
An Efficient Algorithm for

Approximate Pattern Matching with Swaps

Matteo Campanelli1, Domenico Cantone2, Simone Faro2, and Emanuele Giaquinta2

1 Università di Catania, Scuola Superiore di Catania
Via San Nullo 5/i, I-95123 Catania, Italy

2 Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

macampanelli@ssc.unict.it, {cantone | faro | giaquinta}@dmi.unict.it

Abstract. The Pattern Matching problem with Swaps consists in finding all occur-
rences of a pattern P in a text T , when disjoint local swaps in the pattern are allowed.
In the Approximate Pattern Matching problem with Swaps one seeks to compute, for
every text location with a swapped match of P , the number of swaps necessary to
obtain a match at the location.
In this paper, we present new efficient algorithms for the Approximate Swap Matching
problem. In particular, we first present a O(nm

2) algorithm, where m is the length of the
pattern and n is the length of the text, which is a variation of the Backward-Cross-

Sampling algorithm, a recent solution to the swap matching problem. Subsequently, we
propose an efficient implementation of our algorithm, based on the bit-parallelism tech-
nique. The latter solution achieves a O(mn)-time and O(σ)-space complexity, where σ

is the dimension of the alphabet.
From an extensive comparison with some of the most recent and effective algorithms
for the approximate swap matching problem, it turns out that our algorithms are very
flexible and achieve very good results in practice.

Keywords: approximate pattern matching with swaps, nonstandard pattern match-
ing, combinatorial algorithms on words, design and analysis of algorithms

1 Introduction

The Pattern Matching problem with Swaps (Swap Matching problem, for short) is a
well-studied variant of the classic Pattern Matching problem. It consists in finding all
occurrences, up to character swaps, of a pattern P of length m in a text T of length
n, with P and T sequences of characters drawn from a same finite alphabet Σ of size
σ. More precisely, the pattern is said to swap-match the text at a given location j if
adjacent pattern characters can be swapped, if necessary, so as to make it identical
to the substring of the text ending (or, equivalently, starting) at location j. All swaps
are constrained to be disjoint, i.e., each character can be involved in at most one
swap. Moreover, we make the agreement that identical adjacent characters are not
allowed to be swapped.

This problem is of relevance in practical applications such as text and music retrie-
val, data mining, network security, and many others. Following [6], we also mention a
particularly important application of the swap matching problem in biological com-
puting, specifically in the process of translation in molecular biology, with the genetic
triplets (otherwise called codons). In such application one wants to detect the possible
positions of the start and stop codons of an mRNA in a biological sequence and find
hints as to where the flanking regions are relative to the translated mRNA region.

Matteo Campanelli, Domenico Cantone, Simone Faro, Emanuele Giaquinta: An Efficient Algorithm for Approximate Pattern Matching with Swaps,

pp. 90–104.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 91

The swap matching problem was introduced in 1995 as one of the open problems
in nonstandard string matching [12]. The first nontrivial result was reported by Amir

et al. [1], who provided a O(nm
1
3 log m)-time algorithm in the case of alphabet sets

of size 2, showing also that the case of alphabets of size exceeding 2 can be reduced
to that of size 2 with a O(log2 σ)-time overhead (subsequently reduced to O(log σ) in
the journal version [2]). Amir et al. [4] studied some rather restrictive cases in which a
O(m log2 m)-time algorithm can be obtained. More recently, Amir et al. [3] solved the
swap matching problem in O(n log m log σ)-time. We observe that the above solutions
are all based on the fast Fourier transform (FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and Rah-
man in [11]. They introduced a new graph-theoretic approach to model the problem
and devised an efficient algorithm, based on the bit-parallelism technique [7], which
runs in O((n + m) log m)-time, provided that the pattern size is comparable to the
word size in the target machine.

More recently, in 2009, Cantone and Faro [9] presented a first approach for solving
the swap matching problem with short patterns in linear time. Their algorithm, named
Cross-Sampling, though characterized by a O(nm) worst-case time complexity,
admits an efficient bit-parallel implementation, named BP-Cross-Sampling, which
achieves O(n) worst-case time and O(σ) space complexity in the case of short patterns
fitting in few machine words.

In a subsequent paper [8] a more efficient algorithm, named Backward-Cross-

Sampling and based on a similar structure as the one of the Cross-Sampling al-
gorithm, has been proposed. The Backward-Cross-Sampling scans the text from
right to left and has a O(nm2)-time complexity, whereas its bit-parallel implemen-
tation, named BP-Backward-Cross-Sampling, works in O(mn)-time and O(σ)-
space complexity. However, despite their higher worst-case running times, in practice
the algorithms Backward-Cross-Sampling and BP-Backward-Cross-Samp-

ling show a better behavior than their predecessors Cross-Sampling and BP-

Cross-Sampling, respectively.

In this paper we are interested in the approximate variant of the swap matching
problem. The Approximate Pattern Matching problem with Swaps seeks to compute,
for each text location j, the number of swaps necessary to convert the pattern to the
substring of length m ending at text location j.

A straightforward solution to the approximate swap matching problem consists in
searching for all occurrences (with swap) of the input pattern P , using any algorithm
for the standard swap matching problem. Once a swap match is found, to get the
number of swaps, it is sufficient to count the number of mismatches between the
pattern and its swap occurrence in the text and then divide it by 2.

In [5] Amir et al. presented an algorithm that counts in time O(log m log σ) the
number of swaps at every location containing a swapped matching, thus solving the
approximate pattern matching problem with swaps in O(n log m log σ)-time.

In [9] Cantone and Faro presented also an extension of the Cross-Sampling algo-
rithm, named Approximate-Cross-Sampling, for the approximate swap matching
problem. However, its bit-parallel implementation has a notably high space overhead,
since it requires (m log(⌊m/2⌋ + 1) + m) bits, with m the length of the pattern.

In this paper we present a variant of the Backward-Cross-Sampling algo-
rithm for the approximate swap matching problem, which works in O(nm2)-time

92 Proceedings of the Prague Stringology Conference 2009

and requires O(m)-space. Its bit-parallel implementation, in contrast with the BP-

Approximate-Cross-Sampling algorithm, does not add any space overhead and
maintains a worst-case O(mn)-time and O(σ)-space complexity, when the pattern
size is comparable to the word size in the target machine, and is very fast in practice.

