
Bit-parallel algorithms for computing all the runs

in a string

Kazunori Hirashima1, Hideo Bannai1, Wataru Matsubara2, Akira Ishino2,3, and
Ayumi Shinohara2

1 Department of Informatics, Kyushu University,
744 Motooka, Nishiku, Fukuoka 819-0395 Japan.

{kazunori.hirashima,bannai}@inf.kyushu-u.ac.jp
2 Graduate School of Information Science, Tohoku University,
Aramaki aza Aoba 6-6-05, Aoba-ku, Sendai 980-8579, Japan
{matsubara@shino., ishino@, ayumi@}ecei.tohoku.ac.jp

3 Presently at Google Japan Inc.

Abstract. We present three bit-parallel algorithms for computing all the runs in a
string. The algorithms are very efficient especially for computing all runs of short
binary strings, allowing us to run the algorithm for all binary strings of length up to
47 in a few days, using a PC with the help of GPGPU. We also present some related
statistics found from the results.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of strings.
It was shown in [8] that when considering maximal repetitions, or runs, the maximum
number of runs ρ(n) in a string of length n is O(n). The result leads to a linear time
algorithm for computing all the runs in a string. Although no bounds for the constant
factor was given, it was conjectured that ρ(n) < n.

Recently, there has been steady progress towards proving this conjecture [12,13,3].
The currently known best upper bound1 is ρ(n) ≤ 1.029n, obtained by calculations
based on the proof technique of [3]. On the other hand, it was shown in [6] that
the value α = limn→∞ ρ(n)/n exists, but is never reached. A lower bound on α was
first presented in [5], where it was shown that α ≥ 3

1+
√

5
≈ 0.927. Although it was

conjectured that this bound is optimal [4], a counter example was shown in [10],
giving a new lower bound of 0.944565. The currently known best lower bound is
(11z2 +7z−6)/(11z2 +8z−6) ≈ 0.94457571235, where z is the real root of z3 = z+1.
This bound was conjectured for a new series of words in [9], and proved independently
for a different series of words in [14]. Whether or not the original conjecture ρ(n) < n
of [8] holds, or more importantly, the exact constant limn→∞ ρ(n)/n is still not known.
On a related note, the average number of runs in a word of a given length has been
completely characterized in [11].

In order to better understand the combinatorial properties of runs in strings,
an exhaustive calculation of runs in short strings could be very useful. In previous
work [7], the maximum number of runs function was shown for binary strings of length
up to 31, together with an example of a string which achieves the maximum number
of runs for each length. In this paper, we present several algorithms for computing
all the runs in short binary strings using bit-parallel techniques.

1 Presented on a website http://www.csd.uwo.ca/faculty/ilie/runs.html

Kazunori Hirashima, Hideo Bannai, Wataru Matsubara, Akira Ishino, Ayumi Shinohara : Bit-parallel algorithms for computing all the runs in a string,

pp. 203–213.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

204 Proceedings of the Prague Stringology Conference 2009

In [2], a fast suffix array based algorithm for calculating all the runs in a string was
presented. However, as the algorithm relies on a Lempel-Ziv factorization, our algo-
rithm is much simpler and efficient for binary strings whose length fits in a computer
word. The simple algorithm also allows us to implement a very efficient massively
parallelized version using General Purpose Graphics Processor Unit Programming
(GPGPU). We successfully compute the maximal number of runs, as well as several
other related statistics, for binary strings of length up to 47.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. Strings x, y and z are said to
be a prefix, substring, and suffix of the string w = xyz, respectively. The length of
a string w is denoted by |w|. The i-th symbol of a string w is denoted by w[i] for
1 ≤ i ≤ |w|, and the substring of w that begins at position i and ends at position j
is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has period p if w[i] = w[i + p]
for 1 ≤ i ≤ |w| − p.

