
2D Context-Free Grammars: Mathematical

Formulae Recognition

Daniel Pr̊uša and Václav Hlaváč

Czech Technical University, Faculty of Electrical Engineering
Department for Cybernetics, Center for Machine Perception

121 35 Prague 2, Karlovo náměst́ı 13
{prusa,hlavac}@cmp.felk.cvut.cz, http://cmp.felk.cvut.cz

Abstract. This contribution advocates that two-dimensional context-free grammars
can be successfully used in the analysis of images containing objects that exhibit struc-
tural relations. The idea of structural construction is further developed. The approach
can be made computationally efficient, practical and be able to cope with noise. We
have developed and tested the method on a pilot study aiming at recognition of off-
line mathematical formulae. The other novelty is not treating symbol segmentation in
the image and structural analysis as two separate processes. This allows the system to
recover from errors made in initial symbol segmentation.

1 Motivation and Taxonomy of Approaches

The paper serves two main purposes. First, it intends to point the reader’s attention
to the theory of two-dimensional (2D) languages. It focuses on context-free grammars
having the potential to cope with structural relations in images. Second, the paper
demonstrates on a pilot study concerning recognition of off-line hand written mathe-
matical formulae that the 2D context-free grammars have the potential to deal with
real-life noisy images.

The enthusiasm for grammar-based methods in pattern recognition from the
1970’s [6] has gradually faded down due to inability to cope with errors and noise.
Even mathematical linguistics, in which the formal grammar approach was pio-
neered [4], has tended to statistical methods since the 1990s.

M.I. Schlesinger from the Ukrainian Academy of Sciences in Kiev has been devel-
oping the 2D grammar-based pattern recognition theory in the context of engineering
drawings analysis since the late 1970s. His theory was explicated in the 10th chapter
of the monograph [17] in English for the first time.

The first author of this paper studied independently the theoretical limits of 2D
grammars [14] and proved them to be rather restrictive.

The main motivation of the authors of the reported work is to discover to what
extent the 2D grammars are applicable to practical image analysis.

This paper provides insight into an ongoing work on a pilot study aiming at off-
line recognition of mathematical formulae. We have chosen this application domain
because there is a clear structure in formulae and works of others exist which can be
used for comparison.

Let us categorize the approaches to mathematical formulae recognition along two
directions:

– on-line recognition (the timing of the pen strokes is available) versus off-line
recognition (only an image is available).

Proceedings of the Prague Stringology Conference ’06

– printed versus hand-written formulae.

We deal with off-line recognition of hand-written formulae in this contribution. Of
course, the approach can be also applied to printed formulae.

2 State-of-the-Art

Formulae recognition has been a widely studied task. Several approaches from pattern
recognition were adopted as well as new methods were motivated and designed by
this particular task. A taxonomy of the methods is given in [3]. There are only a
few commercial products performing formulae recognition. The most prominent is
probably xMathJournal software [19] for Tablet PCs which uses on-line recognition.
This software serves as a sophisticated calculator allowing inputs to be written by
hand.

Most of the known methods follow the following two-phase procedure:

– Detection of individual symbols by image segmentation and labelling symbols
using pattern recognition techniques.

– Structural analysis of relations among labelled symbols.

Classical approaches known from Optical Character Recognition were adopted to
perform the symbols recognition phase. Images are segmented and a classifier is used
to assign symbols to segments. There are also works performing symbol detection,
segmentation and labelling during a single simultaneous process using Hidden Markov
Models [18].

Formalisms related to structural analysis include geometric grammars, graph
grammars, finding a minimal spanning tree, etc. [7, 12, 5].

Criticism of the commonly used methods concerns the image segmentation which
is done without any knowledge of the formulae structure. It is hardly possible to
recover from errors made during symbol segmentation phase. There have been at-
tempts to employ additional error corrections schemes. However, this postprocessing
corrections do not fit naturally into the pattern recognition process.

The approach based on the two-dimensional context-free (2D CF) grammars and
a general structural construction tries to solve this problem [17]. The group from Kiev
has applied their approach to images of musical scores [16] or electrical circuits [11].
Let us note that the notion of 2D CF grammars has appeared in works of other
authors, e.g., [13].

