
FM-KZ: An Even Simpler Alphabet-Independent

FM-Index

RafaÃl Przywarski1, Szymon Grabowski1, Gonzalo Navarro2, and Alejandro Salinger3

1 Computer Engineering Dept., Tech. Univ. of ÃLódź, Poland.
sgrabow@kis.p.lodz.pl

2 Dept. of Computer Science, Univ. of Chile, Chile.
3 David R. Cheriton School of Computer Science, University of Waterloo, Canada.

Abstract. In an earlier work [6] we presented a simple FM-index variant, based on
the idea of Huffman-compressing the text and then applying the Burrows-Wheeler
transform over it. The main drawback of using Huffman was its lack of synchronizing
properties, forcing us to supply another bit stream indicating the Huffman codeword
boundaries. In this way, the resulting index needed O(n(H0 +1)) bits of space but with
the constant 2 (concerning the main term). There are several options aiming to mitigate
the overhead in space, with various effects on the query handling speed. In this work
we propose Kautz-Zeckendorf coding as a both simple and practical replacement for
Huffman. We dub the new index FM-KZ. We also present an efficient implementation
of the rank operation, which is the main building brick of the FM-KZ. Experimental
results show that our index provides an attractive space/time tradeoff in comparison
with existing succinct data structures, and in the DNA test it even wins both in search
time and space use. An additional asset of our solution is its relative simplicity.

1 Introduction

A full-text index is a data structure that enables to determine the occ occurrences
of a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn without a need of
scanning over the whole text T . Text and pattern are sequences of characters over an
alphabet Σ of size σ. The pattern may appear at any position in T , and its length is
also arbitrary. In practice one wants to know not only the value occ, i.e., how many
times the pattern appears in the text (counting query) but also the text positions of
those occ occurrences (reporting query, and usually also a text context around them
(display query).

Classic full-text indexes, albeit powerful and versatile, need space several times
greater than the text itself. Hence, a natural interest in succinct full-text indexes has
been observed in recent years. A comprehensive survey of existing techniques in this
very active research area can be found in [13].

A truly exciting perspective has been originated in the work of Ferragina and
Manzini [3]; they showed a full-text index may discard the original text, as it contains
enough information to recover the text. We denote a structure with such a property
with the term self-index.

The FM-index of Ferragina and Manzini [3] was the first self-index with space
complexity expressed in terms of kth order (empirical) entropy and pattern search
time linear only in the pattern length. Its space complexity, however, contains an
exponential dependence on the alphabet size; a weakness eliminated in a practical
implementation [4] for the price of not achieving the optimal search time anymore.
Therefore, it has been interesting both from the point of theory and practice to

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

construct an index with nicely bound both space and time complexities, preferably
with no (or mild) dependence on the alphabet size.

The large alphabet dependence of the original FM-index shows up not only in the
space usage, but also in the time to show an occurrence position and display text

substrings. The FM-index needs up to 5Hkn+O
(

(σ log σ + log log n) n
log n

+ nγσσ+1
)

bits of space, where 0 < γ < 1. The time to search for a pattern and obtain the
number of its occurrences in the text is the optimal O(m). The text position of each
occurrence can be found in O

(

σ log1+ε n
)

time, for some ε > 0 that appears in the
sublinear terms of the space complexity. Finally, the time to display a text substring
of length L is O

(

σ (L + log1+ε n)
)

. The last operation is important not only to show
a text context around each occurrence, but also because a self-index replaces the text
and hence it must provide the functionality of retrieving any desired text substring.

One of the proposals to eliminate an exponential dependence on the alphabet
size was Huffman FM-index [6]: It was based on the backward search idea of [4] but
the novelty was to Huffman encode the text (and the pattern) so as to reduce the
alphabet to binary. As a result, any dependence on the alphabet size was removed.
We showed that our index can operate using n(2H0 + 3 + ε)(1 + o(1)) bits, for any
ε > 0. No alphabet dependence is hidden in the sublinear terms.

At search time, our index finds the number of occurrences of the pattern in
O(m(H0 + 1)) average time. The text position of each occurrence can be reported in
worst case time O

(

1
ε
(H0 + 1) log n

)

. Any text substring of length L can be displayed
in O ((H0 + 1) L) average time, in addition to the mentioned worst case time to find
a text position.

Since the original presentation, its implementation has been optimized and also a
variant with 4-ary Huffman has been checked [7]. Albeit not among the most succinct,
the 4-ary Huffman FM-index appears to be among the fastest and thus practical
indices.

In this paper we present an alternative to Huffman coding variants. Instead, we use
Kautz-Zeckendorf coding [9, 15], capable of instant detection of codeword boundaries.
To give the flavor of this idea, we note that in its basic variant, the Kautz-Zeckendorf
code has no codeword with any two adjacent 1’s.

