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Abstract. The Parikh vector of a string s over a finite ordered alphabet Σ =
{a1, . . . , aσ} is defined as the vector of multiplicities of the characters, i.e. p(s) =
(p1, . . . , pσ), where pi = |{j | sj = ai}|. Parikh vector q occurs in s if s has a substring
t with p(t) = q. The problem of searching for a query q in a text s of length n can be
solved simply and optimally with a sliding window approach in O(n) time. We present
two new algorithms for the case where the text is fixed and many queries arrive over
time. The first algorithm finds all occurrences of a given Parikh vector in a text (over a
fixed alphabet of size σ ≥ 2) and appears to have a sub-linear expected time complexity.
The second algorithm only decides whether a given Parikh vector appears in a binary
text; it iteratively constructs a linear size data structure which then allows answering
queries in constant time, for many queries even during the construction phase.

Keywords: Parikh vectors, permuted strings, pattern matching, string algorithms,
average case analysis

1 Introduction

Parikh vectors of strings count the multiplicity of the characters. They have been
reintroduced many times by many different names (compomer [5], composition [3],
Parikh vector [14], permuted string [7], permuted pattern [9], and others). They are
very natural objects to study, if for nothing else because of the many different appli-
cations they appear in; for instance, in computational biology, they have been applied
for alignment [3], SNP discovery [5], repeated pattern discovery [9], and, most nat-
urally, in interpretation of mass spectrometry data [4]. Parikh vectors can be seen
as a generalization of strings, where we view two strings as equivalent if one can be
turned into the other by permuting its characters; in other words, if the two strings
have the same Parikh vector.

The problem we are interested in here is answering the question whether a query
Parikh vector q appears in a given text s (decision version), or where it occurs (oc-
currence version). An occurrence of q is defined as an occurrence of a substring t
of s with Parikh vector q. The problem can be viewed as an approximate pattern
matching problem: We are looking for an occurrence of a jumbled version of a query
string t, i.e. for the occurrence of a substring t′ which has the same Parikh vector. In
the following, let n be the length of the text s, m the length of the query q (defined
as the length of a string t with Parikh vector q), and σ the size of the alphabet.

The above problem (both decision and occurrence versions) can be solved with
a simple sliding window based algorithm, in O(n) time and O(σ) additional storage
space. This is worst case optimal with respect to the case of one query. However, when
we expect to search for many queries in the same string, the above approach leads
to O(Kn) runtime for K queries. To the best of our knowledge, no faster approach
is known. This is in stark contrast to the classical exact pattern matching problem:
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There, for one query, any naive approach leads to O(nm) runtime, while quite involved
ideas for preprocessing and searching are necessary to achieve an improved runtime of
O(n+m), as do the Knuth-Morris-Pratt [12], Boyer-Moore [6] and Boyer-Moore-type
algorithms (see, e.g., [2,10]). However, when many queries are expected, the text can
be preprocessed to produce a data structure of size linear in n, such as a suffix tree,
suffix array, or suffix automaton, which then allows to answer individual queries in
time linear in the length of the pattern.

In this paper, we present two new algorithms which perform significantly better
than the naive window algorithm, in the case where many queries arrive. In the course
of both algorithms, a data structure of size O(n) is constructed, which is subsequently
used for fast searching.

1. For general alphabets: We present the Jumping algorithm (Sect. 3) which uses
O(n) space to answer occurrence queries in time O

(

σJ log2

(

n
J

+ m
))

, where J
denotes the number of iterations of the main loop of the algorithm. We argue that
the expected value of J for the case of random strings and patterns is O(n/

√
σm),

yielding an expected runtime of O
(√

σ log
2

m√
m

n
)

. Our simulations on random strings

and real biological strings indicate that this is indeed the performance of the
algorithm in practice. This is a significant improvement over the naive algorithm
w.r.t. expected runtime, both for a single query and repeated queries over one
string.

2. For binary alphabets: After a data structure of size O(n) has been constructed,
we answer decision queries in O(1) time (Interval Algorithm, Sect. 4).