The rest of the paper is organized as follows. In Section 2 we recall some prelimi-
nary definitions. Then in Section 3 we describe the Approximate-Cross-Sampling

algorithm and its bit-parallel variant. In Section 4 we present a variant of the
Backward-Cross-Sampling algorithm for the approximate swap matching prob-
lem and its straightforward bit-parallel implementation. Then we compare, in Sec-
tion 5, our newly proposed algorithms against the most effective algorithms present
in literature and, finally, we briefly draw our conclusions in Section 6.

2 Notions and Basic Definitions

Given a string P of length m ≥ 0, we represent it as a finite array P [0 ..m − 1] and
write length(P) = m. In particular, for m = 0 we obtain the empty string ε. We
denote by P [i] the (i+1)-st character of P , for 0 ≤ i < length(P), and by P [i .. j] the
substring of P contained between the (i+1)-st and the (j +1)-st characters of P , for
0 ≤ i ≤ j < length(P). A k-substring of a string S is a substring of S of length k. For
any two strings P and P ′, we say that P ′ is a suffix of P if P ′ = P [i .. length(P)−1], for
some 0 ≤ i < length(P). Similarly, we say that P ′ is a prefix of P if P ′ = P [0 .. i− 1],
for some 0 ≤ i ≤ length(P). We denote by Pi the nonempty prefix P [0 .. i] of P of
length i + 1, for 0 ≤ i < m, whereas, if i < 0, we agree that Pi is the empty string ε.
Moreover, we say that P ′ is a proper prefix (suffix) of P if P ′ is a prefix (suffix) of P
and |P ′| < |P |. Finally, we write P.P ′ to denote the concatenation of P and P ′.

Definition 1. A swap permutation for a string P of length m is a permutation π :
{0, ...,m − 1} → {0, ...,m − 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);
(b) for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent characters are swapped);
(c) if π(i) 6= i then P [π(i)] 6= P [i] (identical characters can not be swapped).

For a given string P and a swap permutation π for P , we write π(P) to denote
the swapped version of P , namely π(P) = P [π(0)] · P [π(1)] · · ·P [π(m − 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said
to swap-match (or to have a swapped occurrence) at location j ≥ m − 1 of T if
there exists a swap permutation π of P such that π(P) matches T at location j, i.e.,
π(P) = T [j − m + 1 .. j]. In such a case we write P ∝ Tj.

As already observed, if a pattern P of length m has a swap match ending at
location j of a text T , then the number k of swaps needed to transform P into its
swapped version π(P) = T [j − m + 1 .. j] is equal to half the number of mismatches
of P at location j. Thus the value of k lies between 0 and ⌊m/2⌋.

Definition 3. Given a text T of length n and a pattern P of length m, P is said to
swap-match (or to have a swapped occurrence) at location j of T with k swaps if
there exists a swap permutation π of P such that π(P) matches T at location j and
k = |{i : P [i] 6= P [π(i)]}|/2. In such a case we write P ∝

k
Tj.

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 93

Definition 4 (Pattern Matching Problem with Swaps). Given a text T of
length n and a pattern P of length m, find all locations j ∈ {m − 1, . . . , n − 1} such
that P swap-matches with T at location j, i.e., P ∝ Tj.

Definition 5 (Approximate Pattern Matching Problem with Swaps). Given
a text T of length n and a pattern P of length m, find all pairs (j, k), with j ∈
{m − 1, . . . , n − 1} and 0 ≤ k ≤ ⌊m/2⌋, such that P has a swapped occurrence in T
at location j with k swaps, i.e., P ∝

k
Tj.

The following elementary result will be used later.

Lemma 6 ([9]). Let P and R be strings of length m over an alphabet Σ and suppose
that there exists a swap permutation π such that π(P) = R. Then π is unique.

Proof. Suppose, by way of contradiction, that there exist two different swap permuta-
tions π and π′ such that π(P) = π′(P) = R. Then there must exist an index i such that
π(i) 6= π′(i). Without loss of generality, let us assume that π(i) < π′(i) and suppose
that i be the smallest index such that π(i) 6= π′(i). Since π(i), π′(i) ∈ {i− 1, i, i + 1},
by Definition 1(b), it is enough to consider the following three cases:

Case 1: π(i) = i − 1 and π′(i) = i.
Then, by Definition 1(a), we have π(i − 1) = i, so that P [π(i − 1)] = P [i] =
P [π′(i)] = P [π(i)], thus violating Definition 1(c).

Case 2: π(i) = i and π′(i) = i + 1.
Since by Definition 1(a) we have π′(i+1) = i, then P [π′(i+1)] = P [i] = P [π(i)] =
P [π′(i)], thus again violating Definition 1(c).

Case 3: π(i) = i − 1 and π′(i) = i + 1.
By Definition 1(c) we have π(i− 1) = π′(i + 1) = i. Thus π′(i− 1) 6= i = π(i− 1),
contradicting the minimality of i. ⊓⊔

Corollary 7. Given a text T of length n and a pattern P of length m, if P ∝ Tj, for
a given position j ∈ {m−1, . . . , n−1}, then there exists a unique swapped occurrence
of P in T ending at position j. ⊓⊔

3 The Approximate-Cross-Sampling Algorithm

The Approximate-Cross-Sampling algorithm [9] computes the swap occurrences
of all prefixes of a pattern P (of length m) in continuously increasing prefixes of a
text T (of length n), using a dynamic programming approach. Additionally, for each
occurrence of P in T , the algorithm computes also the number of swaps necessary to
convert the pattern in its swapped occurrence.

In particular, during its (j +1)-st iteration, for j = 0, 1, . . . , n−1, it is established
whether Pi ∝k

Tj, for each i = 0, 1, . . . ,m − 1, by exploiting information gathered
during previous iterations as follows.

