
On the Usefulness of Backspace

Shmuel T. Klein1 and Dana Shapira2

1 Department of Computer Science
Bar Ilan University
Ramat Gan, Israel
tomi@cs.biu.ac.il

2 Department of Computer Science
Ashkelon Acad. College

Ashkelon, Israel
shapird@ash-college.ac.il

Abstract. The usefulness of a backspace character in various applications of Infor-
mation Retrieval Systems is investigated. While not being a character in the initial
sense of the word, a backspace can be defined as being a part of an extended alphabet,
thereby enabling the enhancement of various algorithms related to the processing of
queries in Information retrieval. We bring examples of three different application areas.

1 Introduction

A large textual database can be made accessible by means of an Information Retrieval
System (IRS), a set of procedures which process the given text to find the most
relevant passages to a specific information request. This request is usually formulated
according to some given rigid query syntax, but in fact the formulation of a query is
an art in which the user has to find the right balance between a choice of query terms
that may be too broad and others that could be too restrictive.

The present work is an extension of an earlier study of the negation operator as it
appears in its various forms in Information Retrieval applications [7]. We restrict at-
tention to the Boolean query model, as in Chang et al. [1], though several alternatives
are available, like the classical vector space model [9], the probabilistic model [11],
and others. The natural approach of most users to query formulation involves the
choice of keywords that best describe their information needs. They often overlook
the possibility, which sometimes could even be a necessity, of choosing also a negative

set, that is, a set of keywords which should not appear in the vicinity of some others,
thereby achieving improved precision. But the use of negation might in certain cases
be tricky and is not always symmetrical to the use of positive terms.

We now turn to the usefulness of an element which is intrinsically negative, namely
a backspace character. A backspace is not really a character in the classical sense, as it
is not explicitly written or used to form any words, but keyboards contain a backspace
key and standard codes like ASCII assign it a codeword, so programmers, rather than
users, consider backspaces just as any other printable character. The purpose of this
paper is to show that in spite of it not representing any concrete entity, a backspace
can be a useful tool in various different applications related to the implementation of
IR systems. The intention is not to present a comprehensive investigation of all the
possible applications of backspaces, but rather to emphasize its usefulness by means
of some specific examples in different areas of Information Retrieval. The next section
deals with the processing of large numbers in an IRS and suggests a solution based
on using backspaces as part of the elements that might be retrieved. In Section 3 we

Shmuel T. Klein, Dana Shapira: On the Usefulness of Backspace, pp. 80–89.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

Shmuel T. Klein and Dana Shapira: On the Usefulness of Backspace 81

consider compression aspects of the textual databases within an IRS, and show how
a model including a backspace may lead to improved savings. As a last example, we
show in Section 4 how the use of backspaces may lead to another time/space tradeoff
in an application to the fast decoding of Huffman encoded texts.

2 Dealing with large numbers

2.1 Syntax definition

To enable the subsequent discussion, one has first to define a query language syntax.
Most search engines allow simple queries, consisting just of a set of keywords, such
as

A1 A2 . . . Am, (1)

which should retrieve all the documents in the underlying textual database in which
all the terms Ai occur at least once. Often, some kind of stemming is automatically
performed on all the terms of the text during the construction of the database, as
well as online on the query terms [5]. Negating one or more keywords in the query
means that one is interested in prohibiting the occurrence of the negated terms in
the retrieved documents. A further extension of the query syntax accommodates also
tools for proximity searches. The idea is that a user may wish to limit the location of
possible occurrences of the query terms to be, if not adjacent, then at least quite close
to each other. Many query languages support, in addition to the loose formulations
of (1), also an exact phrase option. This should, however, be used with care, as one
has to guess all possible occurrence patterns of the query terms, and failing to do so
may yield reduced recall.