The Jumping algorithm is reminiscent of the Boyer-Moore-like approaches to the
classical string matching problem [6,2,10]. This analogy is used both in its presen-
tation and in the analysis of the number of iterations performed by the algorithm.
We approximate the behavior of the algorithm with a probabilistic automaton, as
it is done in [15] to estimate the expected running time of Boyer-Moore on random
strings.

A straightforward implementation of the Interval Algorithm requires Θ(n2) time
for the preprocessing. Instead we present it employing lazy computation of the data
structure, and thus the runtime is improved such that a query can be answered
either in O(1) or Θ(n) time, depending on whether the respective entries in the data
structure have already been computed. For K = ω(n) queries, we require Θ(K + n2)
time (with either implementation), thus always outperforming the naive algorithm,
which has Θ(Kn) runtime. We conjecture that there is no algorithm that can answer
any Ω(n) queries in o(n2) time.

Related work: An efficient algorithm for computing all Parikh fingerprints of sub-
strings of a given string was developed in [1]. Parikh fingerprints are Boolean vectors
where the k’th entry is 1 if and only if ak appears in the string. The algorithm in-
volves storing a data point for each Parikh fingerprint, of which there are at most
O(nσ) many. This approach was adapted in [9] for Parikh vectors and applied to
identifying all repeated Parikh vectors within a given length range; using it to search
for queries of arbitrary length would imply using Ω(P (s)) space, where P (s) denotes
the number of different Parikh vectors of substrings of s. This is not desirable, since
there are strings with quadratic P (s) [8].
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The authors of [7] present an algorithm for finding all occurrences of a Parikh
vector in a runlength encoded text. The algorithm’s time complexity is O(n′ + σ),
where n′ is the length of the runlength encoding of s. Obviously, if the string is not
runlength encoded, a preprocessing phase of time O(n) has to be added. However,
this may still be feasible if many queries are expected. To the best of our knowledge,
this is the only algorithm that has been presented for the problem we are treating
here.

2 Notation and Problem Statement

Let Σ = {a1, . . . , aσ} be a finite ordered alphabet. For a string s ∈ Σ∗, s = s1 · · · sn,
we define the Parikh vector p(s) = (p1, . . . , pσ) by pi := |{j | sj = ai}|, for i =
1, . . . , σ. A Parikh vector p occurs in string s if there are positions i ≤ j such that
p(si · · · sj) = p. We refer to the pair (i, j) as an occurrence of p in s. By convention,
we say that the empty string ǫ occurs in each string once. For a Parikh vector p ∈ N

σ,
where N denotes the set of non-negative integers, let |p| := ∑

i pi denote the length
of p, namely the length of any string t with p(t) = p. Further, by s[i, j] = si · · · sj we
denote the substring of s from i to j, for 1 ≤ i ≤ j ≤ n.

For two Parikh vectors p, q ∈ N
σ, we define p ≤ q and p + q component-wise:

p ≤ q if and only if pi ≤ qi for all i = 1, . . . , σ, and p + q = u where ui = pi + qi for
i = 1, . . . , σ. Similarly, for p ≤ q, we set q − p = v where vi = qi − pi for i = 1, . . . , σ.

We want to solve the following problem:

Problem Statement: Let s ∈ Σ∗ be given. For a Parikh vector q ∈ N
σ,

1. Decide whether q occurs in s (decision problem);
2. Find all occurrences of q in s (occurrence problem).

In the following, let |s| = n and |q| = m. Assume that K many queries arrive
over time.

For K = 1, both the decision version and the occurrence version can be solved
optimally with the following simple algorithm: Move a sliding window of size |q| along
string s. This way, we encounter all substrings, and thus all Parikh vectors, of length
|q|. We maintain the Parikh vector c of the current substring and a counter r which
equals the number of indices i such that ci 6= qi. Each sliding step now costs either
0 or 2 update operations of c, depending on whether the new character entering the
window is the same or different from the one that falls out. Whenever we change
the value of an entry ci, we check whether ci = qi and increment or decrement r
accordingly.

This algorithm solves both the decision and occurrence problems and has running
time Θ(n), using additional storage space Θ(σ). In other words, for one query, it is
optimal (save maybe for the additional storage of Θ(σ)).

