
Conservative String Covering of Indeterminate

Strings

Pavlos Antoniou1, Maxime Crochemore1, Costas S. Iliopoulos1, Inuka Jayasekera1,
and Gad M. Landau2

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, England, UK
2 Department of Computer Science, University of Haifa,

Mount Carmel, Haifa 31905, Israel

Abstract. We study the problem of finding local and global covers as well as seeds
in conservative indeterminate strings. An indeterminate string is a sequence T =
T [1]T [2] . . . T [n], where T [i] ⊆ Σ for each i, and Σ is a given alphabet of fixed size. A
conservative indeterminate string, is an indeterminate string where the number of inde-
terminate symbols in the positions of the string, i.e. the non-solid symbols, is bounded
by a constant κ. We present an algorithm for finding a conservative indeterminate pat-
tern p in an indeterminate string t. Furthermore, we present algorithms for computing
conservative covers and seeds of the string t.

1 Introduction

Covers are considered as common regularities in a string along with repetitions and
periods. They are periodically repetitive. A substring w of a string x is called a cover
of x if and only if x can be constructed by concatenations and superpositions of w.
A seed is an extended cover in the sense of a cover of a superstring of x.

Finding the regularities present in strings is not only interesting in string algo-
rithms but it is also useful in many applications. These applications include molecular
biology, data compression and computational music analysis. Regularities in strings
have been studied widely the last 20 years. There are several O(n log n)- time al-
gorithms for finding repetitions ([4],[7]), in a string x, where n is the length of x.
Apostolico and Breslauer [2] gave an optimal O(log log n)-time parallel algorithm for
finding all the repetitions. The preprocessing of the Knuth-Morris-Pratt algorithm
[11] finds all periods of every prefix of x in linear time.

In many cases, it is desirable to relax the meaning of repetition. For instance,
if we allow overlapping and concatenations of periods in a string we get the notion
of covers. The notion of covers was introduced by Apostolico, Farach and Iliopoulos
in [3], where a linear-time algorithm to test superprimitivity, was given. Moore and
Smyth in [12] gave linear-time algorithms for finding all covers of a string x.

An extension of the notion of covers, is that of seeds; that is, covers of a superstring
of x. The notion of seeds was introduced by Iliopoulos, Moore and Park [10] and an
O(nlogn)-time algorithm was given for computing all seeds of x. A parallel algorithm
for finding all seeds was presented by Berkman, liopoulos and Park [6], that requires
O(log n) time and O(n log n) work.

In this work, we study and design algorithms for these string regularities in inde-
terminate strings. An indeterminate string is a sequence T = T [1]T [2] . . . T [n], where
T [i] ⊆ Σ for each i, and Σ is a given alphabet of potentially large size. The simplest
form of indeterminate string is one in which indeterminate positions can contain only

Pavlos Antoniou, Maxime Crochemore, Costas S. Iliopoulos, Inuka Jayasekera, Gad M. Landau: Conservative String Covering of Indeterminate Strings,

pp. 108–115.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic



P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 109

a don’t care letter, that is, a letter ∗ that matches any letter of the alphabet Σ on
which X is defined.

In biology, usually, the number of indeterminate positions in a sequence is nat-
urally bounded by a constant value. Otherwise, we would have a cover of length 1
with just a don’t care symbol that corresponds to all the letters of the alphabet Σ.
Therefore, we impose a constraint on the strings, which requires that the number of
indeterminate positions in a cover c is less than the constant, that is a “conservative”
cover. An example of a sequence containing indeterminate positions is shown in Fig-
ure 1 which depicts a sequence logo of an indeterminate sequence.The bottom logo
is the consensus sequence derived by the 12 sequences on top of it. If we look at the
logo we can see that position 1 is indeterminate as we can have [TCAG] occurring,
position 2 is indeterminate also having possible occurrence of [TCA],position 3 is
solid, non indeterminate, as in that position only A occurs.

An algorithm was described [8] for computing all occurrences of a pattern p in a
text string x, but although efficient in theory, the algorithm was not useful in practice.
Indeterminate string pattern matching has mainly been handled by bit mapping tech-
niques (ShiftOr method) [5],[15]. These techniques have been used to find matches
for an indeterminate pattern p in a string x [9] and the agrep utility [14] has been
one of the few practical algorithms available for indeterminate pattern-matching.

In [9], the authors extended the notion of indeterminate strings by distinguishing
two distinct forms of indeterminate match: “quantum” and “deterministic”. Roughly
speaking, a “quantum” match allows an indeterminate letter to match two or more
distinct letters during a single matching process; a “determinate” match restricts each
indeterminate letter to a single match[9].