Let us put
S̄j =Def {(i, k) | 0 ≤ i ≤ m − 1 and Pi ∝k

Tj}

λ̄j =Def

{

{(0, 0)} if P [0] = T [j]
∅ otherwise ,

for 0 ≤ j ≤ n − 1, and

S̄ ′
j =Def {(i, k) | 0 ≤ i < m − 1 and (Pi−1 ∝k

Tj−1 ∨ i = 0) and P [i] = T [j + 1]} ,

94 Proceedings of the Prague Stringology Conference 2009

S̄0 S̄1 S̄2 S̄3 S̄4 S̄5 S̄j S̄j+1

S̄′

0 S̄′

1 S̄′

2 S̄′

3 S̄′

4 S̄′

5
S̄′

j S̄′

j+1

Figure 1. A graphic representation of the iterative fashion for computing sets S̄j and
S̄ ′

j for increasing values of j.

for 1 ≤ j < n − 1. Then the following recurrences hold:

S̄j+1 = {(i, k) | i ≤ m − 1 and ((i − 1, k) ∈ S̄j and P [i] = T [j + 1]) or
((i − 1, k − 1) ∈ S̄ ′

j and P [i] = T [j]) } ∪ λ̄j+1

S̄ ′
j+1 = {(i, k) | i < m − 1 and (i − 1, k) ∈ S̄j and P [i] = T [j + 2]} ∪ λ̄j+2.

(1)

where the base cases are given by S0 = λ̄0 and S ′
0 = λ̄1.

Such relations allow one to compute the sets S̄j and S̄ ′
j in an iterative fashion,

where S̄j+1 is computed in terms of both S̄j and S̄ ′
j, whereas S̄ ′

j+1 needs only S̄j for its
computation. The resulting dependency graph has a doubly crossed structure, from
which the name of the algorithm in Fig. 2(A), Approximate-Cross-Sampling,
for the swap matching problem. Plainly, the time complexity of the Approximate-

Cross-Sampling algorithm is O(nm).

In [9], a bit-parallel implementation of the Approximate-Cross-Sampling al-
gorithm, called BP-Approximate-Cross-Sampling, has been presented.

The BP-Approximate-Cross-Sampling algorithm1 uses a representation of
the sets S̄j and S̄ ′

j as lists of qm bits, D̄j and D̄′
j respectively, where m is the length

of the pattern and q = log(⌊m/2⌋ + 1) + 1. If (i, k) ∈ S̄j, where 0 ≤ i < m and
0 ≤ k ≤ ⌊m/2⌋, then the rightmost bit of the i-th block of D̄j is set to 1 and the
leftmost q − 1 bits of the i-th block correspond to the value k (we need exactly q
bits to represent a value between 0 and ⌊m/2⌋). The same considerations hold for the
sets S̄ ′

j. Notice that if mq ≤ w, each list fits completely in a single computer word,
whereas if mq > w one needs ⌈mq/w⌉ computer words to represent each of the sets
S̄j and S̄ ′

j.
For each character c of the alphabet Σ, the algorithm maintains a bit mask M [c],

where the rightmost bit of the i-th block is set to 1 if P [i] = c, and a bit mask B[c],
whose i-th block have all its bits set to 1 if P [i] = c.

The algorithm also maintains two bit vectors, D̄ and D̄′, whose configurations
during the computation are respectively denoted by D̄j and D̄′

j, as the location j

advances over the input text. For convenience, we introduce also the bit vectors D̄−1

and D̄′
−1, which are both set to 0qm. While scanning the text from left to right, the

algorithm computes for each position j ≥ 0 the bit vector D̄j in terms of D̄j−1 and
D̄′

j−1, by performing the following bitwise operations (in brackets the corresponding

operations on the set S̄j represented by D̄j):

1 Here we provide some minor corrections to the code of the BP-Approximate-Cross-Sampling

algorithm presented in [9].

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 95

(A) Approximate-Cross-Sampling (P, m, T, n)

1. S̄0
0 ← S̄1

0 ← ∅
2. if P [0] = T [0] then S̄0

0 ← {(0, 0)}
3. if P [0] = T [1] then S̄1

0 ← {(0, 0)}
4. for j ← 1 to n − 1 do
5. S̄0

j ← S̄1
j ← ∅

6. for (i, k) ∈ S̄0
j−1 do

7. if i < m − 1 then
8. if P [i + 1] = T [j]
9. then S̄0

j ← S̄0
j ∪ {(i + 1, k)}

10. if j < n − 1 and P [i + 1] = T [j + 1]
11. then S̄1

j ← S̄1
j ∪ {(i + 1, k)}

12. else Output((j − 1, k))
13. for (i, k) ∈ S̄1

j−1 do

14. if i < m − 1 and P [i + 1] = T [j − 1]
15. then S̄0

j ← S̄0
j ∪ {(i + 1, k + 1)}

16. if P [0] = T [j] then S̄0
j ← S̄0

j ∪ {(0, 0)}

17. if j < n − 1 and P [0] = T [j + 1]
18. then S̄1

j ← S̄1
j ∪ {(0, 0)}

19. for (i, k) ∈ S̄0
n−1 do

20. if i = m − 1 then Output(n − 1, k)

(B) BP-Approximate-Cross-Sampling (P, m, T, n)

1. q ← log(⌊m/2⌋ + 1) + 1
2. F ← 0qm−11

3. G ← 0q(m−1)1q

4. for c ∈ Σ do
5. M [c] ← 0qm

6. B[c] ← 0qm

7. for i ← 0 to m − 1 do
8. M [P [i]] ← M [P [i]] | F
9. B[P [i]] ← B[P [i]] | G
10. F ← (F ≪ q)
11. G ← (G ≪ q)

12. F ← 0q−110q(m−1)

13. D̄ ← D̄′ ← 0qm

14. for j ← 0 to n − 1 do
15. H0 ← (D̄ ≪ q) | 1
16. H1 ← (D̄′ ≪ q) & B[T [j − 1]
17. H2 ← (D̄′ ≪ q) & M [T [j − 1]
18. D̄ ← (H0 & B[T [j]]) | H1

19. D̄ ← D̄ + (H2 ≪ 1)
20. D̄′ ← (H0 & B[T [j + 1]]) & ∼ D̄
21. if (D̄ & F) 6= 0qm then
22. k ← (D̄ ≫ (q(m − 1) + 1))
23. Output(j, k)

Figure 2. (A) The Approximate-Cross-Sampling algorithm for the approxim-
ate swap matching problem. (B) Its bit-parallel variant BP-Approximate-Cross-

Sampling.