Obviously, one can precompute all sub-Parikh vectors of s, store them (sorted,
e.g. lexicographically) and do binary search when a query arrives. Preprocessing time
is Θ(n2 log n), because the number of Parikh vectors of s is at most

(

n
2

)

= O(n2),
and there are nontrivial strings with quadratic number of Parikh vectors over arbi-
trary alphabets [8]. (Now and in the following, we denote the binary logarithm by
log, the natural logarithm by ln, and otherwise explicitly state the base.) Moreover,
simulations reported there have shown that protein strings have quadratically many
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sub-Parikh vectors, a result relevant for mass spectrometry applications. Query time
is O(log n) for the decision problem and O(log n+M) for the occurrence problem for
a query with M occurrences. However, the storage space of Θ(n2) is inacceptable in
many applications.

For small queries, the problem can be solved exhaustively with a linear size index-
ing structure such as a suffix tree (size O(n)). We can search up to length m = |q| (of
the substrings); whenever we find a match, we traverse the subtree below and report
the leaf numbers, yielding the occurrences of that substring. Total running time is
O(σm) for searching the tree down to level m, and O(M) total time for the enumer-
ation of the leaves in the individual subtrees, where M is the number of occurrences
of q in s. If m is small, namely m = o(logσ n), then the query time is o(n) + O(M).
The suffix tree can be constructed in a preprocessing step in time O(n), so altogether
we get time O(n), since M = O(n) for any query q.

3 The Jumping Algorithm

In this section, we introduce our algorithm for general alphabets. Let s = s1 · · · sn ∈
Σ∗ be given, and let pr(i) denote the Parikh vector of the prefix of s of length i, for
i = 0, . . . , n, where pr(0) = p(ǫ) = (0, . . . , 0). We make the following observations:

Observation 1. Consider Parikh vector p ∈ N
σ, p 6= (0, . . . , 0).

1. For any 1 ≤ i ≤ j ≤ n, p = pr(j)−pr(i−1) if and only if p occurs in s at position
(i, j).

2. If an occurrence of p ends in position j, then pr(j) ≥ p.

The algorithm moves two pointers L and R along the text, pointing at these
potential positions i− 1 and j. Instead of moving linearly, however, the pointers are
updated in jumps, alternating between updates of R and L, in such a manner that
many positions are skipped. Moreover, because of the way we update the pointers,
after any update it suffices to check whether R−L = |q| to confirm that an occurrence
has been found.

We use the following rules for updating the two pointers, illustrated in Fig. 1:

1. the first fit rule for updating R, and
2. the good suffix rule for updating L.

First fit rule: Assume that the left pointer is pointing at position L, i.e. no un-
reported occurrence starts before L + 1. Notice that, if there is an occurrence of q
ending at any position j > L, it must hold that pr(L) + q ≤ pr(j). In other words,
we must fit both pr(L) and q at position j. We define a function firstfit as the first
potential position where an occurence of a Parikh vector p can end:

firstfit(p) := min{j | pr(j) ≥ p}, (1)

and set firstfit(p) = ∞ if no such j exists. We will update R to the first position
where pr(L) and q can fit:

R← firstfit(pr(L) + q). (2)



F. Cicalese, G. Fici, Zs. Lipták: Searching for Jumbled Patterns in Strings 109

Good suffix rule: Now assume that R has just been updated. Thus, p(s[L+1, R]) =
pr(R)−pr(L) ≥ q. If equality holds, then we have found an occurrence of q in position
(L + 1, R), and L can be incremented by 1. Otherwise pr(R) − pr(L) > q, which
implies that, interspersed between the characters that belong to q, there are some
“superfluous” characters. Now the first position where an occurrence of q can start is
at the beginning of a contiguous sequence of characters ending in R which all belong
to q. In other words, we need the beginning of the longest suffix of s[L + 1, R] with
Parikh vector ≤ q, i.e. the smallest position i such that pr(R) − pr(i) ≤ q. We find
this position by setting

L← firstfit(pr(R)− q). (3)

Note that this rule can also be interpreted as a bad character rule: pr(R) − q =
pr(L) + (pr(R)− pr(L))− q contains all those superfluous characters between L + 1
and R that we have to fit before a possible next occurrence of q. Below we give the
pseudo-code of the algorithm.