This leads to the following generalization. Consider a query containing only pos-
itive terms as consisting of m keywords and m − 1 binary distance constraints, as
in

A1 (l1 : u1) A2 (l2 : u2) . . . Am−1 (lm−1 : um−1) Am. (2)

This is a conjunctive query, requiring all the keywords Ai to occur within the given
metrical constraints specified by li, ui, which are integers satisfying −∞ < li ≤ ui <

∞ for 1 ≤ i < m, with the couple (li : ui) imposing a lower and upper limit on the
distance from an occurrence of Ai to one of Ai+1. The distance is measured in words,
and usually restricts, in addition to the specific constraints imposed by the (li : ui)
pairs, all the terms to appear within some predefined textual unit, like the same
sentence. Negative distance means that Ai may follow Ai+1 rather than precede it.
In the presence of negated keywords, association of keywords to metrical constraints
should be to the left, unless there is no such option, that is, all the keywords to the
left of the leftmost non-negated one will be right associated (each query must have at
least one non-negated keyword). An example of left association could be A (1:3) −B

(1:5) C, meaning that we seek an occurrence of C following an occurrence of A by 1 to
5 words, but such that there is no occurrence of B in the range of 1 to 3 words after
A. In the query −D (1:1) E, an occurrence of E should not be preceded immediately
by an occurrence of D.

Such a query language is used for over thirty years at the Responsa Retrieval

Project [4,2]. Even more extended features, mixing Boolean operators with proximity
constraints between certain keywords can be found in the word pattern models for
Boolean Information Retrieval WP and AWP [12].

82 Proceedings of the Prague Stringology Conference 2009

2.2 The use of backspace for large numbers

The problem with large numbers in an IRS is that there are potentially too many of
them. If we store 20,000 pages of a running text, including also the page numbers,
at least all the numbers up to 20,000 will appear, which can be an increasingly large
part of the dictionary. A real-life application of this problem is mentioned in [8]. A
possible solution is to break long strings of digits into blocks of at most k digits each.
For k = 4, the number 1234567 would thus be stored as 2 consecutive items: 1234 and
567. We have thus bounded the number of possible numbers by 10k, independently
of the length of the text.

There is however a new problem, namely one of precision. If the query asks for the
location of a number such as 5678, the system would also retrieve certain occurrences
of numbers having 5678 as substring, like 123456789. We therefore need some indi-
cator, telling if the string is surrounded by blanks or not. The two obvious solutions,
of storing indices of all the blanks, or using special treatment on all queries involving
numbers, have to be ruled out, the first because of the increased space requirements,
the second on the basis of the additional processing time that would be required to
check the vicinity of each occurrence of a number.

A possible solution to the problem can be based on the fact that we are not
restricted to deal only with standard tokens such as characters or character strings.
In fact, we need some mechanism to overcome our implicit assumption that all the
words in the text, and therefore also in the query, are separated by blanks. Let us
thus formalize the setup.

We assume that the words stored in the dictionary are full words as they appear in
the text, each followed by a blank. For example, we might find there the words house⊔,
the⊔, etc, where the ⊔ is used to visualize the terminating blank. Of course, these
blanks are not actually stored, but they are conceptually present. A query asking for
House of Lords will thus generate 3 accesses to the dictionary, with items House⊔,
of⊔ and Lords⊔, and one would check if there is an occurrence of these three items
in the same sentence, having consecutive relative indices.

A similar treatment will also be given to numbers of up to k digits in length.
For a longer number, the fact that there are no spaces within it will be stored by
means of a back-space item, BS. For example, the number 1234567890 will be stored
as a sequence of the following items: 1234⊔, BS, 5678⊔, BS, 90⊔. The backspace
will be treated like any other word: it will have a consecutive numbering, and all its
occurrences will be referenced in the concordance. For example, consider the phrase:

I declared an income of 1000000 on my last 10 1040 forms.