D̄j ← D̄j−1 ≪ q [S̄j = {(i, k) : (i − 1, k) ∈ S̄j−1}]
D̄j ← D̄j | 1 [S̄j = S̄j ∪ {(0, 0)}]
D̄j ← D̄j & B[T [j]] [S̄j = S̄j \ {(i, k) : P [i] 6= T [j]}]
D̄j ← D̄j | H1 [S̄j = S̄j ∪ K]
D̄j ← D̄j + (H2 ≪ 1) [∀ (i, k) ∈ K change (i, k) with (i, k + 1) in S̄j]

where H1 = ((D̄′
j−1 ≪ q) & B[T [j − 1]]), H2 = ((D̄′

j−1 ≪ q) & M [T [j − 1]]), and

K = {(i, k) : (i − 1, k) ∈ S̄ ′
j−1 ∧ P [i] = T [j − 1]}.

Similarly, the bit vector D̄′
j is computed in the j-th iteration of the algorithm

in terms of D̄j−1, by performing the following bitwise operations (in brackets the
corresponding operations on the set S̄ ′

j represented by D̄′
j):

D̄′
j ← D̄j−1 ≪ q [S̄ ′

j = {(i, k) : (i − 1, k) ∈ S̄j−1}]
D̄′

j ← D̄′
j | 1 [S̄ ′

j = S̄ ′
j ∪ {(0, 0)}]

D̄′
j ← D̄′

j & B[T [j + 1]] [S̄ ′
j = S̄ ′

j \ {(i, k) : P [i] 6= T [j + 1]}]
D̄′

j ← D̄′
j & ∼ D̄j [S̄ ′

j = S̄ ′
j \ {(i, k) : (i, k) ∈ S̄j}].

During the j-th iteration, if the rightmost bit of the (m− 1)-st block of D̄j is set
to 1, i.e. if (D̄j & 10q(m−1)) 6= 0m, a swap match is reported at position j. The total
number of swaps is contained in the q − 1 leftmost bits of the (m− 1)-st block of D̄j,
which can be retrieved by performing a bitwise shift on D̄j of (q(m−1)+1) positions
to the right.

The code of the BP-Approximate-Cross-Sampling algorithm is shown in
Fig. 2(B). It achieves a O(⌈mn log m/w⌉) worst-case time complexity and requires
O(σ⌈m log m/w⌉) extra space, where σ is the size of the alphabet. If m(log(⌊m/2⌋+
1) + 1) ≤ c1w, where c1 is a small integer constant, then the algorithm requires
O(n)-time and O(σ) extra space.

96 Proceedings of the Prague Stringology Conference 2009

4 New Algorithms for the Approximate Swap Matching
Problem

In this section we present a new practical algorithm for solving the swap match-
ing problem, called Approximate-BCS (Approximate Backward Cross Sampling),
which is characterized by a O(mn2)-time and O(m)-space complexity, where m and
n are the length of the pattern and text, respectively.

Our algorithm is an extension of the Backward-Cross-Sampling algorithm [8],
for the standard swap matching problem. It inherits from the Approximate-Cross-

Sampling algorithm the same doubly crossed structure in its iterative computation,
but searches for all occurrences of the pattern in the text by scanning characters
backwards, from right to left.

Later, in Section 4.2, we present an efficient implementation based on bit par-
allelism of the Approximate-BCS algorithm, which achieves a O(mn)-time and
O(σ)-space complexity, when the pattern fits within few computer words, i.e., if
m ≤ c1w, for some small constant c1.

4.1 The Approximate-BCS Algorithm

The Approximate-BCS algorithm searches for all the swap occurrences of a pat-
tern P (of length m) in a text T (of length n) using right-to-left scans in windows of
size m, as in the Backward DAWG Matching (BDM) algorithm for the exact single
pattern matching problem [10]. In addition, for each occurrence of P in T , the algo-
rithm counts the number of swaps necessary to convert the pattern in its swapped
occurrence.

The BDM algorithm processes the pattern by constructing a directed acyclic word
graph (DAWG) of the reversed pattern. The text is processed in windows of size m
which are searched for the longest prefix of the pattern from right to left by means
of the DAWG. At the end of each search phase, either a longest prefix or a match is
found. If no match is found, the window is shifted to the start position of the longest
prefix, otherwise it is shifted to the start position of the second longest prefix.

As in the BDM algorithm, the Approximate-BCS algorithm processes the text
in windows of size m. Each attempt is identified by the last position, j, of the current
window of the text. The window is searched for the longest prefix of the pattern
which has a swapped occurrence ending at position j of the text. At the end of each
attempt, a new value of j is computed by performing a safe shift to the right of the
current window in such a way to left-align it with the longest prefix matched in the
previous attempt.

To this end, if we put

Sh
j =Def {h − 1 ≤ i ≤ m − 1 | P [i − h + 1 .. i] ∝ Tj} ,

Wh
j =Def {h ≤ i < m − 1 | P [i − h + 2 .. i] ∝ Tj and P [i − h + 1] = T [j − h]} ,

for 0 ≤ j < n and 0 ≤ h ≤ m, then the following recurrences hold:

Sh+1
j = {h − 1 ≤ i ≤ m − 1 | (i ∈ Sh

j and P [i − h] = T [j − h]) or
(i ∈ Wh

j and P [i − h] = T [j − h + 1]) }
Wh+1

j = {h ≤ i ≤ m − 1 | i ∈ Sh
j and P [i − h] = T [j − h − 1]} .

(2)

where the base cases are given by

S0
j = {i | 0 ≤ i < m} and W0

j = {0 ≤ i < m − 1 | P [i + 1] = T [j]} .

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 97

Sℓ
j

Wℓ
j

S2
j

W2
j

S1
j

W1
j

S0
j

W0
j

Sh
u

Wh
u

S2
u

W2
u

S1
u

W1
u

S0
u

W0
u

u = j + m − ℓ

Figure 3. A graphic representation of the iterative fashion for computing the sets Sh
j

and Wh
j for increasing values of h. A first attempt starts at position j of the text and

stops with h = ℓ. The subsequent attempt starts at position u = j + m − l.

Such relations allow one to compute the sets Sh
j and Wh

j in an iterative fashion,

where Sh+1
j is computed in terms of both Sh

j and Wh
j , whereas Wh+1

j needs only Sh
j

for its computation. The resulting dependency graph has a doubly crossed structure
as shown in Figure 3.