3 Theory of Two-dimensional Languages

The theory of two-dimensional languages studies generalizations of formal languages
to two dimensions. These generalizations can be done in many different ways. Au-
tomata working over a two-dimensional tape were firstly introduced by M. Blum and
C. Hewitt, already in 1967. Since then, several formal models recognizing or generat-
ing two-dimensional objects have been proposed in the literature.

The most common two-dimensional object is a picture which is a matrix of symbols
taken from a finite alphabet Σ. The set of all pictures over Σ is denoted by Σ∗∗. Each
subset L ⊆ Σ∗∗ is called a two-dimensional language. Note that it is also possible to
consider objects of more general shapes, e.g. connected arrays, but we will work only
with pictures.

78

2D Context-Free Grammars: Mathematical Formulae Recognition

One of the important tasks the theory of two-dimensional languages deals with is
to search for suitable generalizations of the Chomsky hierarchy, especially of its first
two levels, i.e. regular and context-free languages. Several formalisms were adopted or
developed to fulfil this task, however, the more complex topology of pictures causes
that the properties of the proposed classes usually differ to those known from regular,
resp. context-free languages, despite the fact that the classes are defined via models
resembling finite-state automata, resp. context-free grammars.

In the following sections, we describe two models of 2D finite-state devices and
a 2D generalization of CF grammars. We also list basic properties of recognized
(generated) languages.

3.1 Finite-state Devices

A two-dimensional finite-state automaton (2FSA) [15] is a natural generalization of
the one-dimensional two-way automaton (which of recognition power equals the power
of 1D finite-state automaton). It is equipped by a two-dimensional tape and allowed
to move the head in four directions – left, right, up and down. This is the reason why
it is also called a four-way automaton by some authors.

Let 2DFSA denote a deterministic 2FSA and L(2FSA), resp. L(2DFSA) the
class of 2D languages recognizable by a 2FSA, resp. 2DFSA. The classes of recognized
languages are characterized by the following facts:

– L(2DFSA) is a proper subset of L(2FSA).
– L(2FSA) is not closed under concatenation (neither row or column), complement

and projection.
– The emptiness problem is not decidable even for 2DFSA’s.

Another kind of a finite-state device, so called two-dimensional on-line tessellation
automaton (2OTA), was introduced by K. Inoue and A. Nakamura [9] in 1977. It is
a kind of a bounded 2D cellular automaton. In comparison to the cellular automata,
computations are performed in a restricted way – cells do not make transitions at
every time-step, but rather a ‘transition wave’ passes once diagonally across them.
Each cell changes its state depending on two neighbors – the top one and the left one.
The result of a computation is determined by the state the bottom-right cell finishes
in.

Again, let 2DOTA denote a deterministic 2OTA and L(2OTA), resp. L(2DOTA)
be the classes of languages recognizable by the models. The most important results
on the automata follow:

– L(2DOTA) is a proper subset of L(2OTA).
– L(2OTA) is closed under row and column concatenation, union and intersection.
– L(OTA) is not closed under complement while L(DOTA) is closed under comple-

ment.
– L(DOTA) and L(FSA) are incomparable.
– L(DFSA) is a proper subset of L(DOTA).

D. Giammarresi and A. Restivo [8] present the class of languages recognizable by
this device as the ground level class of the two-dimensional theory, prior to languages
recognizable by two-dimensional finite-state automata. They argue that the proposed
class fulfills more natural requirements on such a generalization. Moreover, it is pos-
sible to use several formalisms to define the class. Except tessellation automata, they

79

Proceedings of the Prague Stringology Conference ’06

include tiling systems or monadic second order logic, thus the definition is robust as
in the case of regular languages. On the other hand, 2OTA’s are quite strong, since
some NP-complete languages can be recognized by them. This result speaks against
the promotion of the class to the 2D ground level class.

3.2 Two-dimensional Context-free Grammars

In this section we present a proposal of 2D CF grammars and results on them as they
were given in [14]. The grammars are a generalization of 2D CF grammars introduced
in [17].

Let [ai,j]m,n denote the matrix

a1,1 . . . a1,n

...
. . .

...
am,1 . . . am,n

For P ∈ Σ∗∗, let rows(P), resp. cols(P) denote the number of rows, resp. columns
of P . We consider there is the only picture consisting of 0 rows and 0 columns. This
picture, denoted Λ, is called the empty picture, analogously to the empty word λ.