Figure 1. The situation after the update of R (above) and after the update of L
(below). R is placed at the first fit of pr(L) + q, thus q′ is a super-Parikh vector of q.
Then L is placed at the beginning of the longest good suffix ending in R, so q′′ is a
sub-Parikh vector of q.

Algorithm Jumping Algorithm

Input: query Parikh vector q

Output: A set Occ containing all beginning positions of occurrences of q in s

1. set m← |q|; Occ← ∅; L← 0;
2. while L < n−m

3. do R← firstfit(pr(L) + q);
4. if R− L = m

5. then add L + 1 to Occ;
6. L← L + 1;
7. else L← firstfit(pr(R)− q);
8. if R − L = m

9. then add L + 1 to Occ;
10. L← L + 1;
11. return Occ;

It remains to see how to compute the firstfit and pr functions.
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3.1 How to compute firstfit and pr

In order to compute firstfit(p) for some Parikh vector p, we need to know the prefix
vectors of s. However, storing all prefix vectors of s would require O(σn) storage space,
which may be too much. Instead, the algorithm uses an “inverted prefix vector table”
I containing the increment positions of the prefix vectors: for each character ak ∈ Σ,
and each value j up to p(s)k, the position in s of the j’th occurrence of character ak.
In other words, I[k][j] = min{i | pr(i)k ≥ j} for j ≥ 1, and I[k][0] = 0. Thus we have

firstfit(p) = max
k=1,...,σ

{I[k][pk]}. (4)

Moreover, we can compute the prefix vectors pr(i) from table I: For k = 1, . . . , σ,

pr(j)k =

{

0 if j < I[k][1]

max{i | I[k][i] ≤ j} otherwise.
(5)

The obvious way to find these values is to do binary search for j in each row of I.
However, this would take time Θ(σ log n); a better way is to use information already
acquired during the run of the algorithm. As we shall see later (Lemma 3), it always
holds that L ≤ R. Thus, for computing pr(R)k, it suffices to search for R between
pr(L)k and pr(L)k + (R − L). This search takes time proportional to log(R − L).
Moreover, after each update of L, we have L ≥ R −m, so when computing pr(L)k,
we can restrict the search for L to between pr(R)k−m and pr(R)k, in time O(log m).
For more details, see Section 3.4.

Example 2. Let Σ = {a, b, c} and s = cabcccaaabccbaacca. The prefix vectors of s are
given below. Note that the algorithm does not actually compute these.

pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
s c a b c c c a a a b c c b a a c c a
# a’s 0 0 1 1 1 1 1 2 3 4 4 4 4 4 5 6 6 6 7
# b’s 0 0 0 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3
# c’s 0 1 1 1 2 3 4 4 4 4 4 5 6 6 6 6 7 8 8

The inverted prefix table I:

0 1 2 3 4 5 6 7 8
a 0 2 7 8 9 14 15 18
b 0 3 10 13
c 0 1 4 5 6 11 12 16 17

Query q = (3, 1, 2) has 4 occurrences, beginning in positions 5, 6, 7, 13, since (3, 1, 2) =
pr(10)− pr(4) = pr(11)− pr(5) = pr(12)− pr(6) = pr(18)− pr(12). The values of L
and R are given below:

k, see Sec. 3.3 1 2 3 4 5 6 7
L 0 4 5 6 7 10 12
R 8 10 11 12 14 18 18
occ. found? – yes yes yes – – yes
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3.2 Preprocessing

Table I can be computed in one pass over s (where we take the liberty of identifying
character ak ∈ Σ with its index k). The variables ck count the number of occurrences
of character ak seen so far, and are initialized to 0.

Algorithm Preprocess s

1. for i = 1 to n

2. csi
= csi

+ 1;
3. I[si][csi

] = i;

Table I requires O(n) storage space (with constant 1). Moreover, the string s can
be discarded, so we have zero additional storage.

