
An Adaptive Hybrid Pattern-Matching Algorithm

on Indeterminate Strings⋆

William F. Smyth, Shu Wang, and Mao Yu

Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton ON L8S 4K1, Canada

{smyth,shuw,yum5}@mcmaster.ca

Abstract. We describe a hybrid pattern-matching algorithm that works on both reg-
ular and indeterminate strings. This algorithm is inspired by the recently proposed hy-
brid algorithm FJS [11] and its indeterminate successor [15]. However, as discussed in
this paper, because of the special properties of indeterminate strings, it is not straight-
forward to directly migrate FJS to an indeterminate version. Our new algorithm com-
bines two fast pattern-matching algorithms, ShiftAnd and BMS (the Sunday variant
of the Boyer-Moore algorithm), and is highly adaptive to the nature of the text being
processed. It avoids using the border array, therefore avoids some of the cases that
are awkward for indeterminate strings. Although not always the fastest in individual
test cases, our new algorithm is superior in overall performance to its two component
algorithms — perhaps a general advantage of hybrid algorithms.

1 Introduction

String pattern-matching has been studied extensively for many years because of the
fundamental role it plays in many areas: the operation of a text editor or compiler,
bioinformatics, data compression, firewall interception, and so on. Two main ap-
proaches have been proposed for computing all the occurrences of a given nonempty
pattern p = p[1..m] in a given nonempty text x = x[1..n]. One is the use of window-
shifting techniques to skip over sections of text [17,8], the other the use of the bit-
parallel processing capability of computers to achieve fast processing [10,23,7,18]. For
more complete descriptions of various string matching algorithms, see [19,9,20].

Driven by applications in DNA sequence analysis and search engine techniques,
indeterminate pattern-matching (IPM) is becoming more and more widely used. But
for this modifications have to be made. An intuitive approach to IPM is to make use
of exact pattern-matching algorithms and make necessary changes. Some pattern-
matching algorithms that use bit-array methods such as ShiftAnd[23] and BNDM
[18] can be adapted to IPM. On the other hand, efforts have also been made to
develop indeterminate pattern-matching algorithms that are based on fast window-
shifting algorithms such as BMS (the Sunday variant of the Boyer-Moore algorithm)
[14] and FJS [15]. In this paper, we present a new fast algorithm that not only works
on regular strings but also on indeterminate strings — it inherits from the BMS and
ShiftAnd algorithms, while exceeding both of them in overall performance.

We believe that this paradigm will lead to the design of other very efficient IPM
algorithms with the ability to flip-flop seamlessly between two or more methods, in
response to the changing nature of local segments of the text.

⋆ Supported in part by grants from the Natural Sciences & Engineering Research Council of Canada.
The authors express their gratitude to three anonymous referees, whose comments have materially
improved the quality of this paper.

William F. Smyth, Shu Wang, Mao Yu: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings , pp. 95–107.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

96 Proceedings of the Prague Stringology Conference 2008

2 Preliminaries

A string x is a finite sequence of letters drawn from a set Σ called an alphabet.
Let λi, |λi| ≥ 2, 1 ≤ i ≤ m, be pairwise distinct subsets of the alphabet Σ. We form
a new alphabet Σ ′ = Σ ∪ {λ1, λ2, .., λm} and define a new relation match (≈) on Σ ′

as follows:

– for every µ1, µ2 ∈ Σ, µ1 ≈ µ2 if and only if µ1 = µ2;
– for every µ ∈ Σ and every λ ∈ Σ ′−Σ, µ ≈ λ and λ ≈ µ if and only if µ ∈ λ;
– for every λi, λj ∈ Σ ′−Σ, λi ≈ λj if and only if λi ∩ λj 6= ∅.

In a string x on an alphabet Σ ′, a position i is said to be indeterminate iff x[i] ∈
Σ ′−Σ, and x[i] itself is said to be an indeterminate letter. A string that may
contain indeterminate letters is said to be indeterminate (or generalized [5]).
Two indeterminate strings x and y are said to match iff they are of the same length
and the letters in corresponding positions match.

Indeterminate strings can arise in DNA and amino acid sequences as well as in
cryptoanalysis applications and the analysis of musical texts. A simple example of an
indeterminate letter is the don’t-care letter ∗ which matches any other letter in the
alphabet.

We identify three models of IPM in increasing order of sophistication:

(M1) The only indeterminate letter is the don’t-care ∗, whose occurrences may be in
either patterns or strings, or both.