2 The FM-index Structure

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which
produces a permutation of the original text, denoted by T bwt = bwt(T). String T bwt is
a result of the following forward transformation: (1) Append to the end of T a special
end marker $, which is lexicographically smaller than any other character; (2) form
a conceptual matrix M whose rows are the cyclic shifts of the string T$, sorted in
lexicographic order; (3) construct the transformed text L by taking the last column
of M. The first column is denoted by F .

The suffix array (SA) A of text T$ is essentially the matrix M: A[i] = j iff the
ith row of M contains string tjtj+1 · · · tn$t1 · · · tj−1. Given the suffix array, the search
for the occurrences of the pattern P = p1p2 · · · pm is trivial. The occurrences form
an interval [sp, ep] in A such that suffixes tA[i]tA[i]+1 · · · tn, sp ≤ i ≤ ep, contain the
pattern as a prefix. This interval can be searched for by using two binary searches in
time O(m log n).

227

Proceedings of the Prague Stringology Conference ’06

The suffix array of text T is represented implicitly by T bwt. The novel idea of the
FM-index is to store T bwt in compressed form, and to simulate the search in the suffix
array. To describe the search algorithm, we need to introduce the backward BWT
that produces T given T bwt:

1. Compute the array C[1 . . . σ] storing in C[c] the number of occurrences of charac-
ters {$, 1, . . . , c− 1} in the text T . Notice that C[c] + 1 is the position of the first
occurrence of c in F (if any).

2. Define the LF-mapping LF [1 . . . n + 1] as LF [i] = C[L[i]] + Occ(L,L[i], i), where
Occ(X, c, i) equals the number of occurrences of character c in the prefix X[1, i].

3. Reconstruct T backwards as follows: set s = 1 and T [n] = L[1] (because M[1] =
$T); then, for each n − 1, . . . , 1 do s ← LF [s] and T [i] ← L[s].

We are now ready to describe the search algorithm given in [3] (Fig. 1). It finds
the interval of A containing the occurrences of the pattern P . It uses the array C
and function Occ(X, c, i) defined above. Using the properties of the backward BWT,
it is easy to see that the algorithm maintains the following invariant [3]: At the ith
phase, the variable sp points to the first row of M prefixed by P [i,m] and the variable
ep points to the last row of M prefixed by P [i,m]. The correctness of the algorithm
follows from this observation.

Algorithm FM Search(P ,T bwt)
(1) i = m;
(2) sp = 1; ep = n;
(3) while ((sp ≤ ep) and (i ≥ 1) do

(4) c = P [i];
(5) sp = C[c] + Occ(T bwt, c, sp − 1)+1;
(6) ep = C[c] + Occ(T bwt, c, ep);
(7) i = i − 1;
(8) if (ep < sp) then return “not found” else return “found (ep − sp + 1) occs”.

Figure 1. Algorithm for counting the number of occurrences of P [1 . . . m] in T [1 . . . n]

Ferragina and Manzini [3] describe an implementation of Occ(T bwt, c, i) that uses
a compressed form of T bwt. They show how to compute Occ(T bwt, c, i) for any c and i
in constant time. However, to achieve this they need exponential space (in the size of
the alphabet). In a practical implementation [4] this was avoided, but the constant
time guarantee for answering Occ(T bwt, c, i) was no longer valid.

The FM-index can also show the text positions where P occurs, and display any
text substring. The details are deferred to Section 5.

3 Rank and Select Queries on Bit Arrays

A crucial building block we use is a data structure to perform rank operations over a
bit array. Given a bit sequence B[1 . . . n], rank(B, i) is the number of 1’s in B[1 . . . i],
rank(B, 0) = 0. This function can be computed in constant time using only o(n) extra
bits [8, 11, 2]. The solution, as well as its more practical implementation variants, are
described in [5]; here we present a novel implementation, which seems to be fastest
in practice.

228

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

For an input bit array B of size n and a given parameter bs we create a lookup
table N with ⌈n/2bs⌉ entries. Namely, for each k = 0 . . . ⌊n/2bs⌋ − 1 we compute:
N [k] = rank(B, (k+1)∗2bs). If ⌈n/2bs⌉ > ⌊n/2bs⌋, then we also compute: N [⌊n/2bs⌋] =
rank(B, n). The above structure needs 32 ∗ ⌈n/2bs⌉ = O(n) bits, where the constant
32 is the number of bits per entry of N .

Now, we calculate rank(B, i) as follows.
If i < 2bs, then rank(B, i) = popcount(B, 0 . . . i). Otherwise, rank(B, i) = N [⌊i/2bs⌋−
1] + popcount(B, (⌊i/2bs⌋ ∗ 2bs) . . . i). The operation popcount(B, a . . . b) returns the
number of set bits in the interval B[a . . . b], a ≤ b, making use of a precomputed table.
As long as the interval width is on the order of machine word, this is a constant time
operation.