3.3 Correctness

We have to show that (1) if the algorithm reports an occurrence, then it is correct,
and (2) if there is an occurrence, then the algorithm will find it. We first need the
following lemma:

Lemma 3. The following algorithm invariants hold:

1. After each update of R, we have pr(R)− pr(L) ≥ q.
2. After each update of L, we have pr(R)− pr(L) ≤ q.
3. L ≤ R.

Proof. 1. follows directly from the definition of firstfit and the update rule for R.
For 2., if an occurrence was found at (i, j), then before the update we have L = i− 1
and R = j. Now L is incremented by 1, so L = i and pr(R) − pr(L) = q − esi

< q,
where ek is the k’th unity vector. Otherwise, L ← firstfit(pr(R) − q), and again
the claim follows directly from the definition of firstfit. For 3., if an occurrence
was found, then L is incremented by 1, and R − L = m − 1 ≥ 0. Otherwise, L =
firstfit(pr(R)− q) = min{ℓ | pr(ℓ) ≥ pr(R)− q} ≤ R. ⊓⊔

Proof of (1): If the algorithm reports an index i, then (i, i+m−1) is an occurrence
of q: An index i is added to Occ whenever R−L = m. If the last update was that of
R, then we have pr(R)−pr(L) ≥ q by Lemma 3, and together with R−L = m = |q|,
this implies pr(R) − pr(L) = q, thus (L + 1, R) = (i, i + m − 1) is an occurrence of
q. If the last update was L, then pr(R)− pr(L) ≤ q, and it follows analogously that
pr(R)− pr(L) = q.

Proof of (2): All occurrences of q are reported: Let’s assume otherwise. Then there
is a minimal i and j = i + m− 1 such that p(s[i, j]) = q but i is not reported by the
algorithm. By Observation 1, we have pr(j)− pr(i− 1) = q.

Let’s refer to the values of L and R as two sequences (Lk)k=1,2,... and (Rk)k=1,2,....
So we have L1 = 0, and for all k ≥ 1, Rk = firstfit(pr(Lk) + q), and Lk+1 = Lk + 1
if Rk−Lk = m and Lk+1 = firstfit(pr(Rk)− q) otherwise. In particular, Lk+1 > Lk

for all k.
First observe that if for some k, Lk = i−1, then R will be updated to j in the next

step, and we are done. This is because Rk = firstfit(pr(Lk)+q) = firstfit(pr(i−
1) + q) = firstfit(pr(j)) = j. Similarly, if for some k, Rk = j, then we have
Lk+1 = i− 1.
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So there must be a k such that Lk < i−1 < Lk+1. Now look at Rk. Since there is an
occurrence of q after Lk ending in j, this implies that Rk = firstfit(pr(Lk)+q) ≤ j.
However, we cannot have Rk = j, so it follows that Rk < j. On the other hand,
i − 1 < Lk+1 ≤ Rk by our assumption and by Lemma 3. So Rk is pointing to a
position somewhere between i − 1 and j, i.e. to a position within our occurrence of
q. Denote the remaining part of q to the right of Rk by q′: q′ = pr(j) − pr(Rk).
Since Rk = firstfit(pr(Lk) + q), all characters of q must fit between Lk and Rk,
so the Parikh vector p = pr(i) − pr(Lk) is a super-Parikh vector of q′. If p = q′,
then there is an occurrence of q at (Lk + 1, Rk), and by minimality of (i, j), this
occurrence was correctly identified by the algorithm. Thus, Lk+1 = Lk + 1 ≤ i − 1,
contradicting our choice of k. It follows that p > q′ and we have to find the longest
good suffix of the substring ending in Rk for the next update Lk+1 of L. But s[i, Rk]
is a good suffix because its Parikh vector is a sub-Parikh vector of q, so Lk+1 =
firstfit(pr(Rk)− q) ≤ i− 1, again in contradiction to Lk+1 > i− 1.

We illustrate the proof in Fig. 2.

Figure 2. Illustration for proof of correctness.

3.4 Algorithm Analysis

Let A(s, q) denote the running time of Jumping Algorithm over a text s and a Parikh
vector q. Let J = J(s, q) be the number of iterations performed in the while loop
in line 2, i.e., the number of jumps performed by the algorithm, for the input (s, q).

Further, for each i = 1, . . . , J, let L̂i, R̂i denote the value of L and R, respectively,
after the i’th execution of line 3 of the algorithm1.