Plainly the set Sh
j includes all the values i such that the h-substring of P ending at

position i has a swapped occurrence ending at position j in T . Thus, if (h− 1) ∈ Sh
j ,

then there is a swapped occurrence of the prefix of length h of P . Hence, it follows
that P has a swapped occurrence ending at position j if and only if (m − 1) ∈ Sm

j .
Observe however that the only prefix of length m is the pattern P itself. Thus

(m − 1) ∈ Sm
j if and only if Sm

j 6= ∅.
The following result follows immediately from (2).

Lemma 8. Let P and T be a pattern of length m and a text of length n, respectively.
Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. If i ∈ Sγ

j , then it follows that

i ∈ (Sh
j ∪ W h

j), for 1 ≤ h ≤ γ. ⊓⊔

Lemma 9. Let P and T be a pattern of length m and a text of length n, respectively.
Then, for every m− 1 ≤ j ≤ n− 1 and 0 ≤ i < m such that i ∈ (Sγ

j ∩W γ−1
j ∩ Sγ−1

j),
we have P [i − γ + 1] = P [i − γ + 2].

Proof. From i ∈ (Sγ
j ∩ Sγ−1

j) it follows that P [i − γ + 1] = T [j − γ + 1]. Also, from

i ∈ W γ−1
j it follows that P [i−γ+2] = T [j−γ+1]. Thus P [i−γ+1] = P [i−γ+2]. ⊓⊔

The following lemma will be used.

Lemma 10. Let P and T be a pattern of length m and a text of length n, respectively.
Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. Then, if i ∈ Sγ

j , there is a swap

between characters P [i − γ + 1] and P [i − γ + 2] if and only if i ∈ (Sγ
j \ Sγ−1

j).

Proof. Before entering into details we remember that, by Definition 1, a swap can
take place between characters P [i−γ +1] and P [i−γ +2] if and only if P [i−γ +1] =
T [j − γ + 2], P [i − γ + 2] = T [j − γ + 1] and P [i − γ + 1] 6= P [i − γ + 2].

Now, suppose that i ∈ Sγ
j and that there is a swap between characters P [i−γ +1]

and P [i− γ + 2]. We proceed by contradiction to prove that i /∈ Sγ−1
j . Thus, we have

98 Proceedings of the Prague Stringology Conference 2009

(i) i ∈ Sγ
j (by hypothesis)

(ii) P [i − γ + 2] = T [j − γ + 1] 6= P [i − γ + 1] (by hypothesis)

(iii) i ∈ Sγ−1
j (by contradiction)

(iv) i /∈ W γ−1
j (by (ii), (iii), and Lemma 9)

(v) P [i − γ + 1] = T [j − γ + 1] (by (i) and (iv))
obtaining a contradiction between (ii) and (v).

Next, suppose that i ∈ (Sγ
j \ Sγ−1

j). We prove that there is a swap between
characters P [i − γ + 1] and P [i − γ + 2]. We have

(i) i ∈ Sγ
j and i /∈ Sγ−1

j (by hypothesis)

(ii) i ∈ W γ−1
j (by (i) and Lemma 8)

(iii) i ∈ Sγ−2
j (by (ii) and (2))

(iv) P [i − γ + 1] = T [j − γ + 2] (by (i) and (ii))
(v) P [i − γ + 2] = T [j − γ + 1] (by (ii))
(vi) P [i − γ + 2] 6= T [j − γ + 2] = P [i − γ + 1] (by (i) and (iii)).

⊓⊔

The following corollary is an immediate consequence of Lemmas 10 and 8.

Corollary 11. Let P and T be strings of length m and n, respectively, over a common
alphabet Σ. Then, for m−1 ≤ j ≤ n−1, P has a swapped occurrence in T at location
j with k swaps, i.e., P ∝

k
Tj, if and only if

(m − 1) ∈ Sm
j and |∆j| = k ,

where ∆j = {1 ≤ h < m : (m − 1) ∈ (Sh+1
j \ Sh

j)}. ⊓⊔

In consideration of the preceding corollary, the Approximate-BCS algorithm
maintains a counter which is incremented every time (m − 1) ∈ (Sh+1

j \ Sh
j), for any

1 < h ≤ m, in order to count the swaps for an occurrence ending at a given position
j of the text.

For any attempt at position j of the text, let us denote by ℓ the length of the
longest prefix matched in the current attempt. Then the algorithm starts its compu-
tation with j = m − 1 and ℓ = 0. During each attempt, the window of the text is
scanned from right to left, for h = 1, . . . ,m. If, for a given value of h, the algorithm
discovers that (h − 1) ∈ Sh

j , then ℓ is set to the value h.
The algorithm is not able to remember the characters read in previous iterations.

Thus, an attempt ends successfully when h reaches the value m (a match is found),
or unsuccessfully when both sets Sh

j and Wh
j are empty. In any case, at the end of

each attempt, the start position of the window, i.e., position j − m + 1 in the text,
can be shifted to the start position of the longest proper prefix detected during the
backward scan. Thus the window is advanced m − ℓ positions to the right. Observe
that since ℓ < m, we plainly have that m − ℓ > 0.

Moreover, in order to avoid accessing the text character at position j−h+1 = n,
when j = n − 1 and h = 0, the algorithm benefits of the introduction of a sentinel
character at the end of the text.

The code of the Approximate-BCS algorithm is shown in Figure 4(A). Its time
complexity is O(nm2) in the worst case and requires O(m) extra space to represent
the sets Sh

j and Wh
j .

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 99

4.2 The Approximate-BPBCS Algorithm

In [8], an efficient bit-parallel implementation of the Backward-Cross-Sampling

algorithm, called BP-Backward-Cross-Sampling, has also been presented. In this
section we illustrate a practical bit-parallel implementation of the Approximate-

BCS algorithm, named Approximate-BPBCS, along the same lines of the BP-

Backward-Cross-Sampling algorithm.
In the Approximate-BPBCS algorithm, the sets Sh

j and Wh
j are represented as

lists of m bits, Dh
j and Ch

j respectively, where m is the length of the pattern.

The (i−h+1)-th bit of Dh
j is set to 1 if i ∈ Sj, i.e., if P [i−h+1 .. i] ∝ Tj, whereas

the (i − h + 1)-th bit of Ch
j is set to 1 if i ∈ Wh

j , i.e., if P [i − h + 2 .. i] ∝ Tj and
P [i − h + 1] = T [j − h]. All remaining bits are set to 0. Notice that if m ≤ w, each
bit vector fits in a single computer word, whereas if m > w we need ⌈m/w⌉ computer
words to represent each of the sets Sh

j and Wh
j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask M [c]
whose i-th bit is set to 1 if P [i] = c.