Sometimes we need to calculate the inverse function, select(B, j), which gives the
position of the j-th bit set in B. It can also be implemented in constant time using
o(n) additional space [8, 11, 2]. More practical implementations exist [5], but it is
always significantly slower than rank , and also more rarely needed.

4 First Huffman, then Burrows-Wheeler

We focus now on our index representation, starting from the original variant. Imagine
that we compress our text T$ using Huffman. The resulting bit stream will be of length
n′ < (H0 +1)n, since (binary) Huffman poses a maximum representation overhead of
1 bit per symbol4. Let us call T ′ this sequence. Let us also define a second bit array
Th, of the same length of T ′, such that Th[i] = 1 iff i is the starting position of a
Huffman codeword in T ′. Th is also of length n′. (We will not, however, represent T ′

nor Th in our index.)
The idea is to search the binary text T ′ instead of the original text T . Let us

apply the Burrows-Wheeler transform over text T ′, so as to obtain B = (T ′)bwt. The
terminator character, “$”, is excluded from T ′ so as to have a binary alphabet.

More precisely, let A′[1 . . . n′] be the suffix array for text T ′, that is, a permutation
of the set 1 . . . n′ such that T ′[A′[i] . . . n′] < T ′[A′[i + 1] . . . n′] in lexicographic order,
for all 1 ≤ i < n′. In a lexicographic comparison, if a string x is a prefix of y, assume
x < y. Suffix array A′ will not be explicitly represented. Rather, we represent bit
array B[1 . . . n′], such that B[i] = T ′[A′[i]− 1] (except that B[i] = T [n′] if A′[i] = 1).
We also represent another bit array Bh[1 . . . n′], such that Bh[i] = Th[A′[i]]. This
tells whether position i in A′ points to the beginning of a codeword.

Our goal is to search B exactly like the FM-index. For this sake we need array C
and function Occ. Since the alphabet is binary, however, Occ can be easily computed:
Occ(B, 1, i) = rank(B, i) and Occ(B, 0, i) = i− rank(B, i). Also, array C is so simple
for the binary text that we can do without it: C[0] = 0 and C[1] = n′ − rank(B, n′),
that is, the number of zeros in B (of course value n′ − rank(B, n′) should be pre-
computed in practice). Therefore, C[c] + Occ(T bwt, c, i) is replaced in our index by
i − rank(B, i) if c = 0 and n′ − rank(B, n′) + rank(B, i) if c = 1.

There is a small twist, however, due to the fact that we are not putting a termina-
tor to our binary sequence T ′ and hence no terminator appears in B. Let us call “#”
the terminator of the binary sequence so that it is not confused with the terminator
“$” of T$. In the position p# such that A′[p#] = 1, we should have B[p#] = #.

4 Note that these n and H0 refer to T$, not T . However, the difference between both is only O(log n),
and will be absorbed by the o(n) terms that will appear later.

229

Proceedings of the Prague Stringology Conference ’06

Instead, we are setting B[p#] to the last bit of T ′. This is the last bit of the Huffman
codeword assigned to the terminator “$” of T$. Since we can freely switch left and
right siblings in the Huffman code, we will ensure that this last bit is zero. Hence
the correct B sequence would be of length n′ + 1, starting with 0 (which corresponds
to T ′[n′], the character preceding the occurrence of “#”, since # < 0 < 1), and it
would have B[p#] = #. To obtain the right mapping to our binary B, we must correct
C[0] + Occ(B, 0, i) = i − rank(B, i) + [i < p#], that is, add 1 to the original value
when i < p#. The computation of C[1] + Occ(B, 1, i) remains unchanged.

Therefore, by preprocessing B to solve rank queries, we can search B exactly as
the FM-index. The extra space required by the rank structure is o(H0n), without
any dependence on the alphabet size. Overall, we have used at most n(2H0 + 2)(1 +
o(1)) bits for our representation. This will grow slightly in the next sections due to
additional requirements.

Our search pattern is not the original P , but its binary coding P ′ using the
Huffman code we applied to T . Converting P to P ′ takes O(m) time. If we assume
that the characters in P have the same distribution of T , then the length of P ′ is
< m(H0 + 1). This is the number of steps to search B using the FM-index search
algorithm.

The answer to that search, however, is different from that of the search of T for
P . The reason is that the search of T ′ for P ′ returns the number of suffixes of T ′ that
start with P ′. Certainly these include the suffixes of T that start with P , but also
other superfluous occurrences may appear. These correspond to suffixes of T ′ that do
not start a Huffman codeword, yet they start with P ′.

This is the reason why we have marked the suffixes that start a Huffman code-
word in Bh. In the range [sp, ep] found by the search for P ′ in B, every bit set in
Bh[sp . . . ep] represents a true occurrence. Hence the true number of occurrences can
be computed as rank(Bh, ep) − rank(Bh, sp − 1).