In order to calculate the running time of the algorithm on the given input we need
to evaluate the number of iterations it performs, the running time of the functions
firstfit and the time needed to compute the Parikh vectors pr(·) necessary in lines
3 and 7.

It is easy to see that computing firstfit takes O(σ) time.

The computation of pr(L̂i) in line 3 takes O(σ log m): For each k = 1, . . . , σ, the

component pr(L̂i)k can be determined by binary search over the list I[k][pr(R̂i−1)k−
m], I[k][pr(R̂i−1)k −m + 1], . . . , I[k][pr(R̂i−1)k]. By L̂i ≥ R̂i−1−m, the claim follows.

The computation of pr(R̂i) in line 7 takes O(σ log(R̂i − R̂i−1 + m)). Simply

observe that in the prefix ending at position R̂i there can be at most R̂i − L̂i

more occurrences of the k’th character than there are in the prefix ending at po-
sition L̂i. Therefore, as before, we can determine pr(R̂i)k by binary search over the

list I[k][pr(L̂i)k], I[k][pr(L̂i)k + 1], . . . , I[k][pr(L̂i)k + R̂i − L̂i]. Using the fact that

L̂i ≥ R̂i−1 −m, the desired bound follows.

1 The L̂i and R̂i coincide with the Lk and Rk from Section 3.3 almost but not completely: When
an occurrence is found after the update of L, then the corresponding pair Lk, Rk is skipped here.
The reason is that now we are only considering those updates that carry a computational cost.
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The last three observations imply

A(s, q) = O

(

σJ log m + σ
J

∑

i=1

log(R̂i − R̂i−1 + m)

)

.

Note that this is an overestimate, since line 7 is only executed if no occurrence was
found after the current update of R (line 4). Standard algebraic manipulations using

Jensen’s inequality (see, e.g. [11]) yield
∑J

i=1 log(R̂i − R̂i−1 + m) ≤ J log
(

n
J

+ m
)

.
Therefore we obtain

A(s, q) = O
(

σJ log
(n

J
+ m

))

. (6)

The worst case running time of the Jumping Algorithm is superlinear, since there
exist strings s and Parikh vectors q such that J = Θ(n): For instance, on the string
s = ababab · · · ab and q = (2, 0), the algorithm will execute n/2 jumps.

This sharply contrasts with the experimental evaluation we present later. The
Jumping Algorithm appears to have in practice a sublinear behavior. In the rest of
this section we sketch an average case analysis of the running time of the Jumping
Algorithm leading to the conclusion that its expected running time is sublinear.

We assume that the string s is given as a sequence of i.i.d. random variables
uniformly distributed over the alphabet Σ. According to Knuth et al. [12] “It might be
argued that the average case taken over random strings is of little interest, since a user
rarely searches for a random string. However, this model is a reasonable approximation
when we consider those pieces of text that do not contain the pattern [. . . ]”. The
experimental results we provide will show that this is indeed the case.

To simplify the presentation, let us fix the Parikh vector q as being perfectly
balanced, i.e., q = (m

σ
, . . . , m

σ
). Let Ei denote the expected number ℓ such that

firstfit(pr(i) + q) = i + ℓ. Because of the assumption on the string, we have that
Ei is independent of i, so we can write Ei = Em,σ. In particular, we have

Em,σ ≈ m +







m2−m
(

m
m/2

)

if σ = 2,
√

2mσ ln σ√
2π

otherwise.
(7)

This result can be found in [13] where the author studied a variant of the well
known coupon collector problem in which the collector has to accumulate a certain
number of copies of each coupon. It should not be hard to see that by identifying the
characters with the coupon types, the random string with the sequence of coupons
obtained, and the query Parikh vector with the number of copies we require for each
coupon type, the expected time when the collection is finished is the same as our
Em,σ.

We shall now follow the approach taken by Schaback in the average case analysis of
the Boyer-Moore algorithm [15]. We build a probabilistic automaton which simulates
the behavior of the Jumping Algorithm. We also assume that each new reference to
a position in the string is done by generating the character again. See [15] for how
this assumption does not affect the result.