A string u is a run of period p if it has period p ≤ |u|/2. A substring u = w[i : j]
of w is a run in w if it is a run of some period p and neither w[i−1 : j] nor w[i : j +1]
is a run of period p, that means the run is maximal. We denote the run u = w[i : j]
in w by the pair 〈i, j〉 of its begin position i and end position j.

For example, the string aabaabaaaacaacac contains the following 7 runs: 〈1, 2〉 =

a2, 〈4, 5〉 = a2, 〈7, 10〉 = a4, 〈12, 13〉 = a2, 〈13, 16〉 = (ac)
2, 〈1, 8〉 = (aab)

8

3 , and

〈9, 15〉 = (aac)
7

3 . A run in w is called a prefix run if it is also a prefix of w. Among
the above 7 runs, the prefix runs are 〈1, 2〉 and 〈1, 8〉.

3 Algorithms

From the definition of run in a string, we have only to consider the periods of length
at most |w|/2 in order to count all runs in w. In the next subsections, we introduce
3 bit-parallel algorithms for counting all runs in w.

We will use the bitwise operations AND, OR, NOT, XOR, SHIFT RIGHT, and
SHIFT LEFT, denoted by &, |, ∼, ^, >>, and <<, respectively, as in the C language.

3.1 Counting prefix runs

Let us begin by counting all prefix runs in a given string. Table 1 shows the contin-
uations of each period in the string w = aabaabaaaacaacac, which has two prefix
runs 〈1, 2〉 and 〈1, 8〉. In the table, the value at row p and column j is 1 if and only
if p is a period of prefix w[1 : j]. The cell (p, j) is shadowed if 2p < j, and is said
to be in the active area. In each row, the first (leftmost) position where the period
discontinued is emphasized by displaying 0 in bold face. If its position (p, j) is in the
active area, it implies that the prefix u = w[1 : j − 1] becomes a run of period p since
p ≤ |u|/2. Moreover, if any period continues to the end (rightmost), it means that
the whole string w itself is a (prefix) run. In the example, 〈1, 16〉 is not a prefix run
since no period continues to the end.

We will efficiently compute the table by representing a column as a bit vector
named alive, and keep tracking it by clever bit operations in the spirit of bit paral-

lelism [1,16]. We first represent the occurrences of each character in the string w as

Hirashima et al.: Bit-parallel algorithms for computing all the runs in a string 205

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
period a a b a a b a a a a c a a c a c

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Table 1. Continuations of each period in the string aabaabaaaacaacac.

w[1] = a

1 1 1 1 1 1 1 1 alive
w[2] = a & 1 1 1 1 1 1 1 1 bitmask2

1 1 1 1 1 1 1 1 alive
w[3] = b & 1 1 1 1 1 1 0 0 bitmask3

1 1 1 1 1 1 0 0 alive
w[4] = a & 1 1 1 1 1 1 1 0 bitmask4

1 1 1 1 1 1 0 0 alive
w[5] = a & 1 1 1 1 1 1 0 1 bitmask5

1 1 1 1 1 1 0 0 alive
w[6] = b & 1 1 1 0 0 1 0 0 bitmask6

1 1 1 0 0 1 0 0 alive...
...

...

Occurrences of each character in w.

1 2 3 4 5 6 7 8 910111213141516
occ a a b a a b a a a a c a a c a c

occ[a] 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0
occ[b] 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
occ[c] 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Figure 1. Bit operations to compute the period continuations, for the string w =
aabaabaaaacaacac (left). The representation here is rotated 90◦ compared with Ta-
ble 1 to show the bit representation horizontally. The active area is shadowed in the
same way. The italic 1 ’s in the prefix part of the bitmasks are always 1 regardless of
the string w. Remark that the essential part of the bitmask can be directly derived
from the occurrence table (right) of each character in w. For example, in bitmask 5,
the essential part 1101 equals to occ[a][1 :4] since w[5] = a, and 00100 in bitmask 6 is
equal to occ[b][1 :5] since w[6] = b.