Figure 2 depicts the search algorithm.

Algorithm Huff-FM Search(P ′,B,Bh)
(1) i = m′;
(2) sp = 1; ep = n′;
(3) while ((sp ≤ ep) and (i ≥ 1)) do

(4) if P ′[i] = 0 then
sp = (sp − 1) − rank(B, sp − 1) + 1 + 1 − [sp − 1 ≥ p#];
ep = ep − rank(B, ep) + 1 − [ep ≥ p#];

else sp = n′ − rank(B,n′) + rank(B, sp − 1) + 1;
ep = n′ − rank(B,n′) + rank(B, ep);

(7) i = i − 1;
(8) if ep < sp then occ = 0 else occ = rank(Bh, ep) − rank(Bh, sp − 1);
(9) if occ = 0 then return “not found” else return “found (occ) occs”.

Figure 2. Algorithm for counting the number of occurrences of P ′[1 . . . m′] in T ′[1 . . . n′]

Therefore, the search complexity is O(m(H0 + 1)), assuming that the zero-order
distributions of P and T are similar. It is well-known that the longest Huffman code-
word does not exceed O(m log n) bits. From this we immediately obtain the worst
case search cost of O(m log n) for our index. This matches the worst case search time

230

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

of the compressed suffix array (CSA) of Sadakane [14]. An exceptional situation oc-
curs when P contains a character not present in T . This is easier, however, as we
immediately know that P does not occur in T .

Is it in fact possible to achieve O(m log n) search complexity also for the worst
case, for the price of 2n extra bits. Basically, the idea is to use a length-limited
Huffman coding variant but we omit the details and analysis due to lack of space.
This idea, however, does not have much importance in practice because extremely
skew symbol distributions almost never happen and thus optimizing the worst case
is hardly worth any effort.

5 Reporting Occurrences and Displaying the Text

Up to now we have focused on the search time, that is, the time to determine the
suffix array interval containing all the occurrences. In practice, one needs also the
text positions where they appear, as well as a text context. Since self-indexes replace
the text, in general one needs to extract any text substring from the index.

Given the suffix array interval that contains the occ occurrences found, the FM-
index reports each such position in O(σ log1+ε n) time, for any ε > 0 (which appears
in the sublinear space component). The CSA can report each in O(logε n) time, where
ε is paid in the nH0/ε space. Similarly, a text substring of length L can be displayed
in time O(σ(L + log1+ε n)) by the FM-index and O(L + logε n) by the CSA.

Our index can do better than the FM-index in this respect, although not as well
as the CSA. Using (1 + ε)n additional bits, we can report each occurrence position
in O(1

ε
(H0 + 1) log n) time and display a text context in time O(L log σ + log n)

in addition to the time to find an occurrence position. On average, assuming that
random text positions are involved, the overall complexity to display a text interval
becomes O((H0 + 1)(L + 1

ε
log n)). Those complexities hold for all the variants of our

solution: based on the binary or higher arity Huffman, or on the Kautz-Zeckendorf
coding. Still, the overall idea of reporting and displaying via sampling sorted suffixes
at regular intervals was first presented in the seminal work on the FM-index, and is
now widely used in the field. Details can be found e.g., in [7].

A related query type concerns displaying the text around each pattern occurence.
More generally, we want to display a text substring T [l . . . r] of length L = r − l + 1.
Again, we make use of a known technique, on the overall obtaining the following time
complexities [7]: O((H0 + 1)(L + 1

ε
log n)) in the average case, and O(L log σ + (H0 +

1)1
ε
log n) in the worst case.

6 K-ary Huffman

The purpose of the idea of compressing the text before constructing the index is to
remove the sharp dependence of the alphabet size of the FM index. This compres-
sion is done using a binary alphabet. In general, we can use Huffman over a coding
alphabet of k > 2 symbols and use ⌈log k⌉ bits to represent each symbol. We call
this generalization the k-ary FM-Huffman. Varying the value of k yields interesting
time/space tradeoffs. We use only powers of 2 for k values, so each symbol can be
represented without wasting space.