When inverting the text to build the dictionary and the concordance, this will be
parsed as I declared an income of 1000 BS 000 on my last 10 1040 forms,
with the words numbered 1 to 14, respectively. In particular, the BS has index 7.
Note the absence of a backspace between 10 and 1040, since these are indeed two
separate numbers, and the space between them is a part of the original text.

Punctuation signs are traditionally attached to the preceding word, which should
therefore loose its trailing blank. This can be implemented by considering each punc-
tuation sign as if it were preceded by BS. The phrase Mr. Jones would thus be
encoded by Mr⊔ BS . Jones.

It is true that having the backspaces numbered just like words may disrupt
proximity searches which do not require adjacency. In the query solve (−10 : 10)

Shmuel T. Klein and Dana Shapira: On the Usefulness of Backspace 83

differential, the request is to find the query terms at a distance from up to 10
words from each other, without caring which term precedes the other. The occur-
rence of a backspace between the occurrences of these terms in the text may lead
to the wrong numbering, and therefore cause retrieval of passages which would not
have complied with the strict original definition of the distances, or it may imply the
non-retrieval of other passages which should have been retrieved. However, the same
is true already if large numbers are split, even when no backspaces are used. The
current proposition is thus only valid if either:

– no proximity searches other than immediate adjacency are supported;
– or the software is adapted to deal with the correct numbering also in the presence

of backspaces and number splits;
– or that strict adherence to the exact metrical constraints is not deemed critical.

In most queries using large distances, one can hardly justify the use of (−10 :
10) rather than (−11 : 11) or (−9 : 9), so even if backspaces or number splits
effectively reduce the range of the query, this does not necessarily lead to a worse
recall/precision tradeoff. In other words, the fact that a text passage does not
strictly obey to the constraints imposed by the query does not yet mean that the
passage is absolutely non-relevant.

Table 1 brings a few examples of queries including large numbers, and how they
can be processed by means of the backspace item.

Searching for Submit query Comments

234 −BS 234 the negated backspace to avoid retrieval of,
e,g, 8888234

2000 1040 −BS 2000 1040 −BS

12345678 −BS 1234 BS 5678 −BS

1234567 −BS 1234 BS 567 Note that since the last part of the number
has less than k = 4 digits, it is not neces-
sary to add the −BS, which was used in the
previous example to prevent the retrieval of
123456789 for example

user@address.com user @ BS
address . BS com

Note the absence of BS preceding @ and the
dot, since these are punctuation signs

Table 1. Examples of the use of a backspace character

3 Compressing the text of an IR System

At the heart of any Information Retrieval system is the raw text, which is usually
stored in some compressed form. A myriad of different text compression schemes has
been suggested, but a full description is beyond the scope of this work, and the reader
is referred to [14] for a description of many of these methods.

One class of compression techniques, often called statistical , uses variable length
codewords to encode the different characters. Compression is achieved by assigning

84 Proceedings of the Prague Stringology Conference 2009

shorter codewords to characters occurring at higher frequency, and an optimal as-
signment of codewords lengths, once the character frequencies are known, is given by
Huffman’s algorithm [6].

But a Huffman code, applied on individual characters, does not achieve a good
compression ratio, because adjacent characters are encoded as if they were inde-
pendent, which is not the case for natural language texts. In order to exploit also
inter-character correlations, one may extend the set of elements to be encoded, to
include character pairs, triplets, etc., or even entire words. In the latter case, the
Huffman tree could be huge, with a leaf for each of the different words in the text,
but this overhead may be acceptable as the list of different words, also known as the
dictionary of the Information Retrieval system, is needed anyway. The compression
obtained by the word oriented Huffman code is excellent and competes with that of
the best methods.

A text consists, however, not just of a sequence of juxtaposed words, but these
words are separated by blanks and other punctuation signs, which have also to be
encoded. One possibility is to use two, rather than a single Huffman code [8], one for
the words, and another for the non-words separating them, keeping strict alternation
to avoid having to encode an indicator of which code is being used. This method is
referred to as the Huffword scheme [14].