a bit vector occ[], as shown in Fig. 1 (right), where occ[c][i] = 1 if w[i] = c, and 0
otherwise, for any c ∈ Σ. The bit vector will be used to generate bitmasks to com-
pute the next alive by a logical AND operation demonstrated in Fig. 1 (left). The
desired bitmaski for i ≥ 2 is obtained by occ[c][1 : i − 1] where c = w[i], and filling
sufficient numbers of preceding 1’s. The initial value of alive is ∼0 = 11 . . . 1. When
the length of w is at most twice the word size of the computer, each bit vectors alive

and bitmask fit in a single register, and can be processed very efficiently. Whenever
the value of alive becomes 0, (in the current example, at w[11]) we can immediately
quit the computation since no bit in alive can turn from 0 into 1 by AND operations.

We now turn our attention to count other runs that are not a prefix of the given
string w. In principle, we would use the above procedure at each starting positions for
2 ≤ i ≤ |w|−1. However, a little care must be taken to avoid duplicated counting. Let
us consider the string v = w[3 :16] = baabaaaacaacac which is a suffix of w starting
at position 3. Although 〈1, 6〉 is a prefix run in v, it does not immediately imply that
〈3, 8〉 is a run in w, since it is properly included in the run 〈1, 8〉 in w. How to avoid

206 Proceedings of the Prague Stringology Conference 2009

duplicated counting of runs effectively is the main subject of this algorithm, as well
as the subsequent two algorithms. To solve this problem, we focus on the fact that
the character a = w[2], that is the left neighbor of the starting position 3, appears
in v = w[3 : 16] at 2, 3, 5, 6, 7, and 8. (The occurrences at 10, 11 and 13 are not
important for the purpose.) Even if v has a prefix run of period either p = 2, 3, 5, 6, 7,
or 8, it never becomes a run in w since it continues to the left at least one position.
Therefore we have only to consider the periods either 1 or 4 (up to 8). In our bit
vector implementation, we have only to initialize alive = 00001001. The bit vector
can be easily obtained by the complement of reversal of occ[a][3 : 10] = 01101111.
Since the reversal operation is required at each starting positions, we compute the bit
vectors both occ[c] and its reversal occ reversal[c] for each c ∈ Σ in the pre-processing
phase, given string w.

Algorithm 1: counting prefix runs at each starting position
Input: w, length: string to count runs, and its length.
Result: number of runs in w.
// construct bit vectors representing the occurrences of each character
foreach c ∈ Σ do1

occ[c] := 0 ; // occurrence bit vector2

occ reversal[c] := 0 ; // reversal of occurrence bit vector3

end4

for i := 1 to length do5

c := w[i];6

occ[c] := occ[c] | (1 << length − i − 1);7

occ reversal[c] := occ reversal[c] | (1 << i);8

end9

// now count all prefix runs at each beginning position
count := 0;10

for begPos := 1 to length − 1 do11

activeArea := 0;12

restLength := length − begPos;13

alive := (1 << (restLength/2)) − 1;14

if begPos > 0 then15

leftChar := w[begPos − 1];16

alive := alive & ((∼occ reversal[leftChar]) >> begPos);17

end18

for i := 1 to restLength do19

nextChar := w[begPos + i];20

bitmask := ((occ[nextChar] >> (restLength − i)) | (∼0) << i);21

lastAlive := alive;22

alive := alive & bitmask;23

if (lastAlive ^ alive) & activeArea 6= 0 then24

count++ ; // some bit in alive is changed in active area25

end26

if alive = 0 then break ; // all runs ended27

if i mod 2 = 1 then28

activeArea := (activeArea << 1) | 1 ; // widen active area by one29

end30

end31

if alive 6= 0 then32

count++ ; // the run is continued to the rightmost position33

end34

end35

return count36

The full description of the algorithm is in Algorithm 1. The correctness of the
algorithm can be verified based on the above mentioned facts. If the length n of the
given string is at most the word size, the running time is O(n2) with O(|Σ|) space.