As in the Approximate-BCS algorithm, the text is processed in windows of size
m, identified by their last position j, and the first attempt starts at position j = m−1.
For any searching attempt at location j of the text, the bit vectors D1

j and C1
j are

initialized to M [T [j]] | (M [T [j + 1]]&(M [T [j]] ≪ 1)) and M [T [j − 1]], respectively,
according to the recurrences (2) and relative base cases. Then the current window
of the text, i.e., T [j − m + 1 .. j], is scanned from right to left, by reading character
T [j − h + 1], for increasing values of h. Namely, for each value of h > 1, the bit
vector Dh+1

j is computed in terms of Dh
j and Ch

j , by performing the following bitwise
operations:

(a) Dh+1
j ← (Dh

j ≪ 1) & M [T [j − h]]

(b) Dh+1
j ← Dh+1

j | ((Ch
j ≪ 1) & M [T [j − h + 1]]) .

Concerning (a), by a left shift of Dh
j , all elements of Sh

j are added to the set Sh+1
j .

Then, by performing a bitwise and with the mask M [T [j − h]], all elements i such
that P [i − h] 6= T [j − h] are removed from Sh+1

j . Similarly, the bit operations in (b)

have the effect to add to Sh+1
j all elements i in Wh

j such that P [i− h] = T [j − h + 1].
Formally, we have:

(a′) Sh+1
j ← Sh

j \ {i ∈ Sh
j : P [i − h] 6= T [j − h]}

(b′) Sh+1
j ← Sh+1

j ∪Wh
j \ {i ∈ Wh

j : P [i − h] 6= T [j − h + 1]} .

Similarly, the bit vector Ch+1
j is computed in terms of Dh

j , by performing the
following bitwise operations

(c) Ch+1
j ← (Dh

j ≪ 1) & M [T [j − h − 1]]

which have the effect to add to the set Wh+1
j all elements of the set Sh

j (by shifting

Dh
j to the left by one position) and to remove all elements i such P [i] 6= T [j − h− 1]

holds (by a bitwise and with the mask M [T [j − h − 1]]), or, more formally:

(c′) Wh+1
j ← Sh

j \ {i ∈ Sh
j : P [i − h] 6= T [j − h − 1]} .

In order to count the number of swaps, observe that the (i − h + 1)-th bit of Dh
j

is set to 1 if i ∈ Sh
j . Thus, the condition (m − 1) ∈ (Sh+1

j \ Sh
j) can be implemented

by the following bitwise condition:

(d) ((Dh+1 & ∼ (Dh ≪ 1)) & (1 ≪ h)) 6= 0 .

100 Proceedings of the Prague Stringology Conference 2009

(A) Approximate-BCS (P, m, T, n)

1. T [n] ← P [0]
2. j ← m − 1
3. while j < n do
4. h ← 0
5. S0

j ← {i | 0 ≤ i < m}

6. W0
j ← {0 ≤ i < m − 1 | P [i + 1] = T [j]}

7. c ← 0
8. while h < m and Sh

j ∪Wh
j 6= ∅ do

9. if (h − 1) ∈ Sh
j then ℓ ← h

10. for each i ∈ Sh
j do

11. if i ≥ h and P [i − h] = T [j − h]

12. then Sh+1
j ← Sh+1

j ∪ {i}

13. if i > h and P [i − h] = T [j − h − 1]

14. then Wh+1
j ← Wh+1

j ∪ {i}

15. for each i ∈ Wh
j do

16. if i ≥ h and P [i − h] = T [j − h + 1]

17. then Sh+1
j ← Sh+1

j ∪ {i}

18. if m − 1 ∈ Sh+1
j and m − 1 /∈ Sh

j

19. then c ← c + 1
20. h ← h + 1
21. if (h − 1) ∈ Sh

j then Output(j,c)

22. j ← j + m − ℓ

(B) Approximate-BPBCS (P, m, T, n)

1. F ← 10m−1

2. for c ∈ Σ do M [c] ← 0m

3. for i ← 0 to m − 1 do
4. M [P [i]] ← M [P [i]] | F
5. F ← F ≫ 1
6. T [n] ← P [0]
7. j ← m − 1
8. F ← 10m−1

9. while j < n do
10. h ← 1, ℓ ← 0
11. D ← M [T [j]]
12. D ← D | (M [T [j + 1]]&(M [T [j]] ≪ 1))
13. C ← M [T [j − 1]]
14. c ← 0
15. while h < m and (D | C) 6= 0 do

16. D
′

← D ≪ 1
17. if F&D 6= 0 then ℓ ← h
18. H ← (C ≪ 1) & M [T [j − h + 1]]

19. C ← D
′

& M [T [j − h − 1]]

20. D ← D
′

& M [T [j − h]]
21. D ← D | H

22. if (D & ∼ D
′

) & (1 ≪ h) 6= 0
23. then c ← c + 1
24. h ← h + 1
25. if D 6= 0 then Output(j,c)
26. j ← j + m − ℓ

Figure 4. (A) The Approximate-BCS algorithm for the approximate swap match-
ing problem. (B) Its bit-parallel variant Approximate-BPBCS.

As in the Approximate-BCS algorithm, an attempt ends when h = m or
(Dh

j |C
h
j) = 0. If h = m and Dh

j 6= 0, a swap match at position j of the text is

reported. In any case, if h < m is the largest value such that Dh
j 6= 0, then a prefix

of the pattern, of length ℓ = h, which has a swapped occurrence ending at position j
of the text, has been found. Thus, a safe shift of m− ℓ position to the right can take
place.

In practice, two vectors only are enough to implement the sets Dh
j and Ch

j , for

h = 0, 1, . . . ,m, as one can transform the vector Dh
j into the vector Dh+1

j and the

vector Ch
j into the vector Ch+1

j , during the h-th iteration of the algorithm at a given
location j of the text.

The counter for taking note of the number of swaps requires log(⌊m/2⌋ + 1) bits
to be implemented. This compares favorably with the BP-Approximate-Cross-

Sampling algorithm which uses instead m counters of log(⌊m/2⌋ + 1) bits, one for
each prefix of the pattern.