(M2) Arbitrary indeterminate letters can occur, but only in patterns (or only in texts).
(M3) Indeterminate letters can occur in both patterns and strings.

In addition, two different constraints can be imposed on IPM:

– Quantum (q). Allow an indeterminate letter to match two or more distinct letters
during a single matching process.

– Determinate (d). Restrict each indeterminate letter to be assigned to only one
regular letter during a single matching process.

For example, given two strings u = 551, v = 121 including one indeterminate
letter 5 = {1, 2}, does u ≈ v? The answer is yes in quantum pattern-matching and no
in determinate pattern-matching, because we require that 5 first match 1 and then
match 2 in a single match between 551 and 121.

Combining the three models and the two constraints q and d, we identify six
interesting versions of IPM:

M1q, M1d, M2q, M2d, M3q, M3d. (1)

3 Nontransitivity of Indeterminate Matching

In this section we briefly discuss a central problem that arises in IPM due to the
possible nontransitivity of the match relation: in the example considered above, 1 ≈ 5
and 5 ≈ 2 does not imply 1 ≈ 2.

To describe the consequences of nontransitivity, recall that a border of x is any
proper prefix of x that equals a suffix of x. For a string x[1..n], an array β[1..n] is called
the border array of x iff for i = 1, 2, ..., n, β[i] gives the length of the longest border of

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 97

x[1..i]. The classic border array algorithm is given in [6], variants for indeterminate
strings can be found in [13].

A great many of the exact pattern-matching algorithms (for example, Knuth-
Morris-Pratt [20], Boyer-Moore [8], and their numerous variants) make use of the
border array of the pattern or some version of it. The trouble is that for indeterminate
strings, the nontransitivity of matching causes essential properties of the border array
to fail [22], as we now demonstrate by example.

Index 1 2 3 4 5 6 7
x · · · a a b b a b b · · ·
p a ∗ ∗ b a ∗ a

1st Shift a ∗ ∗ b a · · ·
2nd Shift a ∗ ∗ · · ·
3rd Shift a ∗ · · ·

Table 1. First example of the nontransitivity effect

Table 1 shows KMP pattern-matching of p against x. The first six positions of p
match x, but there is a mismatch in position 7. According to the traditional definition
of border, the longest border of p[1..6] is a∗∗b, the second-longest border is a∗ and the
third is a. KMP performs shifts according to the borders of p in decreasing order of
length, as shown by the shifts in the table. Observe however that if we perform a shift
according to the longest border, aligning p[1..4] with x[3..6], we will then have letter
a aligned with b in position 3. So indeterminate strings have the following property
as opposed to traditional strings:

Proposition 1. Shifting the indeterminate pattern p to the right in x according to

the longest border does not guarantee a prefix match.

Moreover, we see that between the first and second shifts lies a border a∗∗ = ∗∗b
of length 3 that is the longest border of substring a∗∗b. This reveals another property
of indeterminate strings:

Proposition 2. A border of a border of indeterminate string x is not necessarily a

border of x.

Index 1 2 3 4 5 6 7
x · · · a b a ∗ a ∗ a · · ·
p a b a a a b b

Wrong Shift a b a · · ·
Correct Shift a b a a a · · ·

Table 2. Second example of the nontransitivity effect

In Table 2 we see that the length of the longest border of substring p[1..6] is 2.
But if we shift the pattern p to the right according to its longest border by 6− 2 = 4,
we miss a prefix match in position 3, again due to nontransitivity. Thus:

Proposition 3. Shifting the indeterminate pattern p to the right in x according to

the longest border can miss occurrences of p.

98 Proceedings of the Prague Stringology Conference 2008

4 The New Hybrid Algorithm

The results of Section 3 warn us that a variant of any exact pattern-matching al-
gorithm adapted for IPM is problematic if it depends on any form of border array
calculation. In fact, one such variant has been proposed: Algorithm iFJS [15] describes
an IPM adaptation of the FJS exact pattern-matching algorithm [11], that combines
the border-independent Sunday version BMS [21] of the Boyer-Moore algorithm with
the border-dependent KMP algorithm. This variant uses the border array only up to
the longest prefix of p that does not contain any indeterminate letters. The problem is
that if an indeterminate letter appears close to the left end of the pattern, then only
a very small shift can occur each time, slowing the algorithm’s speed significantly.