The space usage varies in different aspects. Array B increases its size since the

compression ratio gets worse. B has length n′ < (H
(k)
0 + 1)n symbols, where H

(k)
0 is

231

Proceedings of the Prague Stringology Conference ’06

the zero order entropy of the text computed using base k logarithm, that is, H
(k)
0 =

−
∑σ

i=1
ni

n
logk

(

ni

n

)

= H0/ log2 k. Therefore, the size of B is bounded by n′ log k =
(H0 + log k)n bits. The size of Bh is reduced since it needs one bit per symbol, and
hence its size is n′. The total space used by these structures is then n′(1 + log k) <

n(H
(k)
0 + 1)(1 + log k), which is not larger than the space requirement of the binary

version, 2n(H0 + 1), for 1 ≤ log k ≤ H0.
The rank structures also change their size. The rank structures for Bh are com-

puted in the same way of the binary version, and therefore they reduce their size,

using o(H
(k)
0 n) bits. For B, we no longer can use the rank function to simulate

Occ. Instead, we need to calculate the occurrences of each of the k symbols in
B. For this sake, we precalculate sublinear structures for each of the symbols, in-
cluding k tables that count the occurrences of each symbol in a chunk of b =

⌈logk(n)/2⌉ symbols. Hence, we need o(kH
(k)
0 n) bits for this structures. In total,

we need n(H
(k)
0 + 1)(1 + log k) + o(H

(k)
0 n(k + 1)) bits.

Regarding the time complexities, the pattern has length < m(H
(k)
0 + 1) symbols,

so this is the search complexity, which is reduced as we increase k. For reporting
queries and displaying text, we need the same additional structures TS, ST and S
that for the binary version. The k-ary version can report the position of an occurrence

in O
(

1
ǫ
(H

(k)
0 + 1) log n

)

time, which is the maximum distance between two sampled

positions. Similarly, the time to display a substring of length L becomes O((H
(k)
0 +

1)(L + 1
ǫ
log n)) on average and O(L log σ + (H

(k)
0 + 1)1

ǫ
log n) in the worst case.

7 Kautz-Zeckendorf Coding

The condition for getting rid of the Bh array is to have a coding for which the bit
stream enables instant synchronization at codeword boundaries. A solution could
be based on the representation of integers, first advocated by Kautz [9] for its syn-
chronization properties, which presents each number in a unique form as a sum of
Fibonacci numbers. This technique is better known from a work by Zeckendorf [15],
therefore we will call it Kautz-Zeckendorf coding.

Consider the Fibonacci sequence f1 = 1, f2 = 2, and fi+2 = fi+1+fi. The resulting
sequence of Fibonacci numbers is 1, 2, 3, 5, 8, 13, . . . It is easy to prove by induction
that any integer number N can be uniquely decomposed into a sum of Fibonacci
numbers, where each number is summed at most once and no two consecutive numbers
are used in the decomposition. (If two consecutive numbers fi and fi and fi+1 appear
in the decomposition we can use fi+2 instead.) Thus we can represent N as a bit
vector, whose i-th bit is set iff the i-th Fibonacci number is used to represent N . No
two consecutive bits can be set in this representation because this would mean that
we used two consecutive numbers in the decomposition. This can be generalized to
k consecutive ones [9]. The recurrence is now fi = i for i ≤ k and fi+k = fi+k−1 +
fi+k−2 + . . . + fi+1 + fi. In this representation we do not permit a sequence of k
consecutive numbers in the decomposition, and thus no stream of k 1’s appears in
the bit vector.

We use this encoding as follows. We sort the source symbols by frequency and
then assign the binary encoding of number N to the N -th most frequent symbol. In
addition, all the encodings are prepended with a sequence of k 1’s followed by one 0.
Note that nowhere else in the encoding are there k adjacent 1’s.

232

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

If, during the LF-mapping, we read a 0 and then k successive 1’s from T ′, we
know that we are at a codeword beginning. Thus, Bh is no longer needed. A practical
side-effect is also that there is no need for select to find the successive matches: they
all are in a contiguous range of the matrix rows. All the rest of the operatory remains
unchanged.

Let us consider the performance of Kautz-Zeckendorf coding with the two most
practical (at least for natural languages) parameters, k = 2 and k = 3. The reg-
ular expressions for all valid codewords in those cases are 110(0|10) ∗ (ε|1) and
1110(0|10|110) ∗ (ε|1|11), respectively. We calculated the average codeword length
for the 80 MB English text used in Section 8. Note that all we needed to know for
this estimation was the knowledge of zero-order symbol distribution in the text. For
k = 2 and k = 3 the average lengths were 5.696 and 6.420 bits per symbol, respec-
tively. The only component of the index, apart from the B array, is the rank structure
for B. The fastest rank in the new implementation needs 25% of the text size. Tak-
ing this figure, we obtain approximately 0.89n and 1.00n overall space occupancy,
respectively. Those results are better than of any other variant of our index, but the
price is a longer search time. Note that even less space can be obtained with a rank
implementation using 10% of the text size [5], for a relatively little slow-down. Other
options can be better for other text types, e.g., for DNA using k = 1 (actually a
unary code) is a better choice.

8 Experimental Results

We implemented our indexes, both the original, the k-ary and the KZ versions, mak-
ing some practical considerations that differ from the theoretical ones. The main
difference is the calculation of rank and Occ, where we used the solution described
in [5], for the older index variants, or the new rank implementation described in Sec-
tion 3. The new indexes will be called FM-KZ1 and FM-KZ2, corresponding to the
parameters k = 1 and k = 2, respectively.