In this paper, we describe algorithms for finding string regularities in constrained
indeterminate strings. The next section introduces the basic definition, Section 3
describes the algorithm for conservative pattern matching. Additionally, Section 4
and Section 5 describe the algorithms for computing the covers and seeds of a string
respectively.

2 Basic definitions

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗ . The length of a string x is denoted by |x|. The
empty string, the string of length zero, is denoted by ǫ. The i-th symbol of a string x
is denoted by x[i].

A string w is a substring of x if x = uwv, where u, v ǫ Σ∗. We denote by x[i . . . j]
the substring of x that starts at position i and ends at position j. Conversely, x is
called a superstring of w. A string w is a prefix of x if x = wy, for y ǫ Σ∗. Similarly,
w is a suffix of x if x = yw, for y ǫ Σ∗.

We call a string w a subsequence of x (or x is a supersequence of w) if w is
obtained by deleting zero or more symbols at any positions from x. For example,
ace is a subsequence of aabcdef . For a given set S of strings, a string w is called a
common supersequence of S if s is a supersequence of every string in S.

The string xy is the concatenation of the strings x and y. The concatenation of
k copies of x is denoted by xk. For two strings x = x[1 . . . n] and y = y[1 . . . m] such
that x[n− i+1 . . . n] = y[1 . . . i] for some i ≥ 1 (that is, such that x has a suffix equal
to a prefix of y), the string x[1 . . . n]y[i + 1 . . . m] is said to be a superposition of x



110 Proceedings of the Prague Stringology Conference 2008

0

1

b
it
s

5′

-9

G
A
C
T

-8

A
C
T

-7

A

-6

C
A
T

-5

C

-4

C
T
A

-3

T
C

-2

G
T
C

-1

C
T
G

0

TAG
C

1

G
A
C

2

C
A
G

3

A
G

4

G
A
T

5

G
6

T
G
A

7

T
8

T
G
A

9

T
C
G
A

1 gt at caccgccagt ggt at
2 at accact ggcggt gat ac
3 t caacaccgccagagat aa
4 t t at ct ct ggcggt gt t ga
5 t t at caccgcagat ggt t a
6 t aaccat ct gcggt gat aa
7 ct at caccgcaagggat aa
8 t t at ccct t gcggt gat ag
9 ct aacaccgt gcgt gt t ga

10 t caacacgcacggt gt t ag
11 t t acct ct ggcggt gat aa
12 t t at caccgccagaggt aa

Figure 1. A sequence logo of a biological indeterminate sequence. Picture taken from
[13]

and y. We also say that x overlaps with y. A substring y of x is called a repetition in
x, if x = uykv, where u, y, v are substrings of x and k ≥ 2, |y| 6= 0. For example, if
x = aababab, then a (appearing in positions 1 and 2) and ab (appearing in positions
2, 4 and 6) are repetitions in x; in particular a2 = aa is called a square and (ab)3 =
ababab is called a cube.

A non-empty substring w is called a period of a string x, if x can be written as
x = wkwr where k ≤ 1 and w′ is a prefix of w. The shortest period of x is called the
period of x. For example, if x = abcabcab, then abc, abcabc and the string x itself are
periods of x, while abc is the period of x.



P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 111

A substring w of x is called a cover of x, if x can be constructed by concatenating
or overlapping copies of w. We also say that w covers x. For example, if x = ababaaba,
then aba and x are covers of x. If x has a cover w 6= x, x is said to be quasiperiodic;
otherwise, x is superprimitive.

A substring w of x is called a seed of x, if w covers one superstring of x (this
can be any superstring of x, including x itself). For example, aba and ababa are some
seeds of x = ababaab.

An indeterminate string is a sequence T = T [1]T [2] . . . T [n], where T [i] ⊆ Σ for
each i, and Σ is a given alphabet of potentially large size. When a position of the
string is indeterminate, and it can match more than one element from the alphabet
Σ, we say that this position has non-solid symbol. If in a position we have only one
element of the alphabet Σ present, then we refer to this symbol as solid. A conservative

indeterminate string, is an indeterminate string where its number of indeterminate
symbols is bounded by a constant k.

Building the Aho-Corasick Automaton [1]. The Aho-Corasick Automaton for
a given finite set P of patterns is a Deterministic Finite Automaton G accepting the
sets of all words containing a word of P as a suffix.