Hirashima et al.: Bit-parallel algorithms for computing all the runs in a string 207

The time complexity for general n is O(n3/m), where m is the length of the machine
word.

3.2 Efficient algorithms for binary strings

In this section, we take another approach to efficiently count the number of runs for
binary strings, given as bit vectors.

We assume that the length of the string does not exceed the word size. For a
binary string w ∈ {0, 1}+ of length n and an integer p ≤ n/2, we denote by α(w, p)
the bit vector whose i-th bit is defined by

α(w, p)[i] =

{

1 (w[i − p] = w[i]),
0 (i ≤ p or w[i − p] 6= w[i]).

For instance, Table 2 shows α(w, p) for w = 1111010101001001, who has 5 runs
〈1, 4〉, 〈11, 12〉, 〈14, 15〉, 〈4, 11〉, and 〈9, 16〉.

w

p

1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1
1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0
2 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0
3 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0
5 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0
6 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1
7 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

Table 2. α(w, p) for w = 1111010101001001. In each p-th row, consecutive 1’s of
length at least p is shadowed. The leading p elements at each p-th row are always 0

regardless of w, and shown in italic form.

We note that α(w, p) can be implemented efficiently by the bit operations

(w^((∼w) >> p)) & (1n
>> p)

Notice that for any bit vector x, x & (1n >> p) sets the p leading bits of x to 0. It is
easy to see that the following property holds.

Lemma 1. For any binary string w of length n, the following two conditions are

equivalent.

1. 〈s, t〉 is a run of period p in w.

2. s+2p ≤ t+1, and α(w, p)[i] = 1 for every s+p ≤ i ≤ t, and α(w, p)[s+p−1] = 0.
Moreover, if t < n then α(w, p)[t + 1] = 0.

Since a run must be at least as long as twice its period, s + 2p ≤ t + 1 holds for any
run 〈s, t〉. Therefore, the lemma states that each run of period p in w corresponds to
a stretch of consecutive 1’s with length at least p in α(w, p). The problem now is how
this can be counted efficiently for each period.

Notice that for any bit vector x, the operation x & (x >> 1) reduces the length
of each stretch of consecutive 1’s in x by one. Therefore, we can detect stretches of

208 Proceedings of the Prague Stringology Conference 2009

consecutive 1’s of length at least p in α(w, p) by counting the number of stretches of
1’s in x = α(w, p) & (α(w, p) >> 1) & · · · & (α(w, p) >> (p − 1)). It is not difficult
to see that calculating x can be done with O(log p) operations, as shown by selfAND

in Algorithm 2. Further, the number c of stretches of 1’s in a bit vector can be
computed in O(c) steps as shown by oneRuns in Algorithm 2. Details and alternate
implementations for these operations can be found in [15].

However, as with counting prefix runs, we must be careful not to count the same
run multiple times. This could happen, for example, when a run is longer than 4 times
its minimal period p, and a run would be detected for period p and period 2p. For
example, a run abababab with period 2 (ab) will also be counted as a run at period 4
(abab). Below, we consider two methods for removing such duplicates in the process.

Algorithm 2: Common subroutines

selfAND(v,k): calculate v = v&(v>>1)& · · · &(v>>(k − 1)) (with fewer steps)1

begin2

while k > 1 do s = k >> 1; v & = (v >> s); k −= s;3

return v;4

end5

oneRuns(v): count the number of stretch of 1’s in v6

begin7

c:= 0;8

while v do9

v & = (v | (v − 1)) + 1 ; // remove rightmost stretch of consecutive 1’s10

c ++;11

end12

return c;13

end14

Removing duplicate runs by position The first approach utilizes the fact that
runs with different minimal periods cannot begin and end at the same positions.
Therefore, for each beginning position of a run, we use a bit vector to mark its end
position. This way, we can check if we have already considered the run via a different
period. This can be implemented efficiently using bit operations as shown in Algo-
rithm 3. The time complexity is O(n3/m), where m is the length of the machine word.
Note that lsb(x) computes the least significant set bit of x, and can be computed
in O(1) for a machine word, or O(n/m) time for general bit strings.