The resulting Approximate-BPBCS algorithm is shown in Fig. 4(B). It achieves
a O(⌈nm2/w⌉) worst-case time complexity and requires O(σ⌈m/w⌉+log(⌊m/2⌋+1))
extra space, where σ is the alphabet size. If the pattern fits in few machine words, then
the algorithm finds all swapped matches and their corresponding counts in O(nm)
time and O(σ) extra space.

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 101

5 Experimental Results

Next we report and comment experimental results relative to an extensive comparison
under various conditions of the following approximate swap matching algorithms:

– Approximate-Cross-Sampling (ACS)

– BP-Approximate-Cross-Sampling (BPACS)

– Approximate-BCS (ABCS)

– Approximate-BPBCS (BPABCS)

– Iliopoulos-Rahman algorithm with a naive check of the swaps (IR&C)

– BP-Backward-Cross-Sampling algorithm with a naive check of the swaps
(BPBCS&C)

We have chosen to include in our comparison also the algorithms IR&C and BP-

BCS&C, since the algorithms IR and BPBCS turned out, in [8], to be the most efficient
solutions for the swap matching problem. Instead, the Naive algorithm and algorithms
based on the FFT technique have not been taken into consideration, as their overhead
is quite high, resulting in poor performances.

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with AMD
Turion 64 X2 processor with mobile technology TL-60 of 2 GHz and a RAM memory
of 4 GB. In particular, all algorithms have been tested on six Randσ problems, for
σ = 4, 8, 16, 32, 64 and 128, on a genome, on a protein sequence, and on a natural
language text buffer, with patterns of length m = 4, 8, 12, 16, 20, 24, 28, 32.

In the following tables, running times are expressed in hundredths of seconds and
the best results have been bold-faced.

Running Times for Random Problems
In the case of random texts, all algorithms have been tested on six Randσ problems.
Each Randσ problem consists in searching a set of 100 random patterns for any given
length value in a 4 Mb random text over a common alphabet of size σ, with a uniform
character distribution.

Running times for a Rand4 problem

m 4 8 12 16 20 24 28 32

ACS 5.916 5.768 5.835 5.860 5.753 5.739 5.571 5.604
ABCS 17.132 10.681 8.504 7.278 6.322 6.096 5.778 5.341
BPACS 0.817 0.794 0.752 0.800 0.784 0.799 0.818 0.747
BPABCS 0.573 0.341 0.255 0.204 0.177 0.159 0.141 0.129
IR&C 0.275 0.275 0.275 0.276 0.275 0.279 0.276 0.282
BPBCS&C 0.614 0.358 0.262 0.212 0.182 0.161 0.145 0.132

Running times for a Rand8 problem

m 4 8 12 16 20 24 28 32

ACS 4.769 4.756 4.762 4.786 4.761 4.808 4.765 4.796
ABCS 11.675 7.273 5.632 4.736 4.167 3.782 3.511 3.305
BPACS 0.832 0.830 0.828 0.831 0.830 0.829 0.827 0.827
BPABCS 0.413 0.229 0.175 0.145 0.127 0.114 0.104 0.096
IR&C 0.282 0.279 0.279 0.277 0.280 0.279 0.283 0.285
BPBCS&C 0.388 0.249 0.193 0.157 0.141 0.121 0.111 0.101

102 Proceedings of the Prague Stringology Conference 2009

Running times for a Rand16 problem

m 4 8 12 16 20 24 28 32

ACS 5.210 5.291 5.162 5.282 5.198 5.201 5.202 5.131
ABCS 10.200 6.314 5.297 4.554 3.932 3.511 3.448 3.140
BPACS 0.786 0.807 0.780 0.783 0.812 0.806 0.743 0.721
BPABCS 0.346 0.198 0.144 0.118 0.103 0.093 0.086 0.081
IR&C 0.275 0.274 0.279 0.274 0.275 0.277 0.279 0.274
BPBCS&C 0.330 0.211 0.155 0.126 0.110 0.099 0.091 0.085

Running times for a Rand32 problem

m 4 8 12 16 20 24 28 32

ACS 5.285 5.080 5.228 5.262 5.175 5.190 5.216 5.296
ABCS 9.414 5.831 4.437 3.955 3.521 3.232 2.954 2.890
BPACS 0.776 0.746 0.796 0.775 0.834 0.807 0.791 0.796
BPABCS 0.294 0.184 0.138 0.113 0.097 0.086 0.078 0.073
IR&C 0.275 0.276 0.276 0.276 0.279 0.275 0.275 0.277
BPBCS&C 0.285 0.191 0.146 0.119 0.103 0.091 0.083 0.077

Running times for a Rand64 problem

m 4 8 12 16 20 24 28 32

ACS 5.101 5.108 5.254 5.174 5.155 5.098 5.095 5.262
ABCS 8.857 5.350 4.165 3.502 3.273 2.972 2.717 2.692
BPACS 0.838 0.808 0.769 0.714 0.835 0.806 0.807 0.766
BPABCS 0.267 0.162 0.127 0.108 0.095 0.086 0.078 0.073
IR&C 0.272 0.276 0.275 0.280 0.281 0.283 0.279 0.279
BPBCS&C 0.255 0.165 0.130 0.111 0.098 0.089 0.082 0.076

Running times for a Rand128 problem

m 4 8 12 16 20 24 28 32

ACS 5.070 5.052 5.091 4.996 5.088 4.940 4.968 5.216
ABCS 8.672 5.288 3.994 3.289 2.941 2.778 2.660 2.523
BPACS 0.833 0.836 0.836 0.836 0.835 0.835 0.836 0.833
BPABCS 0.248 0.148 0.115 0.098 0.087 0.080 0.075 0.071
IR&C 0.352 0.354 0.354 0.353 0.353 0.353 0.354 0.333
BPBCS&C 0.230 0.151 0.117 0.099 0.090 0.082 0.077 0.072

The experimental results show that the BPABCS algorithm obtains the best run-
time performance in most cases. In particular, for very short patterns and small
alphabets, our algorithm is second only to the IR&C algorithm. In the case of very
short patterns and large alphabets, our algorithm is second only to the BPBCS&C

algorithm. In addition we notice that the algorithms IR&C, ACS, and BPACS show
a linear behavior, whereas the algorithms ABCS and BPABCS are characterized by a
decreasing trend.