The automaton A(n,m, σ) moves the pointers L and R along the string as follows:
with probability ζ = ζ(m,σ) the pointer L is moved forward by one position (this
corresponds to the case of a match); with probability (1− ζ) the pointer R is moved
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forward to the closest position to L such that pr(R)− pr(L) ≥ q; in this case also L
is updated and set to R −m (this corresponds to the case of no match; in fact, we
are upper bounding the Jumping Algorithm’s behavior, since it always updates L to
a position at most m away from R).

Let E[A(n,m, σ)] denote the expected number of jumps of A(n,m, σ). We have
E[A(n,m, σ)] = n

ζ+(1−ζ)(Em,σ−m)
. If we take ζ to be the probability that a random

string of size m over an alphabet of size σ has Parikh vector q, we get ζ ≈
√

σσ

(2πm)σ−1 ,

where we use Stirling approximation for the multinomial
(

m
m
σ

,..., m
σ

)

. Note that due to

the magnitude of ζ, for large values of m, we have

E[A(n,m, σ)] ≈ n/(Em,σ −m). (8)

Recalling (6) and using (7) and (8) as an approximation of the number E[J ]
of jumps performed by the Jumping Algorithm, over a random instance, we get
that the average case complexity of the Jumping Algorithm can be estimated as

O
(

n
√

2π
m

log m
)

in the case of a binary alphabet, and O

(

σn
q

2σm ln(σ/
√

2π)
log m

)

, for

σ ≥ 3. Summarizing, according to the above approximations, we would expect the

algorithm’s running time to be O
(

n log m√
m

)

, with the constant in the order of
√

σ
2 ln σ

.

We conclude this section by remarking once more that the above estimate ob-
tained by the approximating probabilistic automaton appears to be confirmed by the
experiments.

3.5 Simulations

We implemented the Jumping Algorithm in C++ in order to study the number of
jumps J . We ran it on random strings of different lengths and over different alphabet
sizes. The underlying probability model is an i.i.d. model with uniform distribution.
We sampled random query vectors with length between log n (= log2 n) and

√
n,

where n is the length of the string. Our queries were of one of two types:

1. Quasi-balanced Parikh vectors: Of the form (q1, . . . , qσ) with qi ∈ (x − ǫ, x + ǫ),
and x running from log n/σ to

√
n/σ. For simplicity, we fixed ǫ = 10 in all our

experiments, and sampled uniformly at random from all quasi-balanced vectors
around each x.

2. Random Parikh vectors with fixed length m. These were sampled uniformly at
random from the space of all Parikh vectors with length m.

The rationale for using quasi-balanced queries is that those are clearly worst-
case for the number of jumps J , since J depends on the shift length, which in turn
depends on firstfit(pr(L) + q). Since we are searching in a random string with
uniform character distribution, we can expect to have minimal firstfit(pr(L) + q)
if q is close to balanced, i.e. if all entries qi are roughly the same. This is confirmed
by our experimental results which show that J decreases dramatically if the queries
are not balanced (Fig. 4, right).

We ran experiments on random strings over different alphabet sizes, and observe
that our average case analysis agrees well with the simulation results for random
strings and random quasi-balanced query vectors. Plots for n = 105 and n = 106 with
alphabet sizes σ = 2, 4, 16 resp. σ = 4, 16 are shown in Fig. 3.
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To see how our algorithm behaves on non-random strings, we downloaded human
DNA sequences from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) and ran
the Jumping Algorithm with random quasi-balanced queries on them. We found that
the algorithm performs 2 to 10 times fewer jumps on these DNA strings than on
random strings of the same length, with the gain increasing as n increases. We show
the results on a DNA sequence of 1 million bp (from Chromosome 11) in comparison
with the average over 10 random strings of the same length (Fig. 4, left).

Figure 3. Number of jumps for different alphabet sizes for random strings of size
100000 (left) and 1000000 (right). All queries are randomly generated quasi-balanced
Parikh vectors (cf. text). Data averaged over 10 strings and all random queries of same
length.

Figure 4. Number of jumps in random vs. nonrandom strings: Random strings over
an alphabet of size 4 vs. a DNA sequence, all of length 1 000 0000, random quasi-
balanced query vectors. Data averaged over 10 random strings and all queries with
the same length (left). Comparison of quasi-balanced vs. arbitrary query vectors over
random strings, alphabet size 4, length 1 000 000, 10 strings. The data shown are
averaged over all queries with same length m (right).