In this section we show experimental results on counting, reporting and displaying
queries and compare the efficiency to existing indexes. The indexes used for the
experiments were the FM-index implemented by Navarro [12], Sadakane’s CSA [14],
the RLFM index [10], the SSA index [10] and the LZ index [12]. Other indexes whose
implementations are available were not included because they are not comparable to
the FM Huffman / FM-KZ index due either to their large space requirement or their
high search times .

We considered three types of text for the experiments: 80 MB of English text
obtained from the TREC-3 collection 5 (files WSJ87-89), 60 MB of DNA and 55 MB
of protein sequences, both obtained from the BLAST database of the NCBI6 (files
month.est_others and swissprot respectively).

Our experiments were run on an Intel(R) Xeon(TM) processor at 3.06 GHz, 2 GB
of RAM and 512 KB cache, running Gentoo Linux 2.6.10. We compiled the code with
gcc 3.3.5 using optimization option -O9.

Now we show the results regarding the space used by our index and later the
results of the experiments divided in query type.

5 Text Retrieval Conference, http://trec.nist.gov
6 National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

233

Proceedings of the Prague Stringology Conference ’06

8.1 Space results

For the experiments we considered the binary, the 4-ary, and the KZ versions of our
index. It is interesting to know how the space requirement of the Huffman-based
index varies according to the parameter k. Table 1 (left) shows the space that the
index takes as a fraction of the text for different values of k and the three types of
files considered. These values do not include the space required to report positions
and display text.

We can see that the space requirements are lowest for k = 4. For higher values
this space increases, although staying reasonable until k = 16. With higher values
the spaces are too high for these indexes to be comparable to the rest. It would be
interesting to study the time performance to the versions of the index with k = 8 and
k = 16. With k = 8 we do not expect an improvement on the query time since log k
is not a power (reasons omitted) of 2 and therefore the computation of Occ is slower.
The version with k = 16 could lead to a reduction in query time, but the access to 4
machine words for the calculation of Occ could negatively affect it. It is important to
say that this values are only relevant for the English text and proteins, since it does
not make sense to use them for DNA.

It is also interesting to see how the space requirement of the index is divided
among its different structures. Table 1 (right) shows the space used by each of the
structures for the index with k = 2 and k = 4 for the three types of texts considered.

k Fraction of text
English DNA Proteins

2 1,68 0,76 1,45
4 1,52 0,74 1,30
8 1,60 0,91 1,43
16 1,84 — 1,57
32 2,67 — 1,92
64 3,96 — —

FM-Huffman k = 2 FM-Huffman k = 4
Structure Space [MB] Space [MB]

English DNA Proteins English DNA Proteins

B 48.98 16.59 29.27 49.81 18.17 29.60
Bh 48.98 16.59 29.27 24.91 9.09 14,80
Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20
Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55

Total 134,69 45,61 80,48 121,41 44,30 72,15
Text 80,00 60,00 55,53 80,00 60,00 55,53
Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Table 1. On the left, space requirement of our index for different values of k. The value corresponding
to the row k = 8 for DNA actually corresponds to k = 5, since this is the total number of symbols to
code in this file. Similarly, the value of row k = 32 for the protein sequence corresponds to k = 24.
On the right, detailed comparison of k = 2 versus k = 4. We omit the spaces used by the Huffman
table, the constant-size tables for Rank, and array C, since they are negligible.

For higher values of k the space used by B will increase since the use of more
symbols for the Huffman codes increases the resulting space. On the other hand, the
size of Bh decreases at a rate of log k and so do its rank structures. However, the
space of the rank structures of B increases rapidly, as we need k structures for an

234

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

array that reduces its size at a rate of log k, which is the reason of the large space
requirement for high values of k.

Now, let us take a look at the FM-KZ1 and FM-KZ2 space/time behavior. For
DNA, the FM-KZ1 is a clear winner: among the fastest and definitely the most
succinct, also it is hard to imagine a simpler full-text index (as the encoding is merely
the unary code).

On the English text, FM-KZ2 is takes about 1.0n space, much less than other
indexes from our family, but is also considerably slower, e.g. more than 1.5 times
slower than FM Huffman with k = 4.

8.2 Counting queries

For the three files, we show the search time as a function of the pattern length, varying
from 10 to 100, with a step of 10. For each length we used 1000 patterns taken from
random positions of each text. Each search was repeated 1000 times. We obtained
an average error of 2.6% with a confidence of 95%. Figure 3 (left) shows the time for
counting the occurrences for each index and for the three files considered. As the CSA
index needs a parameter to determine its space for this type of queries, we adjusted
it so that it would use approximately the same space that the binary FM-Huffman
index.