G = (Q,Σ, g, f, q0, F ), where function Q is the set of states, Σ is the alphabet, g

is the forward transition, f is the failure link i.e. f(qi) = qj, if and only if Sj is the
longest suffix of Si that is also a prefix of any pattern, q0 is the initial state and F is
the set of final (terminal) states [1]. The construction of the AC automaton can be
done in O(d)-time and space complexity, where d is the size of the dictionary, i.e. the
sum of the lengths of the patterns which the AC automata will match.

3 Finding constrained pattern p in indeterminate string T

As a building step, here, we study the constrained pattern matching problem on
indeterminate strings. The problem of constrained indeterminate pattern matching
is defined as follows:
Input: We are given a pattern p of length m with at most κ non solid symbols, where
κ is a constant. We are given an indeterminate string T , the text, of length n.
Query: Find all the occurrences of the pattern p in the text T , i.e find the positions
in T where the intersection of the pattern and the text is non-empty.

Example 1. We consider a pattern, p = A[CG]TA[AG] and text, T = GA[CG][CT ]A
G[AT ]A[AG][CT ][AT ]AG. Figure 2 shows the result of searching for p in t. It can be
seen from the figure that p occurs in t starting at positions 2, 5, 8 and 9.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
t G A [CG] [CT] A G [AT] A [AG] [CT] [AT] A G

Matches A [CG] T A [AG]
A [CG] T A [AG]

A [CG] T A [AG]
A [CG] T A [AG]

Figure 2. Pattern matching with p and t



112 Proceedings of the Prague Stringology Conference 2008

The algorithm works in two steps:

Step 1

Let the pattern p be p = P1P2 . . . Pm. We built the Aho-Corasick automaton for the
dictionary of the prefixes of the pattern D = {π1π2 . . . πm,∀πi ∈ Pi, 1 ≤ i ≤ m}. Note

that |D| =
m∏

i=1

|Pi| < 2κ as there are at most κ non-solid symbols.

11

10

7

6

983

2 4 510
A C T A G

A

G

A

ATG

i 0 1 2 3 4 5 6 7 8 9 10 11
f(i) 0 0 0 0 0 1 3 1 0 1 3 1

Figure 3. Aho-Corasick automata and its failure function for p

Step 2

Assume that we have processed T [1, i]. At this point we have a set, P , of prefixes of
the strings in the dictionary in the Aho-Corasick automaton. We will now perform
iteration i + 1. For each symbol τ occurring at T [i + 1], we try to extend each prefix
in P by that symbol τ , or we follow its failure link provided by the Aho-Corasick
automaton. Figures 3 and 4 present a part of the matching process for the previous
example.

Note that |P | is bounded by the maximum number of possible prefixes, which in
turn is bounded by the size of the automaton, therefore this is constant. Thus, this
method is linear.

i 0 1 2 3 4 5 6
t G A [CG] [CT] A G [AT] . . .

P 0 {1} {2,3} {4,8} {5,9} {6, 10} {8} . . .

Figure 4. Matches of prefixes of P in text t

4 Computing λ-conservative covers of indeterminate strings

Here, we study another string regularity, conservative covering of an indeterminate
string with a fixed length cover. The λ-conservative cover problem is defined as follows:

Input: We are given a conservative indeterminate string t, of length n, a constant κ,
which is the maximum number of non-solid symbols allowed in a cover and an integer
λ, which is the length of the cover.
Query: Is there a conservative cover, c, of t of length λ?



P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 113

Step 1

We consider the prefix, T̂ , of t of length λ,

T̂ = T1 . . . Tλ

and the suffix, T̃ of t of length λ,

T̃ = Tn−λ+1, . . . Tn

We build the Aho-Corasick automaton for the dictionary

D = {t1 . . . tλ | ∀ ti ∈ Ti ∩ Ti+n−λ, 1 ≤ i ≤ λ}

t

T̂ T̃

Figure 5. The cover, c, covers the beginning and the end of T . Thus T̂ and T̃ provide
the set of potential candidates.

Step 2

For each d ∈ D we find all of its occurrences in T , parsing the text T through the
Aho-Corasick Automaton built in Step 1. If a word d occurs at position i then we
set a flag L(i) = true. If the distance |i − j| of any two consecutive flags is less than
λ, then we have a cover

C1C2 . . . Cλ, where

Ci = {di, is the i − th letter of every word in D, 1 ≤ i ≤ λ}

The overall complexity of the above two steps is linear.