4 Often Constant Query Time for Binary Alphabets

We now describe our algorithm for binary alphabets. It uses a data structure of size
O(n) which it constructs in a lazy manner, only computing those entries that are
needed for the current query, and storing them for future queries. Once the data
structure has been completely constructed, all queries can be answered in constant
time. During the construction phase, answering queries may take either O(1) or O(n)
time. Only decision queries are answered.
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The algorithm makes use of the following property of binary strings:

Lemma 4. Let s ∈ {a, b}∗ with |s| = n. Fix 1 ≤ m ≤ n. If the Parikh vectors
(x1,m − x1) and (x2,m − x2) both occur in s, then so does (y,m − y) for any x1 ≤
y ≤ x2.

Proof. Consider a sliding window of fixed size m moving along the string and let
(p1, p2) be the Parikh vector of the current substring. When the window is shifted by
one, the Parikh vector either remains unchanged (if the character falling out is the
same as the character coming in), or it becomes (p1 + 1, p2 − 1) resp. (p1 − 1, p2 + 1)
(if they are different). Thus the Parikh vectors of substrings of s of length m build a
set of the form {(x,m − x) | x = min(m), min(m) + 1, . . . , max(m)} for appropriate
min(m) and max(m). In other words, they build an interval. ⊓⊔

So all we need in order to decide whether a query q = (q1, q2) with |q| = m has
an occurrence in s is to check whether min(m) ≤ q1 ≤ max(m). We would like to
have a table with min(m) and max(m) for all 1 ≤ m ≤ n; however, computing the
complete table takes O(n2) time. Notice though that, for any individual query q,
we only need the values for |q|. So when a query q arrives with |q| = m, we look
up whether min(m) and max(m) have already been computed. If so, we answer the
query in constant time. Otherwise, we compute the entries for m by moving a sliding
window of size m over s and collecting the minimum and maximum number of a’s.

Analysis: All queries take time either O(1) or O(n), and after n queries of the latter
kind, the table is completely constructed and all subsequent queries can be answered
in O(1) time. If we assume that the query lengths are uniformly distributed, then we
can view this as another coupon collector problem (see Section 3.4), where the coupon
collector has to collect one copy of each n coupons, namely the different lengths m.
Then the expected number of queries needed before having seen all m and thus before
having completed the table is nHn ≈ n ln n. The algorithm will have taken O(n2) time
to answer these n ln n queries, because it spends linear time only on queries with new
length m, and O(1) on queries with length that it has seen before; now it can answer
all further queries in constant time.

The assumption of the uniform length distribution may not be very realistic;
however, even if it does not hold, we never take more time than O(n2 + K) for K
many queries. Since any one query may take at most O(n) time, our algorithm never
performs worse than the naive algorithm. Moreover, for those queries where the table
entries have to be computed, we can even run the naive algorithm itself and report
all occurrences, as well. For all others, we only give decision answers, but in constant
time.

Finally, the table can of course be computed completely in a preprocessing step
in O(n2) time, thus always guaranteeing constant query time. The overall running
time is Θ(K + n2). As long as the number of queries is K = ω(n), this variant, too,
outperforms the naive algorithm, whose running time is Θ(Kn).

5 Conclusion and Open Problems

Our simulations appear to confirm that in practice the performance of the Jumping

Algorithm is well predicted by the expected O(
√

σ log m√
m

n) time of the probabilistic
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analysis we proposed. A more precise analysis is needed, however. Our approach
seems unlikely to lead to any refined average case analysis since that would imply
improved results for the intricate variant of the coupon collector problem of [13].

Moreover, in order to better simulate DNA or other biological data, more realistic
random string models than uniform i.i.d. should also be analysed, such as first or
higher order Markov chains.

Another open problem is whether the Interval Algorithm can be improved by
constructing in subquadratic time the data structure it uses (in a preprocessing step).
In fact, we conjecture that this is not possible, and that no algorithm can answer
arbitrary Ω(n) many queries in o(n2) time. However, proving such an upper bound
has so far proven elusive.
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