Removing duplicate runs by sieve The second approach to eliminate duplicate
counting is based on the following observation.

Lemma 2. Let 〈s, t〉 be a run of period p in w. For any k with 2kp ≤ t − s + 1, the

run 〈s, t〉 is also a run of period kp in w.

For example, consider again the runs in w = 1111010101001001 (see Table 2).
The run 〈1, 4〉 = 1111 is a run of period both 1 and 2. The run 〈4, 11〉 = 10101010

is a run of period both 2 and 4.
Therefore, if we count each run only at its minimum period, we can avoid dupli-

cations. Our strategy is somewhat similar to the Sieve of Eratosthenes to generate
prime numbers. From the smallest period p = 1 to the maximum possible period
p = |w|/2 in this order, if a run of period p is found in x, we will sieve out all runs of
period kp satisfying the length condition in Lemma 2. The sieving procedure can be
implemented by tricky bit operations, shown in Algorithm 4. The time complexity is
O(n3/m), where m is the length of the machine word.

Hirashima et al.: Bit-parallel algorithms for computing all the runs in a string 209

Algorithm 3: Removing duplicate runs by position
Input: w, length: bit vector to count runs, and its length.
Result: number of runs in w.
runEndsByBegPos[length − 1] ; // array of bitvectors (initialized to 0)1

for period := 1 to length/2 do2

v:= (w ^ ((∼w) >> period)) & (1length
>> period) ; // calculate α(w, period)3

x:= selfAND(v, period) ;4

while x 6= 0 do5

begPos:= lsb(x) ; // position index of rightmost 16

y:= x + (1 << begPos) ; // if x =...0111100 then y = ...10000007

x:= x & y ; // clear rightmost consecutive 1’s in x8

y:= y & (−y) ; // clear all but rightmost 1 in y9

y:= y << ((period − 1) << 1) ; // convert to actual position in w10

if (runEndsByBegPos[begPos] & y) = 0 then11

// a run starting at begPos doesn’t already end here
count ++;12

runEndsByBegPos[begPos] = runEndsByBegPos[begPos] | y;13

end14

end15

end16

return count17

Algorithm 4: Removing duplicates by Sieve
Input: w, length: bit vector to count runs, and its length.
Result: number of runs in w.
pvec[length/2 + 1] ; // array to store bitvectors1

for period := 1 to length/2 do2

pvec[period] := (w^((∼w) >> period)) & (1length
>> period) ; // calculate α(w, period)3

end4

for period := 1 to length/2 do5

x := selfAND(pvec[period], period);6

count := count + oneRuns(x) ; // number of runs of this period.7

for p := 2 ∗ period to length/2 step period do8

x := x & (x >> period);9

if x = 0 then break;10

pvec[p] := pvec[p]^x;11

end12

end13

return count14

4 Computational Experiments

4.1 Running time

Table 3 compares the running times of the three algorithms. All experiments were
conducted on an Apple Mac Pro (Early 2008) with 3.2 GHz dual core Xeons and
18 GB of memory, running MacOSX 10.5 Leopard, using only one thread. Programs
were compiled with the Intel C++ compiler 11.0. The algorithms were run on all
binary strings of length n for n = 20, . . . , 30. However, only strings ending with 0 are
considered, since a complementary binary string will always have runs in the same
position. That is, all runs for 2n−1 strings are calculated for each n.