We also show the average search time per character along with the minimum space
requirement of each index to count occurrences. Unlike the CSA, the other indexes
do not need a parameter to specify their size for counting queries. Therefore, we show
a point as the value of the space used by the index and its search time per character.
For the CSA index we show a line to resemble the space-time tradeoff for counting
queries. The time per character for each pattern length is the search time divided by
the value of the length. The time per character shown on the plot is the average of
these times for each length. Figure 3 (right) shows the search time per character for
each index and for each type of text.

8.3 Reporting queries

We measured the time that each index took to search for a pattern and report the
positions of the occurrences found. From the English text and the DNA sequence
we took 1000 random patterns of length 10. From the protein sequence we used
patterns of length 5. We measured the time per occurrence reported varying the space
requirement for every index except the LZ, which has a fixed size. For the CSA we
set the two parameters, namely the size of the structures to report and the structures
to count, to the same value, since this turns out to be optimal. Our measures have
a 2.2% error with 95% confidence. Figure 4 shows the times per occurrence reported
for each index as a function of its size.

8.4 Displaying text

We measured the time that each index took to show the first character of a text
context around the occurrences found. More precisely, this is the time of searching
for a pattern, locating the position of an occurrence and showing one character of the
text in the context area of the position located. Usually this character is the one at
the position of the occurrence, but it can also be a different close one, depending on

235

Proceedings of the Prague Stringology Conference ’06

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
ili

se
co

nd
s)

m

Search time on English text (80 Mb)

FM
LZ

RLFM
CSA L=8

SSA
FM-Huffman

FM-Huffman k=4
FM-Huffman k=16

FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
tim

e
pe

r
ch

ar
ac

te
r

(m
ili

se
co

nd
s)

space (fraction of the text)

Space v/s search time per character on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
ili

se
co

nd
s)

m

Search time on DNA (60 Mb)

FM
LZ

RLFM
CSA L=20

SSA
FM-Huffman

FM-Huffman k=4
FM-KZ1
FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s search time per character on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
ili

se
co

nd
s)

m

Search time on proteins (55 Mb)

FM
LZ

RLFM
CSA L=12

SSA
FM-Huffman

FM-Huffman k=4
FM-Huffman k=16

FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s search time per character on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

Figure 3. On the left, search time as a function of the pattern length over, English (80 MB), DNA
(60 MB), and a proteins (55 MB). The times of the LZ index do not appear on the English text
plot, as they range from 0.5 to 4.6 ms. In the DNA plot, the time of the LZ index for m = 10 is 2.6.
The reason of this increase is the large number of occurrences of these patterns, which influences
the counting time for this index. On the right, average search time per character as a function of
the size of the index.

236

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

tim
e

pe
r

oc
ur

re
nc

e
(m

ili
se

co
nd

s)

space (fraction of the text)

Time to report an occurrence on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

Figure 4. Time to report the positions of the occurrences as a function of the size of the index.
We show the results of searching on 80 MB of English text, 60 MB of DNA and finally 55 MB of
proteins.

each index. We measured this time as a function of the size used by each index. We
used the same 1000 patterns used for the reporting experiment, obtaining an average
error of 1.6% with 95% confidence. Figure 5 (left) shows the time to display the first
character as a function of the space requirement for each index and for each type of
text.

In addition, we measured the time to display a context per character displayed.
That is, we searched for the 1000 patterns and displayed 100 characters around each
of the positions of the occurrences found. We subtracted from this time the time to
display the first character and divided it by the amount of characters displayed. For
this experiment, we obtained an average error of 6% with 95% confidence. Figure 5
(right) shows this time along with the minimum space required for each index for
the counting functionality, since the display time per character does not depend on
the size of the index. This is not true for the CSA index, whose time to display per
character does depend on its size. For this index we show the time measured as a
function of its size.

8.5 Analysis of Results

We can see that our FM-Hufman k = 4 and k = 16 indexes are among the fastest for
counting queries for the three types of files. The binary FM-Huffman index takes the
same time that k = 4 version for DNA and it is a little bit slower that the FM-index
for the other two files. As expected, all those versions are faster than CSA, RLFM

237

Proceedings of the Prague Stringology Conference ’06

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to display the first character on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
tim

e
pe

r
ch

ar
ac

te
r

(m
ili

se
co

nd
s)

space (fraction of the text)

Space v/s time of display on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to display the first character on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tie
m

po
 p

er
 c

ha
ra

ct
er

 (
m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s display time on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to display the first character on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s display time on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

Figure 5. On the left, time to show the first character of a text context around the positions of
the occurrences as a function of the size of the index. From top to bottom, we show the results of
searching 80 MB of English text, 60 MB of DNA and 55 MB of proteins. In the plot of the DNA
sequence, the point corresponding to the LZ index is covered. Its value is: space=1.18, time=0.03.
On the right, time per character displayed around an occurrence and space for each index.

