition (i.e. the run is extended to
the right). On the other hand, if the overlap is of size < p or empty, continue
search.

(d) If the run’s starting position is to the right of the starting position of the
repetition, if the repetition and the run have an overlap of size ≥ p, the run’s
starting position must be updated to accommodate the repetition (i.e. the run
is extended to the left). On the other hand, if the overlap is of size < p or
empty, continue search.

Figure 3. Data structures for Variant A

For technical reasons and to lower memory requirements, the runs are recorded
in the search tree as pairs (s, d) where s is the starting position of the run, while d
is the end position of the run (let us remark again that we do not need to store the
period p). Note that we can easily compute the exponent: e = (d−s+1) / p, and the
tail t = (d−s+1) % p.

To avoid dynamic memory allocation and the corresponding deterioration of per-
formance, the search tree is emulated by 4 integer arrays of size n, named RunLeft[]

(emulating pointers to the left children), RunRight[] (emulating pointers to the
right children), Run_s[] (emulating storing of the starting position in the node),
and Run_d[] (emulating storing of the endposition in the node), see Fig. 3. Since the
four arrays, FNext[], FPrev[], FMember[], and FStart[], are used in the underly-
ing Crochemore’s algorithm only for class refinement, and at the time of repetition
reporting they can be used safely (as long as they are properly “cleaned” after the
use), we do not need any extra memory.

Thus the variant A does not need any extra memory as each search tree is “de-
stroyed” after the runs have been reported, however there is an extra penalty of
traversing a branch of the search tree for each repetition reporting, i.e. extra O(log n)
steps, leading to the complexity of O(n(log n)2).

4.2 Variant B

In this variant all repetitions for all levels are collected, joined into runs, and reported
together at the end.

The basic principles are the same as for variant A. However, for each level we
build a separate search tree and keep it till the repetitions of all levels (periods)
have been reported. We cannot use any of the data structures from the underlying
Crochemore’s algorithm as we did for variant A, so the memory requirement grows
by additional 4 ∗n machine words. The time-complexity is the same as for variant A,
i.e. O(n(log n)2).

How do we know that all the runs can fit into the search trees with a total of
n nodes? We do not know, for it is just a conjecture that the maximum number of



220 Proceedings of the Prague Stringology Conference 2009

Figure 4. Data structures for Variant B

runs < n. However, if we run out of the space (there is a safeguard), we will have found
a counterexample to the conjecture on the maximum number of runs (see e.g. [5]).

4.3 Variant C

As in Variant B, all repetitions for all levels are collected, joined into runs, and
reported together at the end. However, this variant differs from B in the data structure
used.

The repetitions are collected in a simple data structure consisting of an array
Buckets[]. In the bucket Buckets[s] we store a simple singly-linked list of all rep-
etitions that start at position s. To avoid as much as possible dynamic allocation,
so-called “allocation-from-arena” technique is used for the linked lists (Buckets[] is
allocated with the other structures) and 3 ∗n words is allocated in chunks as needed.
The memory requirement for collecting and storing all the repetitions is ≤ 4n ∗ log n
words, however an expected memory requirement is 4n words as the expected number
of repetitions is n (3n for the links, n for the buckets).

After all repetitions had been reported and collected, Buckets[] is traversed from
left to right and all repetitions are joined into runs - we call this phase “sweep”. In
another traversal,the runs can bereported. During the sweep, everything to the left
of the current index are runs, while everything to the right and including the current

Figure 5. Data structures for Variant C



F. Franěk, M. Jiang: Crochemore’s repetitions algorithm revisited – computing runs 221

index are repetitions. For the joining business, we need for each period to remember
the rightmost run with that period, that is the role of the array RunLast[] (we can
reuse FNext[]). Thus when traversing the linked list in the bucket Buckets[i] and
currently dealing with a repetition with period p2, RunLast[p2] points to the last
run of period p2 so we can decide if the current repetition is to be “promoted” to a
run (with a zero tail), or joined with the run. Since the starting position of the last
run of period p2 is not stored in the run, we need one more array Run_s[] in which
we store the starting position (we can reuse FPrev[]).

Since storing a repetition in Buckets[] takes a constant time, and there are
O(n log n) repetitions, and since the joining business is also constant time, the overall
time complexity is O(n log n) + O(n log n), i.e. O(n log n).

5 Experimental results

Implementations of the three variants were compared as to their performance. The
testing was rather informal, just to give indications how the three variants compare.
Hardware: Sony VAIO laptop with Intel Core-2 Duo CPU T5800 @ 2.00 GHz, 4 GB
of RAM
Software: Windows Vista Home Premium SP1. The code was written in C++ and
was compiled using the GNU g++ compiler.
Each run was repeated five times, the minimum numbers are recorded in the table
given in Fig. 6 (random2.txt is a file of random strings on a binary alphabet, while
random21.txt is a file of random strings on an alphabet of size 21).

Figure 6. Comparing speed performance of variants A, B, and C

The table given in Fig. 7 records the performance averaged per a character of
input:

The results allow for a quick conclusion:

1. Overall, variant C is significantly faster than variants A and B. In fact by 3643%!
2. Even though variant A requires less additional memory, speed-wise does not do

much better than B.
3. The speed of variants A and B is not proportional to the string’s length. Rather,

it mostly depends on the type of the string. It works better on strings with large
alphabet size and low periodicity. This is intuitively clear, as for high periodicity
strings the height of the search trees are large.