But the overwhelming majority of the non-words are blanks, so their encoding
would be wasteful. As alternative, one may use the idea of the backspace as above. A
single Huffman code can be used, for which the set of elements to be encoded consists
of:

1. the words including a trailing blank. This is the same idea as in the definition of
the dictionary in the IR application of Section 1, in which the blank following a
word is considered an integral part of the word itself;

2. punctuation signs, also including trailing blanks, but being preceded by a concep-
tual backspace to attach them to the word they follow;

3. the backspace character, to deal also with the exceptions of the attachment rules
for punctuation signs.

Every text can be parsed into a sequence of such elements, and a single Huffman code
can be built on the basis of the frequencies obtained from this parsing.

We tested the approach on two textual databases of different sizes and languages:
the Bible (King James version) in English, and the French version of the European
Union’s JOC corpus, a collection of pairs of questions and answers on various topics
used in the arcade evaluation project [13]. Table 2 reports on the basic statistics
and on the compression results.

File Size Huffword BShuff # exceptions gzip bzip
English 3.1 MB 3.91 3.97 2006 3.28 4.41
French 7.1 MB 3.98 4.03 24430 3.27 4.63

Table 2. Comparing backspace based compression

The values give the compression ratio, which is the size of the original file divided
by the size of the compressed file. We see that in both cases, the approach using a
backspace (BShuff) is slightly better than what can be obtained by Huffword. The
table also contains data for compression by gzip (with parameter -9 for maximal

Shmuel T. Klein and Dana Shapira: On the Usefulness of Backspace 85

compression) and bzip2. Both Huffword and BShuff are preferable to gzip, but bzip is
considerably better. It should however be noted that the comparison to the adaptive
Lempel Ziv based gzip or Burrows-Wheeler based bzip is not necessarily meaningful:
adaptive methods require the whole file to be decompressed sequentially and do not
allow partial decoding of selected sub-parts, as can be obtained by the static Huff-
man based methods. In certain applications, the zip methods are thus not plausible
alternatives to those treated here, even if their compression is better.

4 Blockwise decoding of Huffman codes

We now turn to a last example, also connected to the compression of large texts
in an IRS, but concentrating on the decoding. Indeed, decoding might be of higher
importance than encoding, since the latter is only done once, when the system is
built, while efficient decoding is critical for getting a good response time each time
a query is being submitted. However, the decoding of variable length codes, and in
particular Huffman codes, can be slow, because the end of each codeword has to
be detected by the decoding algorithm itself, and the implied manipulations of the
encoded text at the bit level can have a negative impact on the decoding speed. But
efficient decoding of k bits in every iteration, for k > 1, rather than only a single one,
is made possible by using a set of m auxiliary tables, which are prepared in advance
for every given prefix code. The method has first been mentioned in [3], and has since
been reinvented several times, for example in [10].

4.1 Basic decoding scheme

The basic scheme is as follows. The number of entries in each table is 2k, corresponding
to the 2k possible values of the k-bit patterns. Each entry is of the form (W, j), where
W is a sequence of characters and j (0 ≤ j < m) is the index of the next table to
be used. The idea is that entry i, 0 ≤ i < 2k, of table number 0 contains, first, the
longest possible decoded sequence W of characters from the k-bit block representing
the integer i (W may be empty when there are codewords of more than k bits);
usually some of the last bits of the block will not be decipherable, being the prefix
P of more than one codeword; j will then be the index of the table corresponding to
that prefix (if P = Λ, where Λ denotes the empty string, then j = 0). Table number
j is constructed in a similar way except for the fact that entry i will contain the
analysis of the bit pattern formed by the prefixing of P to the binary representation
of i. We thus need a table for every possible proper prefix of the given codewords;
the number of these prefixes is obviously equal to the number of internal nodes of
the appropriate Huffman-tree (the root corresponding to the empty string and the
leaves corresponding to the codewords), so that m = N − 1, where N is the size of
the alphabet.