238

FM-KZ: An Even Simpler Alphabet-Independent FM-Index

and LZ, the latter not being competitive for counting queries. Regarding the space
usage, the FM-index turns out to be a better tradeoff alternative for the English text
and protein sequences, since it uses less space than our index and has low search
times. For DNA, all the Huffman based versions of our index are good alternatives,
considering their low space requirement and search time.

Still, the new player, FM-KZ index, is a particularly good choice for DNA. It is
way ahead of the competition in the space use, while belonging to the fastest. At the
same time its simplicity is striking.

Considering both speed and space use, for the English text and the proteins, the
SSA index is the best choice, still, our variants come close, especially for proteins.

For reporting queries, our index loses to the FM-index for English and proteins,
mainly because of its large space requirement. Also, it only surpasses the RLFM and
CSA for large space usages. For DNA, however, our index, with the two versions,
is better than the FM-index. This reduction in space is due to the low zero-order
entropy of the DNA, which makes our index compact and fast.

Regarding the time for displaying the first character, the FM-index is faster than
our index. Again, our index takes more space than the other indexes to get competitive
time for English and proteins, and reduces its space for DNA. Regarding display
time per character, our index with k = 4 is the fastest for DNA with a low space
requirement, becoming an interesting alternative for this type of query.

The version of our index with k = 4 improved both the space and time with
respect to the binary version and it became a very good alternative for counting and
reporting queries, especially for DNA, due to the low zero-order entropy of this text.

9 Conclusions

We have focused in this paper on a practical data structure inspired by the FM-index
[3], which removes its sharp dependence on the alphabet size σ. Our key idea is to
encode the text with the Kautz-Zeckendorf coding, offering instant synchronization
at codeword boundaries (a property missing in Huffman coding, thus implying a
significant space penalty in FM indexes), at still being quite succinct. While not
competitive to the best succinct indexes in theory, our solutions fare well in practice,
and are simpler conceptually and easier to implement than the other structures.

Acknowledgements

This work was partially funded by Fondecyt Grant-1-050493,Chile (Gonzalo Navarro).

References

[1] M. Burrows and D. Wheeler: A block sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, 1994.

[2] D. Clark: Compact Pat Trees, PhD thesis, University of Waterloo, Canada, 1996.

[3] P. Ferragina and G. Manzini: Opportunistic data structures with applications, in Proc. 41st
IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pp. 390–398.

[4] P. Ferragina and G. Manzini: An experimental study of an opportunistic index, in Proc.
12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2001, pp. 269–278.

239

Proceedings of the Prague Stringology Conference ’06

[5] R. González, S. Grabowski, V. Mäkinen, and G. Navarro: Practical implementation
of rank and select queries, in Poster Proceedings Volume of 4th Workshop on Efficient and
Experimental Algorithms (WEA’05), Greece, 2005, CTI Press and Ellinika Grammata, pp. 27–
38.

[6] S. Grabowski, V. Mäkinen, and G. Navarro: First Huffman, then Burrows-Wheeler: An
alphabet-independent FM-index, in Proceedings of the 11 Symposium on String Processing and
Information Retrieval (SPIRE’04), LNCS v. 3246, 2004, pp. 210–211.

[7] S. Grabowski, V. Mäkinen, G. Navarro, and A. Salinger: A simple alphabet-independent
FM-index, in Proceedings of the 10th Prague Stringology Conference (PSC’05), 2005, pp. 230–
244.

[8] G. Jacobson: Space-efficient static trees and graphs, in Proc. 30th IEEE Symposium on Foun-
dations of Computer Science (FOCS), 1989, pp. 549–554.

[9] W. H. Kautz: Fibonacci codes for synchronization control. IEEE Transactions on Information
Theory, 11 1965, pp. 242–292.

[10] V. Mäkinen and G. Navarro: Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing, 12(1) 2005, pp. 40–66.

[11] I. Munro: Tables, in Proc. 16th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), LNCS v. 1180, 1996, pp. 37–42.

[12] G. Navarro: Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms, 2(1)
2004, pp. 87–114.

[13] G. Navarro and V. Mäkinen: Compressed full-text indexes (2nd version), Tech. Rep.
TR/DCC-2006-6, Department of Computer Science, University of Chile, Chile, Apr. 2006.

[14] K. Sadakane: Compressed text databases with efficient query algorithms based on the com-
pressed suffix array, in Proc. 11th International Symposium on Algorithms and Computation
(ISAAC), LNCS v. 1969, 2000, pp. 410–421.

[15] E. Zeckendorf: Représentation des nombres naturels par une somme de nombres de Fibonacci
ou de nombres Lucas. Bull. Soc. Roy. Sci. Liège, 41 1972, pp. 179–182.

240