As a result, we propose replacing the KMP algorithm in iFJS by the ShiftAnd al-
gorithm [10,7,23] that not only makes no use of the border array, but that furthermore
has already been suggested [23] as a paradignm for IPM. We note that this strategy
could be extended in a straightforward manner to use more sophisticated versions of
ShiftAnd, such as the BNDM algorithm described in [18]. Our experiments suggest
that the judicious combination of algorithms flipflopping from one to another based
on the nature of local segments of text is more efficient than a single algorithm on its
own.

Our algorithm adopts the following simple strategy:

(1) Perform a Sunday shift along the text.
(2) When a match is found at the end of the pattern, switch to ShiftAnd matching.
(3) Continue ShiftAnd matching until no match is found at the current position, then

skip to the next possible position and switch back to Sunday shift.

Figure 1 shows the pseudocode for finding all the matches of pattern p = p[1..m] in
text x = x[1..n]:

i′ ← m; m′ ← m− 1;
while i′ ≤ n do

Sunday-Shift;
— After Sunday-Shift exits, perform ShiftAnd-Match

i← i′ −m′;
ShiftAnd-Match;
— After ShiftAnd-Match exits, shift pattern right
i′ ← i + m′;

Figure 1. Algorithm ShiftAnd-Sunday

For completeness we provide sketches of the Sunday and ShiftAnd algorithms:

The Sunday (BMS) Algorithm [21]

BMS has a O(mn) worst-case running time but in practice is one of the fastest
exact pattern-matching algorithms. To control shifts, it computes a ∆ array in a
preprocessing phase as follows:

For every λ ∈ Σ, ∆[λ] = m− l+1, where l is the rightmost position in p where
λ occurs; if λ does not occur in p, then ∆[λ] = m + 1.

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 99

x

p

1

. . .

1 m

. . .

ni

. . . a

. . .

i+1i-m+1

a

a

Figure 2. Sunday Shift of BMS

Figure 2 demonstrates the basic shift strategy of BMS: positions in pattern and
text are compared until a mismatch occurs, say at position i in x, at which point the
pattern is shifted to the next position at which an occurrence is possible, using ∆
to align x[i + 1] = a with the rightmost occurrence of a in p. Since there can be no
occurrence in between (otherwise ∆ does not record the rightmost occurrence of a, a
contradiction), we are safe to do so.

The ShiftAnd Algorithm [10,7,23]

ShiftAnd makes use of the bit-parallel capability inherent in a computer word. It
has time complexity O(mn/w), where w is the computer word length in bits, and is
widely used in pattern-matching programs such as Unix agrep [1]. In a preprocessing
phase, for each λ ∈ Σ and every i ∈ 1..m, the algorithm computes a bit-array
S = S[1..m, 1..α] such that S[i, λ] = 1 iff p[i] = λ, otherwise 0. This table controls
the state of the calculation at each of w preceding positions in x as the pattern is
shifted from position i to i+1. For example, for a DNA alphabet Σ = {A,C,G, T}
and a pattern p = AATCG, ShiftAnd preprocesses S as shown in Table 3.

m\Σ A C G T

A 1 0 0 0
A 1 0 0 0
T 0 0 0 1
C 0 1 0 0
G 0 0 1 0

Table 3. Bit-array S after Preprocessing

The New Algorithm: ShiftAnd-Sunday

Pseudocode for the Sunday and ShiftAnd preprocessing is shown in Figures 3–4.

for i = 1 to |∆|
∆[i] = m + 1

for i = 1 to m

for j = 1 to |Σ|
if MATCH(p[i], Σ[j]) then ∆[p[i]] = i

Figure 3. Sunday-Preprocessing

It is formally identical to the pseudocode used for exact pattern matching when
indeterminate letters are not involved — the difference resides in the implementation

100 Proceedings of the Prague Stringology Conference 2008

for i = 1 to m
for j = 1 to |Σ|

if MATCH(p[i], Σ[j]) then S[i, j] = 1
else S[i, j] = 0

Figure 4. ShiftAnd-Preprocessing

of the MATCH function that determines whether or not two letters of the possibly
extended alphabet Σ ′ match. The various implementations of MATCH corresponding
to each of the six indeterminate processing models (1) are discussed in detail in [15].