For the sieve approach, we further developed a GPGPU version and measured its
performance on the same computer. The video card used for GPGPU was NVIDIA
GeForce 8800 GT, and the GPGPU environment used was CUDA2. Although GPUs

2 http://www.nvidia.com/object/cuda_home.html

210 Proceedings of the Prague Stringology Conference 2009

contain many processing units, there are very strict limitations to the resources that
each processing unit may use. The simple bit-parallel algorithm presented in this
paper only requires a small amount of resources, and is an ideal example for efficient
processing on GPUs. We note that the sieve approach using GPGPU was developed to
deal with 64 bits, and requires some overhead compared to the other three algorithms
that were developed for only 32 bits.

n 20 21 22 23 24 25 26 27 28 29 30
prefix 0.32 0.69 1.49 3.13 8.02 15.6 32.4 66.4 150.2 296.5 625.4
position 0.09 0.18 0.36 0.73 1.49 3.0 6.2 12.6 25.6 52.1 106.0
sieve 0.10 0.18 0.37 0.75 1.50 3.0 6.0 11.9 23.9 48.1 96.7
GPGPU 0.01 0.02 0.04 0.08 0.18 0.4 0.7 1.4 3.0 5.9 12.2

Table 3. Running times in seconds of each algorithm for calculating the runs in all
binary strings (excepting complementary strings) of length n.

4.2 Results

Using the GPGPU implementation, we computed the maximum number of runs func-
tion ρ(n) for binary strings of length up to n = 47, as shown in Table 4. It has been
known that ρ(14) = ρ(13) + 2. However, as noted in [5], it is not known whether
this is an asymptotic property of ρ(n), that is, if there exists infinitely many n for
which ρ(n + 1) = ρ(n) + 2. To the best of our knowledge this is the second example
satisfying this property, namely, ρ(42) = ρ(41) + 2, provided that ρ(n) is achieved by
binary words.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
ρ(n) 1 1 2 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22

n 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ρ(n) 23 24 25 26 27 27 28 29 30 30 31 32 33 35 35 36 37 38 38

Table 4. The maximum number of runs function ρ(n) for binary strings calculated
for n up to 47.

Figure 2 plots the maximum number of runs function obtained by our exhaustive
computation, the conjectured upper bound (y = x) and the current best asymptotic
lower bound (y = 0.94457571235x).

Although the problem of finding the maximum number of runs function is still
difficult, we have found the following empirical characteristics in the distribution of
the number of runs in binary strings, which could give insight in further analyses. Let
f(n, r) denote the number of binary strings of length n with r runs. Table 5 shows
the values of f(n, r) for n = 2, . . . , 42 and r = 1, . . . , 4.

– f(n, 1) = 20 for n ≥ 7.
– for n ≥ 7,

f(n, 2) =

{

36n − 190 if n is even,
36n − 186 if n is odd.

Furthermore, f(n, 2) = f(n − 2, 2) + 72 for n ≥ 9.

Hirashima et al.: Bit-parallel algorithms for computing all the runs in a string 211

n f(n, 1) f(n, 2) f(n, 3) f(n, 4)
2 2 0 0 0
3 6 0 0 0
4 14 2 0 0
5 18 14 0 0
6 18 38 8 0
7 20 66 38 4
8 20 98 102 34
9 20 138 202 130

10 20 170 376 306
11 20 210 596 682
12 20 242 880 1314
13 20 282 1220 2296
14 20 314 1622 3736
15 20 354 2080 5686
16 20 386 2598 8260
17 20 426 3174 11562
18 20 458 3808 15642
19 20 498 4502 20626
20 20 530 5252 26574
21 20 570 6064 33590
22 20 602 6930 41754
23 20 642 7860 51184
24 20 674 8842 61898
25 20 714 9890 74070
26 20 746 10988 87732
27 20 786 12154 103000
28 20 818 13368 119922
29 20 858 14652 138664
30 20 890 15982 159216
31 20 930 17384 181764
32 20 962 18830 206308
33 20 1002 20350 233012
34 20 1034 21912 261896
35 20 1074 23550 293138
36 20 1106 25228 326696
37 20 1146 26984 362804
38 20 1178 28778 401434
39 20 1218 30652 442762
40 20 1250 32562 486776
41 20 1290 34554 533702
42 20 1322 36580 583470

Table 5. Number of binary strings of length n with r runs.