More formally, let Pj, 0 ≤ j < N −1, be an enumeration of all the proper prefixes
of the codewords (no special relationship needs to exist between j and Pj, except for
the fact that P0 = Λ). In table j corresponding to Pj, the i-th entry, T (j, i), is defined
as follows: let B be the bit-string composed of the juxtaposition of Pj to the left of
the k-bit binary representation of i. Let W be the (possibly empty) longest sequence
of characters that can be decoded from B, and Pℓ the remaining undecipherable bits
of B; then T (j, i) = (W, ℓ).

86 Proceedings of the Prague Stringology Conference 2009

3

0

11

101

1000 1001
ED

C

A

2

✐

✐ ✐

✐ ✐

✐✐

✐ ✐

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

B

0

1

Entry
Pattern Table 0 Table 1 Table 2 Table 3

for Table 0 W ℓ W ℓ W ℓ W ℓ

0 000 AAA 0 D 0 DA 0 DAA 0

1 001 AA 1 E 0 D 1 DA 1

2 010 A 2 CA 0 EA 0 D 2

3 011 AB 0 C 1 E 1 DB 0

4 100 — 3 BAA 0 CAA 0 EAA 0

5 101 C 0 BA 1 CA 1 EA 1

6 110 BA 0 B 2 C 2 E 2

7 111 B 1 BB 0 CB 0 EB 0

Figure 1. Huffman tree and partial decoding tables

As an example, consider the alphabet {A,B,C,D,E}, with codewords {0, 11, 101,
1000, 1001} respectively, and choose k = 3. There are 4 possible proper prefixes:
Λ,1,10,100, hence 4 corresponding tables indexed 0,1,2,3 respectively, and these are
given in Figure 1, along with the corresponding Huffman tree that has its internal
nodes numbered accordingly. The column headed ‘Pattern’ contains for every entry
the binary string which is decoded in Table 0; the binary strings which are decoded
by Tables 1, 2 and 3 are obtained by prefixing ‘1’, ‘10’ or ‘100’, respectively, to the
strings in ‘Pattern’. If the encoded text, which serves as input string to this decoding
routine, consists of 100 101 110 000 101, we access sequentially Table 0 at entry 4,
Table 3 at entry 5, Table 1 at entry 6, Table 2 at entry 0 and Table 0 at entry 5,
yielding the output strings EA B DA C.

The general decoding routine is thus extremely simple. Let M [f ; t] denote the
substring of the encoded string serving as input stream to the decoding, that starts
at bit number f and extends up to and including bit number t; let j be the index of
the currently used table and T (j, ℓ) the ℓ-th entry of table j:

j ← 0
for f ← 1 to length of input do

(output, j) ← T (j,M [f ; f + k − 1])
f ← f + k

The larger is k, the greater is the number of characters that can be decoded in
a single iteration, thus transferring a substantial part of the decoding time to the
preprocessing stage. The size of the tables, however, is Ω(N2k), so it grows exponen-
tially with k, and may become prohibitive for large alphabets and even moderately
large k. For example, if N = 30000, k is chosen as 16 and every table entry requires 6
bytes, the tables, which should be stored in RAM, would need about 11 GB! Even if
such amounts of memory were available, the number of cache misses and page faults
would void a significant part of the benefits in time savings incurred by the reduced
number of processing steps.