The procedures Sunday-Shift and ShiftAnd-Match are also formally identical
to their exact matching equivalents, again depending only on an implementation of
MATCH. They are shown in Figures 5–6. Note that in practice the ShiftAnd algorithm
needs to be implemented in a more sophisticated way in order to allow pattern length
longer than the system word size. An example of pattern matching using this new
algorithm is shown in Figures 11–17 in the Appendix.

while not MATCH(p[m], x[i′]) do

i′ ← i′+∆
[

x[i′+1]
]

if i′ > n then return

Figure 5. Sunday-Shift

D ← 0
repeat

— Here and throughout this paper operator ≪ means shifting D one posi-

tion

— towards the most significant bit and bring a 1 to the least significant bit

D ← (D ≪ 1)&Sx[i]

if D&10m 6= 0 then output i

i← i + 1
— If D = 0, exit: no position in p has a current match.

until D = 0 or i > n

Figure 6. ShiftAnd-Match

Since the subroutine Sunday-Shift increases the variable i′ monotonically and
subroutine ShiftAnd-Match increases the variable i monotonically, these two subrou-
tines can be executed at most n times altogether. Each loop in Sunday-Shift runs in
constant time and each loop in ShiftAnd-Match runs in O(m/w) time. Therefore the
worst case running time is O(mn

w
), where w is the system word size. This asymptotic

time complexity is the same as ShiftAnd and better than BMS. Moreover, the new
algorithm adapts well to the input, as shown in the test results.

5 Experiments

5.1 Experimental Details

Since the new algorithm is a hybrid of Sunday and ShiftAnd, we compare its running
time with its components.

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 101

Factors that affect the performance of string pattern-matching are text length,
pattern occurrence frequency, pattern length, alphabet size and frequency of indeter-
minate letters. We try to show the behaviour of the algorithms by changing only one
factor at a time. However, there could be interactions between them. For example,
changing the alphabet size might cause the pattern occurrence frequency to change.
We have tried to design our test cases to be both meaningful and realistic.

The main platform for our tests is a SUN X4600 server with four 2.6 GHz dual core
Opteron CPUs (total 8), 16 GB RAM, four SAS disks, running GNU Linux 2.6.18-
53.1.4.e15. We also ran tests, with consistent results, on other platforms such as a
PC running Windows XP SP2.

To time the CPU time consumed by different algorithms, we use the standard C
library function clock() [2]. Since the running time can be affected by factors such
as CPU and memory usage of the system, temperature etc, each test was repeated
20 times. From our past experience we take the minimum time as the most accurate
result. All preprocessing time is included. Functions are declared inline to eliminate
the effect of function call overhead. The results are very stable across different runs.

The main test file corpus was taken from [3], itself collected from sources such as
[12] for English text, [4] for DNA and protein files.

5.2 Experimental Results

Since all three algorithms are capable of handling both regular and indeterminate
strings, we first test their performance on regular pattern-matching without specifying
any indeterminate letters.

Execution Time against Text Length in English Files Here we run the algo-
rithms on ten English files from [12] of sizes ranging from 240KB to 5158KB (Table 4).
We use a pattern set from [16] consisting of several words that occur with moderate
frequency in regular English text:

better enough govern public someth system though

File Name Length(bytes) Description
English0.txt 237599 HAMLET, PRINCE OF DENMARK
English1.txt 389204 The Mysterious Affair at Styles
English2.txt 491905 Secret Adversary
English3.txt 699594 Pride and Prejudice (partial)
English4.txt 754019 Pride and Prejudice
English5.txt 1186876 The Adventures of Harry Richmond(partial)
English6.txt 2672650 The Adventures of Harry Richmond(partial)
English7.txt 3251887 War and Peace(partial)
English8.txt 4387156 War and Peace
English9.txt 5872902 The Adventures of Harry Richmond

Table 4. English text files

From Figure 7 we see that the new algorithm has performance close to BMS. This
is because it adapts to the nature of the text and chooses to use the BMS engine most
of the time. Table 5 gives the average speed of the three algorithms in microseconds
per million letters (Minimum execution time divided by the length of text then take
the average result of 10 files, the same for all following tables).

102 Proceedings of the Prague Stringology Conference 2008

Figure 7. Execution time against text length in English files

BMS ShiftAnd Hybrid
990 4550 1060

Table 5. Average microseconds/million letters in Figure 7

Figure 8. Execution time against pattern length in English files

Execution Time against Pattern Length in English Files Next we test the
performance of the algorithms on varying pattern lengths. We use the file English8.txt,
gradually increasing pattern length from 3 to 100 (see Table 6). Since longer patterns
will as a rule occur less frequently, we insert the patterns randomly into the text with
a frequency that decreases as pattern length increases.