212 Proceedings of the Prague Stringology Conference 2009

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

n
u
m

b
er

o
f
ru

n
s

length

maximum
y = 0.94457571235x

y = x

Figure 2. The maximum number of runs in a binary string obtained from exhaustive
calculations.

– for n ≥ 12,

f(n, 3) =

{

(117n2 − 1558n + 5368)/4 if n is even,
(117n2 − 1556n + 5335)/4 if n is odd.

Furthermore, f(n, 3) = 2f(n − 2, 3) − f(n − 4, 3) + 234 for n ≥ 16.

We can see that f(n, 1) = 20 will hold for any n > 7, since a binary string with
only one run can only be one of (01)n/2, x0n−4y for x, y ∈ {00, 01, 10}, or their bitwise
complements.

5 Discussion and Conclusion

We presented 3 bit-parallel algorithms for computing all the runs in short strings.
The two latter algorithms specialized for binary strings are very efficient, while the
first algorithm can be used for strings with larger alphabet size at the cost of some ef-
ficiency. Through exhaustive computations, the algorithms have enabled us to obtain
various statistics concerning runs in strings up to a certain length.

Although it seems that many researchers believe it to be true, it is still unknown
whether ρ(n) can always be achieved by a binary string.

References

1. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Comm. ACM, 35(10)
1992, pp. 74–82.

2. G. Chen, S. Puglisi, and W. Smyth: Fast and practical algorithms for computing all the

runs in a string, in Proc. CPM 2007, vol. 4580 of LNCS, 2007, pp. 307–315.

Hirashima et al.: Bit-parallel algorithms for computing all the runs in a string 213

3. M. Crochemore and L. Ilie: Maximal repetitions in strings. J. Comput. Syst. Sci., 74 2008,
pp. 796–807.

4. F. Franěk, R. Simpson, and W. Smyth: The maximum number of runs in a string, in Proc.
14th Australasian Workshop on Combinatorial Algorithms (AWOCA2003), 2003, pp. 26–35.

5. F. Franěk and Q. Yang: An asymptotic lower bound for the maximal-number-of-runs func-

tion, in Proc. Prague Stringology Conference (PSC’06), 2006, pp. 3–8.
6. M. Giraud: Not so many runs in strings, in Proc. LATA 2008, 2008, pp. 245–252.
7. R. Kolpakov and G. Kucherov: Maximal repetitions in words or how to find all squares in

linear time, Tech. Rep. Rapport Interne LORIA 98-R-227, Laboratoire Lorrain de Recherche en
Informatique et ses Applications, 1998.

8. R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time, in
Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS’99), 1999, pp. 596–
604.

9. W. Matsubara, K. Kusano, H. Bannai, and A. Shinohara: A series of run-rich strings,
in Proc. LATA 2009, vol. 5457 of LNCS, 2009, pp. 578–587.

10. W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and A. Shinohara: New lower bounds

for the maximum number of runs in a string, in Proc. Prague Stringology Conference (PSC’08),
2008, pp. 140–145.

11. S. J. Puglisi and J. Simpson: The expected number of runs in a word. Australasian Journal
of Combinatorics, 42 2008, pp. 45–54.

12. W. Rytter: The number of runs in a string: Improved analysis of the linear upper bound,
in Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2006),
vol. 3884 of LNCS, 2006, pp. 184–195.

13. W. Rytter: The number of runs in a string. Inf. Comput., 205(9) 2007, pp. 1459–1469.
14. J. Simpson: Modified padovan words and the maximum number of runs in a word. Australasian

Journal of Combinatorics, to appear.
15. H. S. Warren: Hacker’s Delight, Addison-Wesley Professional, 2002.
16. S. Wu and U. Manber: Fast text searching allowing errors. Comm. ACM, 35(10) Octo-

ber 1992, pp. 83–91.