Shmuel T. Klein and Dana Shapira: On the Usefulness of Backspace 87

4.2 Using backspaces to get another time/space tradeoff

The number of tables, and thus the storage requirements, can be reduced, by con-
ceptually modifying the text with the introduction of backspace characters at certain
locations. Particularly in the case of a large alphabet, the blocksize k could be chosen
smaller than the longest codeword, and tables would be constructed not for all the
internal nodes, but only for those on levels that are multiples of k, that is for the
root (level 0), and all the internal nodes on levels k, 2k, 3k, etc. There is an obvious
gain in the number of tables, which comes at the price of a slower decoding pace: as
before, the table entries consist first of the decoding W of a bit string B obtained
by concatenating some prefix to the binary representation of the entry index. If B

is not completely decipherable, the remainder Pj is used in the previous setting as
index to the next table. For the new variant, if |Pj|, the length of the remainder, is
smaller than k, then no corresponding table has been stored, so these |Pj| bits have
to be reread in the next iteration. This is enforced by adding, after the remainder,
|Pj| backspaces into the text.

Entry
Pattern Table 0 Table 3

for Table 0 W ℓ b W ℓ b

0 000 AAA 0 0 DAA 0 0

1 001 AA 0 1 DA 0 1

2 010 A 0 2 D 0 2

3 011 AB 0 0 DB 0 0

4 100 — 3 0 EAA 0 0

5 101 C 0 0 EA 0 1

6 110 BA 0 0 E 0 2

7 111 B 0 1 EB 0 0

Figure 2. Reduced partial decoding tables

It should however be noted, that the modification of the text is only conceptual,
and will manifest itself only in the modified decoding routine; the encoded text itself
need not to be touched, so there is no loss in compression efficiency, only in decoding
speed. The table entries for the new algorithm are thus extended to include a third
component: a back skip b, indicating how many backspaces should have been intro-
duced at that particular point, which is equivalent to the number of bits the pointer
into the input string should be moved back. Using the above notations, T (j, i) will
consist of the triplet (W, ℓ, b), and the decoding routine is given by

j ← 0 back ← 0
for f ← 1 to length of input do

(output, j, back) ← T (j,M [f ; f + k − 1])
f ← f + k − back

As example, consider the same Huffman tree and the same input string as above
with k = 3. Only two tables remain, Table 0 and Table 3, given in Figure 2. Decoding
is now performed by six table accesses rather than only 5 with the original tables,

88 Proceedings of the Prague Stringology Conference 2009

using the sequence of blocks 100, 101, BS11, BS00, 001, BS01 to access tables 0, 3, 0,
0, 3, 0, respectively, where the backspace BS indicates that the preceding bit is read
again, resulting in an overlap of the currently decoded block with the preceding one.

Figure 3 shows the input string and above it its parsing into codewords using
the standard Huffman decoding. Below appear first the parsing into consecutive k-
bit blocks using the original tables, then the parsing into partially overlapping k-bit
blocks with the tables relying on the backspaces. Note that for simplicity, we do not
deal here with the case that the last block may be shorter than k bits.

E A B D A C

1 0 0 1 0 1 1 1 0 0 0 0 1 0 1

— EA B DA C

— EA B — DA C

Figure 3. Example using original and reduced tables

To get some experimental results, we used the King James Bible (KJB) as above,
and Wall Street Journal (WSJ) issues that appeared in 1989. Huffman codes were
generated for large “alphabets”, consisting of entire words. Some of the relevant
statistics are given in Table 3, and the results are presented in Table 4. The row
headed Bit corresponds to the regular bit per bit Huffman decoding. The next row
brings the values of the Partial decoding Tables of [3] described in Section 4.1 above,
and the row with title reduced corresponds to the variant with the backspaces.

For each of the test databases, the first column brings the maximal size k of the
block of bits that is decoded as one unit. The next column, headed bpa is in fact the
average value of k used during the decoding. It is the average number of decoded
bits per table access, evaluated as the size of the compressed file in bits divided by
the total number of such accesses. The next column brings timing results, in terms of
the number of MB that can be processed per second on our test machine. The time
for the variant with the full tables for WSJ could not be evaluated, due to exceeding
RAM requirements. The last column, headed RAM, gives the size of the required
auxiliary storage in MB. We see that the Reduced Tables saved 50 to 80 % of the
space required by the partial decoding tables, while using the same k, reducing the
decoding rate only by about 20 %.