From Figure 8 we see that the running times of both BMS and Hybrid decrease as
pattern length increases. This is expected since the longer the pattern, the longer the
skip that can be achieved by both BMS and Hybrid. As indicated by the increasing
slope of the line from pattern lengths 9 to 50, when the pattern length passes the

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 103

File Name Pattern length Example Total occurrences
p3.txt 3 air, age, ago 5563
p4.txt 4 body, half, held 4160
p5.txt 5 death,field, money 2665
p6.txt 6 became, behind, cannot 2426
p7.txt 7 already,brought, college 1038
p8.txt 8 anything, evidence 1685
p9.txt 9 available, community 612
p50.txt 50 Welcome To The World of ... 286
p100.txt 100 “If you have nothing better to do, ...” 275

Table 6. Details of the pattern sets used

BMS ShiftAnd Hybrid
1600 14390 1430

Table 7. Average microseconds/million letters in Figure 8

system word size (32), the running time of ShiftAnd begins to increase. By mainly
using its BMS engine, Hybrid avoids this kind of performance slowdown.

Table 7 gives the average speed of the three algorithms over all the pattern sizes.
Note that in this case the hybrid algorithm is slightly faster overall.

Execution Time against Number of Indeterminate Letters in the Alphabet
Next we test the ability of our algorithm to handle indeterminate strings. In this test
we again use English8.txt and the same pattern set as in our first test, but gradually
increase the number of indeterminate letters in the alphabet, thus increasing their
number in both text and pattern. We use the MATCH function corresponding to the
M3q version of the hybrid algorithm, the most general (and therefore slowest) of the
three quantum versions identified in Section 2. Run times are shown in Figure 9.
We can see that BMS 3q runs fastest when indeterminate letters are few, but is
overtaken by both ShiftAnd and the new algorithm as the number of indeterminate
letters grows. Table 8 gives the average speed of the three algorithms.

BMS ShiftAnd Hybrid
5220 4651 4841

Table 8. Average microseconds/million letters in Figure 9

Execution Time against Text Length in DNA Files with Indeterminate
Letters Finally we test the execution time against text length in DNA files with a
4-letter alphabet. We use FASTA files of increasing length as described in Table 9,
with the following patterns:

CTGTAA, CAGACC, TATCCA, GGAGCC, TCCAGG, GCGGAT, AGAGAC

Letters A and C are defined as indeterminate letters. From Figure 10 we see that
the three algorithms have very similar performance.

104 Proceedings of the Prague Stringology Conference 2008

Figure 9. Execution time against number of indeterminate letters in the alphabet

Figure 10. Execution time against text length in DNA files with indeterminate letters

File Name Length(bytes)
DNA0.fasta 40302
DNA1.fasta 129145
DNA2.fasta 282348
DNA3.fasta 411493
DNA4.fasta 798564
DNA5.fasta 927709
DNA6.fasta 1430159
DNA7.fasta 2228723
DNA8.fasta 3518496
DNA9.fasta 7618319

Table 9. Lengths of DNA text files

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 105

BMS ShiftAnd Hybrid
4531 4297 4531

Table 10. Average microseconds/million letters in Figure 10

Tests\ Algorithms BMS ShiftAnd Hybrid
Text Length 990 4550 1060

Pattern Length 1600 14390 1430
Number of Indeterminate Letters 5220 4651 4841

DNA file 4531 4297 4531
TOTAL 12341 27888 11862

Table 11. Summary of all test results in microseconds/million letters

Table 10 gives the average speed of the three algorithms.
We see from Table 11 that in all of these tests, the hybrid algorithm’s behaviour

is very close to that of the better of BMS and ShiftAnd. Moreover, due to its adap-
tiveness, its overall running time is actually the least over all of these rather diverse
test cases. This dynamic adaptivity is useful when we do not know in advance the
nature of the text or pattern: we don’t need to make a decision ahead of time which
algorithm to use.

6 Conclusion

We designed a new algorithm that performs fast pattern-matching on both regular
and indeterminate strings. We showed in the experiments that although this new
algorithm is not always the fastest, it has a strong ability to adapt to the nature of
text/pattern and to achieve very good performance in all cases. In future we would like
to see more competitive IPM algorithms, perhaps adapted from other exact pattern-
matching algorithms such as BNDM or the convolution method.