Running Times for Real World Problems
The tests on real world problems have been performed on a genome sequence and
on a natural language text buffer. The genome we used for the tests is a sequence
of 4, 638, 690 base pairs of Escherichia coli taken from the file E.coli of the Large
Canterbury Corpus.1 The tests on the protein sequence have been performed using a
2.4 Mb file containing a protein sequence from the human genome with 22 different
characters. The experiments on the natural language text buffer have been done with
the file world192.txt (The CIA World Fact Book) of the Large Canterbury Corpus. The
file contains 2, 473, 400 characters drawn from an alphabet of 93 different characters.

1 http://www.data-compression.info/Corpora/CanterburyCorpus/

M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 103

Running times for a genome segence (σ = 4)

m 4 8 12 16 20 24 28 32

ACS 5.629 5.643 5.654 5.636 5.644 5.640 5.647 6.043
ABCS 18.018 11.261 8.805 7.523 6.700 6.117 5.710 5.359
BPACS 0.950 0.914 0.917 0.766 0.874 0.934 0.935 0.843
BPABCS 0.647 0.318 0.266 0.232 0.195 0.174 0.160 0.147
IR&C 0.262 0.287 0.314 0.311 0.311 0.311 0.310 0.311
BPBCS&C 0.678 0.367 0.290 0.233 0.204 0.176 0.160 0.146

Running times for a protein sequence (σ = 22)

m 4 8 12 16 20 24 28 32

ACS 3.777 3.784 3.671 3.729 3.766 3.703 3.716 3.741
ABCS 7.045 4.557 3.734 3.162 2.806 2.661 2.600 2.351
BPACS 0.565 0.581 0.561 0.563 0.584 0.580 0.534 0.519
BPABCS 0.249 0.142 0.103 0.084 0.074 0.066 0.061 0.058
IR&C 0.388 0.390 0.391 0.389 0.391 0.391 0.396 0.389
BPBCS&C 0.241 0.145 0.107 0.087 0.075 0.068 0.062 0.058

Running times for a natural language text buffer (σ = 93)

m 4 8 12 16 20 24 28 32

ACS 3.170 2.757 2.748 2.756 2.761 2.745 2.746 2.754
ABCS 6.175 4.054 3.164 2.705 2.306 2.288 2.042 1.866
BPACS 0.492 0.497 0.492 0.491 0.492 0.491 0.494 0.493
BPABCS 0.194 0.114 0.086 0.071 0.062 0.056 0.051 0.049
IR&C 0.171 0.165 0.164 0.168 0.165 0.165 0.165 0.167
BPBCS&C 0.164 0.126 0.094 0.076 0.070 0.059 0.056 0.055

From the above experimental results, it turns out that the BPABCS algorithm
obtains in most cases the best results and, in the case of very short patterns, is second
to IR&C (for the genome sequence) and to BPBCS&C (for the protein sequence and
the natual language text buffer).

6 Conclusions

In this paper we have presented new efficient algorithms for the Approximate Swap
Matching problem. In particular, we have devised an extension of the Backward-

Cross-Sampling general algorithm, named Approximate-BCS, and of its bit-
parallel implementation BP-Backward-Cross-Sampling, named Approximate-

BPBCS.

The Approximate-BCS algorithm achieves a O(nm2)-time complexity and re-
quires O(nm) additional space, whereas the Approximate-BPBCS algorithm achie-
ves a O(⌈nm2/w⌉) worst-case time complexity and, when the pattern fits in few
machine words, finds all swapped matches and their corresponding counts in O(nm)-
time.

In contrast with the BP-Approximate-Cross-Sampling algorithm, the Ap-

proximate-BPBCS algorithm requires O(σ⌈m/w⌉ + log(⌊m/2⌋ + 1)) extra space
and is thus preferable to the former in the case of longer patterns.

From an extensive experimentation, it turns out that the Approximate-BPBCS

algorithm is very fast in practice and obtains the best results in most cases, being
second only to algorithms based on a naive check of the number of swaps in the case
of very short patterns.

104 Proceedings of the Prague Stringology Conference 2009

References

1. A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein: Pattern

matching with swaps, in IEEE Symposium on Foundations of Computer Science, 1997, pp. 144–
153.

2. A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein: Pattern

matching with swaps. Journal of Algorithms, 37(2) 2000, pp. 247–266.
3. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat: Overlap matching.

Inf. Comput., 181(1) 2003, pp. 57–74.
4. A. Amir, G. M. Landau, M. Lewenstein, and N. Lewenstein: Efficient special cases of

pattern matching with swaps. Information Processing Letters, 68(3) 1998, pp. 125–132.
5. A. Amir, M. Lewenstein, and E. Porat: Approximate swapped matching. Inf. Process.

Lett., 83(1) 2002, pp. 33–39.
6. P. Antoniou, C. Iliopoulos, I. Jayasekera, and M. Rahman: Implementation of a swap

matching algorithm using a graph theoretic model, in Bioinformatics Research and Development,
Second International Conference, BIRD 2008, vol. 13 of Communications in Computer and
Information Science, Springer, 2008, pp. 446–455.

7. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

8. M. Campanelli, D. Cantone, and S. Faro: A new algorithm for efficient pattern match-

ing with swaps, in IWOCA 2009: 20th International Workshop on Combinatorial Algorithms,
Lecture Notes in Computer Science, Springer, 2009.

9. D. Cantone and S. Faro: Pattern matching with swaps for short patterns in linear time, in
SOFSEM 2009: Theory and Practice of Computer Science, 35th Conference on Current Trends
in Theory and Practice of Computer Science, vol. 5404 of Lecture Notes in Computer Science,
Springer, 2009, pp. 255–266.

10. M. Crochemore and W. Rytter: Text algorithms, Oxford University Press, 1994.
11. C. S. Iliopoulos and M. S. Rahman: A new model to solve the swap matching problem and

efficient algorithms for short patterns, in SOFSEM 2008, vol. 4910 of Lecture Notes in Computer
Science, Springer, 2008, pp. 316–327.

12. S. Muthukrishnan: New results and open problems related to non-standard stringology, in
Combinatorial Pattern Matching, 6th Annual Symposium, CPM 95, vol. 937 of Lecture Notes
in Computer Science, Springer, 1995, pp. 298–317.