full compression number of average
size ratio words word length

KJB 3.1 MB 5.15 MB 11669 8.8 bit
WSJ 36.5 MB 5.05 MB 115136 11.2 bit

Table 3. Statistical data on test files

Shmuel T. Klein and Dana Shapira: On the Usefulness of Backspace 89

KJB WSJ

k bpa MB/sec RAM k bpa MB/sec RAM

Bit 1 1 10.1 0.21 1 1 6,6 2.1
Tables 8 8 0.4 17 8 8 — 197
reduced 8 6.37 13.7 8.7 8 6.35 7.6 34.1

Table 4. Experimental comparison of decoding

5 Conclusion

We presented three examples of applications in various areas of Information Retrieval
Systems, for which the inclusion of a backspace character in the alphabet may lead
to improved performance. The main message we hoped to convey in this study, is
that the definition of alphabets in the broadest sense as used in IR systems, does not
have to be restricted to collections of classical items such as letters, words or strings,
but may be extended to include also conceptual elements such as a backspace, which,
even if not materialized as the other elements, may at times have helpful usages.

References

1. K. C.-C. Chang, H. Garcia-Molina, and A. Paepcke: Predicate rewriting for translating

Boolean queries in a heterogeneous information system. ACM Trans. on Information Systems,
17(1) 1999, pp. 1–39.

2. Y. Choueka: Responsa: A full-text retrieval system with linguistic processing for a 65-million

word corpus of jewish heritage in Hebrew. IEEE Data Eng. Bull., 14(4) 1989, pp. 22–31.
3. Y. Choueka, S. T. Klein, and Y. Perl: Efficient variants of Huffman codes in high level

languages, in Proc. 8-th ACM-SIGIR Conference, Montreal, Canada, 1985, pp. 122–131.
4. A. S. Fraenkel: All about the Responsa Retrieval Project you always wanted to know but were

afraid to ask, Expanded Summary. Jurimetrics J., 16 1976, pp. 149–156.
5. W. B. Frakes: Stemming algorithms, in Information Retrieval, Data Structures and Algo-

rithms, W. B. Frakes and R. Baeza-Yates, eds., Prentice Hall, NJ, 1992, pp. 131–160.
6. D. Huffman: A method for the construction of minimum redundancy codes, in Proc. of the

IRE, vol. 40, 1952, pp. 1098–1101.
7. S. T. Klein: On the use of negation in Boolean IR queries. Information Processing & Man-

agement, 45 2009, pp. 298–311.
8. A. Moffat and Z. J.: Adding compression to a full-text retrieval system. Software — Practice

& Experience, 25(8) 1995, pp. 891–903.
9. G. Salton, A. Wong, and C. S. Yang: A vector space model for automatic indexing.

Communications of the ACM, 18(11) 1975, pp. 613–620.
10. A. Sieminski: Fast decoding of Huffman codes. Information Processing Letters, 26 1998, pp. 237–

241.
11. K. Sparck Jones, S. Walker, and S. E. Robertson: A probabilistic model of information

retrieval: development and comparative experiments – parts 1 and 2. Information Processing
& Management, 36(6) 2000, pp. 779–840.

12. C. Tryfonopoulos, M. Koubarakis, and Y. Drougas: Filtering algorithms for infor-

mation retrieval models with named attributes and proximity operators, in Proc. SIGIR Conf.,
Sheffield, UK, 2004, pp. 313–320.

13. J. Véronis and P. Langlais: Evaluation of parallel text alignment systems: The ARCADE

project, in Parallel Text Processing, J. Véronis, ed., Kluwer Academic Publishers, Dordrecht,
2000, pp. 369–388.

14. I. H. Witten, A. Moffat, and T. C. Bell: Managing Gigabytes: Compressing and Indexing

Documents and Images, Van Nostrand Reinhold, New York, 1994.