References

1. AGREP V3.37, Homepage V1.12, T. Gries, http://www.tgries.de/agrep/:
2. GNU C Library, http://www.gnu.org/software/libc/manual:
3. Simon’s Collection of Test Strings, http://www.cas.mcmaster.ca/∼bill/strings:
4. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/:
5. K. Abrahamson: Generalized string matching. SIAM Journal on Computing, 16(6) 1987,

pp. 1039–1051.
6. A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design & Analysis of computer

Algorithms, Addison-Wesley, 1974.
7. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the

ACM, 35(10) 1992, pp. 74–82.
8. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the

ACM, 20(10) 1977, pp. 762–772.
9. C. Charras and T. Lecroq: Handbook of Exact String Matching Algorithms, King’s College

Publications, 2004.
10. B. Dömölki: A universal computer system based on production rules. BIT, 8 1968, pp. 262–275.
11. F. Franek, C. G. Jennings, and W. F. Smyth: A simple fast hybrid pattern-matching

algorithm (preliminary version), in Proc. 16th Annual Symposium on Combinatorial Pattern
Matching, LNCS 3537, Springer-Verlag, 2005, pp. 288–297.

106 Proceedings of the Prague Stringology Conference 2008

12. M. Hart: Project gutenberg, project gutenberg literary archive foundation (2004):.
13. J. Holub and W. F. Smyth: Algorithms on indeterminate strings, in Proc. 14th Australasian

Workshop on Combinatorial Algorithms, 2003, pp. 36–45.
14. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings.

Journal of Discrete Algorithms, 6 2006, pp. 37–50.
15. J. Holub, W. F. Smyth, and S. Wang: Hybrid pattern-matching algorithms on indeterminate

strings. London Algorithmics and Stringology 2006, J. Daykin, M. Mohamed and K. Steinhoefel
(eds.), King’s College London Series Texts in Algorithmics, 2006, pp. 115–133.

16. C. G. Jennings: A linear-time algorithm for fast exact pattern matching in strings, Master’s
thesis, McMaster University, 2002.

17. D. E. Knuth, J. H. Morris, and V. Pratt: Fast pattern matching in strings. SIAM Journal
on Computing, 6(2) 1977, pp. 323–350.

18. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching, in Proceedings of the 9th Annual Symposium on Combinatorial Pattern Match-
ing, M. Farach-Colton, ed., no. 1448, Piscataway, NJ, 1998, Springer-Verlag, Berlin, pp. 14–33.

19. G. Navarro and M. Raffinot: Flexible Pattern Matching In Strings : Practical on-line
search algorithms for texts and biological sequences, Cambridge University Press, 2002.

20. B. Smyth: Computing Patterns in Strings, Addison Wesley, 2003.
21. D. M. Sunday: A very fast substring search algorithm. Communications of the ACM, 8 1990,

pp. 132–142.
22. S. Wang: Pattern-matching algorithms on indeterminate strings, Master’s thesis, McMaster

University, Hamilton, Canada, 2006.
23. S. Wu and U. Manber: Fast text searching with errors. Communications of the ACM, 35(10)

1992, pp. 83–91.

A An Example of ShiftAnd-Sunday Algorithm

a aa b ccx ...c

p a b*

i'

c

Figure 11. Starting position

a aa b ccx ...c

p a b*

i'

c

i

Figure 12. After one step in Sunday-Shift

a aa b ccx ...c

D 0 00

c

i

1>>D 1 00

Sx[i] 1 01

Sx[i] & (1>>D) 1 00

Figure 13. Switch to ShiftAnd-Matching

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 107

a aa b ccx ...c

D 1 00

c

i

1>>D 1 01

Sx[i] 1 01

1 01Sx[i] & (1>>D)

Figure 14. ShiftAnd-Matching Continues

a aa b ccx ...c

D 1 01

c

i

1>>D 1 11

Sx[i] 0 11

0 11 Match foundSx[i] & (1>>D)

Figure 15. A match is found

a aa b ccx ...c

D 0 11

c

i

1>>D 1 10

Sx[i] 0 01

0 00 All 0sSx[i] & (1>>D)

Figure 16. D′ contains all zeros

a aa b ccx ...c

p a b*

i'

c

Figure 17. Switch back to Sunday-Shift