5 Computing λ-conservative seeds of indeterminate strings

Here we study yet another regularity, covering an indeterminate string with seed of
a given length. The λ-constrained seed problem is defined as follows:

Input: We are given an indeterminate string t, of length n, a constant κ, which is
the maximum number of non-solid symbols allowed in a seed and an integer λ, which
is the length of the seed.
Query: Is there a conservative seed, s, of t of length λ?
Step 1

The first occurrence of the seed can be in any of the positions {1 . . . λ}. Thus we
consider the following strings of length λ :

L1 = {T [1..λ], T [2..λ + 1], . . . T [λ..2λ − 1]}

and all the suffixes of string t of length λ :

L2 = {T [n − λ..n], T [n − λ − 1..n − 1] . . . T [n − 2λ − 1]}



114 Proceedings of the Prague Stringology Conference 2008

t

ŝpref

ŝ
ŝ

ŝ
ŝ

ŝ
ŝ

ŝsuff

Figure 6. Above, ŝ is a seed of the string t, where each ŝ contains at most κ non-
solid symbols and is of length λ. Also, ŝpref and ŝsuff are a prefix and suffix of ŝ

respectively.

t

L1 L2

Figure 7. The positions of candidate seeds from lists L1 and L2 are shown above.

We build the Aho-Corasick automaton for the dictionary

D = {ti1 . . . tiλ | ∀tij , where tij is the j − th symbol of T ∈ L1 ∪ L2}.

Step 2

For each d ∈ D we find all of its occurrences in T , parsing the text T through the
Aho-Corasick Automaton built in Step 1. If a word d occurs at position i then we
set a flag Ld(i) = true. If the distance |i − j| of any two consecutive flags in Ld is
less than λ, then we d is a candidate for a seed. Let i1 and i2 be the first and last
occurrences of d in T . We check if T [1, i1] is a suffix of d and if T [i2, n] is a prefix of
d, if that is the case then d is a suffix. The overall complexity is O(λn).

6 Conclusion

In conclusion, we have shown O(n) algorithms for finding the smallest conservative
cover, λ-conservative local covers. We have also presented a O(λn) algorithm for
finding the λ-conservative seeds of a string. All the algorithms which we have used
are easily adaptable to allow the bit-matching technique to be used, in order to allow
efficient implementations.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Commun. ACM, 18(6) 1975, pp. 333–340.

2. A. Apostolico and D. Breslauer: An optimal o(loglog n)-time parallel algorithm for de-
tecting all squares in a string. SIAM J. Comput., 25(6) 1996, pp. 1318–1331.

3. A. Apostolico, M. Farach, and C. S. Iliopoulos: Optimal superprimitivity testing for
strings. Information Processing Letters, 39 1991, pp. 17–20.

4. A. Apostolico and F. P. Preparata: Optimal off-line detection of repetitions in a string.
Theor. Comput. Sci., 22 1983, pp. 297–315.

5. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.



P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 115

6. O. Berkman, C. S. Iliopoulos, and K. Park: The subtree max gap problem with application
to parallel string covering. Information and Computation, 123(1) 1995, pp. 127–137.

7. M. Crochemore: An optimal algorithm for computing the repetitions in a word. Inf. Process.
Lett., 12(5) 1981, pp. 244–250.

8. M. J. Fischer and M. S. Paterson: String-matching and other products, tech. rep., Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1974.

9. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings. J.
of Discrete Algorithms, 6(1) 2008, pp. 37–50.

10. C. S. Iliopoulos, D. W. G. Moore, and K. Park: Covering a string, in Proceedings of the
4-th Symposium on Combinatorial Pattern Matching, vol. 684 of Lecture Notes in Computer
Science, Berlin, 1993, Springer-Verlag, pp. 54–62.

11. D. E. Knuth, J. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM Journal
of Computing, 6(2) 1977, pp. 323–350.

12. D. Moore and W. F. Smyth: An optimal algorithm to compute all the covers of a string.
Inf. Process. Lett., 50(5) 1994, pp. 239–246.

13. M. C. Shaner, I. M. Blair, and T. D. Schneider: Sequence logos: A powerful, yet simple,
tool, in Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System
Sciences, Volume 1: Architecture and Biotechnology Computing, T. N. Mudge, V. Milutinovic,
and L. Hunter, eds., IEEE Computer Society Press, 1993, pp. 813–821.

14. S. Wu and U. Manber: Agrep – a fast approximate pattern-matching tool, in Proceedings
USENIX Winter 1992 Technical Conference, San Francisco, CA, 1992, pp. 153–162.

15. S. Wu and U. Manber: Fast text searching: allowing errors. Commun. ACM, 35(10) 1992,
pp. 83–91.