6 Memory-saving modifications of Variant C

In the first modification, C1, repetitions are collected for a round of K levels, then a
sweep is executed and the resulting runs are reported, and the bucket memory is then



222 Proceedings of the Prague Stringology Conference 2009

Figure 7. Comparing speed performance of variants A, B, and C per character of
input

reused in the next “batch” of repetitions. For our experiments, we used K = 100, so
we refer to this variant as C1-100.

In the second modification, C2, we consolidate repetitions with small periods
(≤ K) into runs when putting them to the buckets (this saves memory since there
are fewer runs than repetitions). For a repetition with periond p ≤ K and start s, we
check p buckets to the left and to the right of s; for p > K, we check K buckets to
the left and to the right of s. This guarantes that all reptitions up to period K have
been consolidated into runs before the final sweep, while repetitions of periods > K
are partially consolidated. Thus the final sweep ignores the repetitions with periods
≤ K. Beside saving memory, the final sweep is a bit shorter, while putting repetitions
into the buckets is a bit longer. For our experiemts, we used K = 10, so we refer to
this variant as C2-10.

The table given in Fig. 8 show comparisons of C, C1-100, and C2-10 for the speed
of performance on the same datasets as the tests among the variants A, B, and C in
tables in Fig. 6 and Fig. 7.

Figure 8. Comparing speed performance of the variants C, C1-100, and C2-10

As expected, C is the fastest, however the differences are insignificant, except somehow
significant results for fibo.txt and fss.txt.

The table given in Fig. 9 show comparisons of memory usage of C, C1-100, and
C2-10.
Only on fibo.txt and fss.txt C1-100 and C2-10 exhibit memory savings, for all
other data sets, the memory requirements are the same corresponding to the string’s
length (i.e. only 1 arena segment is allocated).

For the next set of tests we used large strings with large number of runs. The
strings were obtained from W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and



F. Franěk, M. Jiang: Crochemore’s repetitions algorithm revisited – computing runs 223

Figure 9. Comparing memory usage of the variants C, C1-100, and C2-10

A. Shinohara’s website dedicated to “Lower Bounds for the Maximum Number of
Runs in a String” at URL http://www.shino.ecei.tohoku.ac.jp/runs/ .

The table in Fig. 10 indicates the time performance C, C1-100, and C2-10 on
these run-rich large strings, while the table in Fig. 11 gives the memory usage.

Figure 10. Comparing speed of C, C1-100, and C2-10 on large run-rich strings

Figure 11. Memory usage of C, C1-100, and C2-10 on large run-rich strings

As expected, for strings with many short runs and a few long runs, C2-10 exhibits
significant memory savings, with little performance degradation.

7 Conclusion and further research

We extended Crochemore’s repetitions algorithm to compute runs. Of the three vari-
ants, variant C is by far more efficient time-wise, but requiring O(n log n) additional
memory. However, its performance warrantied further investigation into further re-
duction of memory requirements. The preliminary experiments indicate that C2-K is
the most efficient version and so it is the one that should be the used as the basis
for parallelization. Let us remark that variant C (and any of its modifications) could
be used as an extension of any repetitions algorithm that reports repetitions of the
same period together.



224 Proceedings of the Prague Stringology Conference 2009

References

1. M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced suffix

arrays, J. Discr. Algorithms 2 (2004), pp. 53–86
2. G. Chen, S.J. Puglisi, and W.F. Smyth: Fast & practical algorithms for computing all the

runs in a string, Proc. 18th Annual Symposium on Combinatorial Pattern Matching (2007),
pp. 307–315

3. M. Crochemore: An optimal algorithm for computing the repetitions in a word, Inform.
Process. Lett. 5 (5) 1981, pp. 297–315

4. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press 2007

5. M. Crochemore and L. Ilie: Maximal repetitions in strings, Journal of Computer and
System Sciences 74-5 (2008), pp. 796–807

6. M. Farach: Optimal suffix tree construction with large alphabets, 38th IEEE Symp. Found.
Computer Science (1997), pp. 137–143

7. F. Franek, W.F. Smyth, and X. Xiao: A note on Crochemore’s repetitions algorithm, a

fast space-efficient approach, Nordic J. Computing 10-1 (2003), pp. 21–28
8. C. Iliopoulos, D. Moore, and W.F. Smyth: A characterization of the squares in a Fibonacci

string, Theoret. Comput. Sci.,172 (1997), pp. 281-291
9. R. Kolpakov and G. Kucherov: On maximal repetitions in words, J. of Discrete Algorithms,

(1) 2000, pp. 159–186
10. J. Kärkkäinen and P. Sanders: Simple linear work suffix array construction, Proc. 30th

Internat. Colloq. Automata, Languages & Programming (2003), pp. 943–955
11. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, Proc. 14th

Annual Symp. Combinatorial Pattern Matching, R. Baeza-Yates, E. Chàvez, and M. Crochemore
(eds.), LNCS 2676, Springer-Verlag (2003), pp. 200–210

12. M.G. Main: Detecting leftmost maximal periodicities, Discrete Applied Math., (25) 1989,
pp. 145–153

13. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches, SIAM
J. Comput. 22 (1993), pp. 935–938

14. P. Weiner: Linear pattern matching algorithms, Proc. 14th Annual IEEE Symp. Switching &
Automata Theory (1973), pp. 1–11