We define two binary operations, the row and column concatenation. Let A =
[ai,j]k,l and B = [bi,j]m,n be non-empty pictures over Σ. The column concatenation
A B, resp. row concatenation A B is defined if k = m, resp. l = n. The products of
the operations are given by the following schemes:

A B =

a1,1 . . . a1,l b1,1 . . . b1,n

...
. . .

...
...

. . .
...

ak,1 . . . ak,l bm,1 . . . bm,n

A B =

a1,1 . . . a1,l

...
. . .

...
ak,1 . . . ak,l

b1,1 . . . b1,n

...
. . .

...
bm,1 . . . bm,n

It means A B = [ci,j]k,l+n, where

ci,j =

{

ai,j if j ≤ l

bi,j−l otherwise

and similarly, A B = [di,j]k+m,l, where

di,j =

{

ai,j if i ≤ k

bi−k,j otherwise

The generalized concatenation is an unary operation
⊕

defined on a set of ma-
trixes of elements that are pictures over some alphabet. For i = 1, . . . ,m; j = 1, . . . , n,
let Pi,j be pictures over Σ.

⊕

[Pi,j]m,n is defined if

∀i ∈ {1, . . . ,m} rows(Pi,1) = rows(Pi,2) = . . . = rows(Pi,n)
∀j ∈ {1, . . . , n} cols(P1,j) = cols(P2,j) = . . . = cols(Pm,j)

The result of the operation is P1 P2 . . . Pm, where each Pk = Pk,1 Pk,2 . . . Pk,n.
See Figure 1 for an illustrative example.

80

2D Context-Free Grammars: Mathematical Formulae Recognition

P2,1 P2,2 P2,3

P1,1 P1,2 P1,3

Figure 1. Scheme for the result of
⊕

[Pi,j]2,3 operation

Definition 1. A two-dimensional context-free grammar (2CFG) is a tuple (VN , VT ,

S0,P), where

• VN is a finite set of nonterminals
• VT is a finite set of terminals
• S0 ∈ VN is the initial nonterminal
• P is a finite set of productions of the form N → W , where N ∈ VN and W ∈

(VN ∪ VT)∗∗ \ {Λ}. In addition, P may contain production S0 → Λ. In this case,
no production in P contains S0 as a part of its right-hand side.

Definition 2. Let G = (VN , VT , S0,P) be a 2CFG. We define a picture language
L(G,N) over VT for every N ∈ VN . The definition is given by the following recurrent
rules:

I) If N → W is a production in P and W ∈ VT
∗∗, then W is in L(G,N).

II) Let N → [Ai,j]m,n be a production in P, different to S0 → Λ, and Pi,j (i = 1, . . . , n;
j = 1, . . . ,m) be pictures such that
• if Ai,j is a terminal, then Pi,j = Ai,j

• if Ai,j is a nonterminal, then Pi,j ∈ L(G,Ai,j)
Then, if

⊕

[Pi,j]m,n is defined,
⊕

[Pi,j]m,n is in L(G,N).

The set L(G,N) consists of pictures that can be obtained by applying a finite
sequence of rules I and II. The language L(G) generated by the grammar G is defined
to be L(G) = L(G,S0).

To illustrate the presented definition, let us show a simple example of a 2CFG

that generates the set of all non-empty square pictures over Σ = {a}.

Example 3. Let G = (VN , VT , S0,P) be a 2CFG, where VT = {a}, VN = {V,H, S0}
and P consists of the following productions:

1) H → a , 2) H → a H , 3) V → a , 4) V →
a

V
,

5) S0 → a , 6) S0 →
a H

V S0

.

Productions 1), 2) are one-dimensional, thus it should be clear that L(G,H) contains
exactly all non-empty rows of a’s. And really, by applying rule I) on production 1), we
have a ∈ L(G,H). Furthermore, if ak ∈ L(G,H), then rule II) applied on production
2) gives ak+1 ∈ L(G,H). Similarly, L(G, V) contains non-empty columns of a’s.

By applying rule I) on production 5), the square 1 × 1 is generated by G. Since
a ∈ L(G,S0) ∩ L(G,H) ∩ L(G, V), rule II) applied on production 6) gives that the
square 2 × 2 is also in L(G,S0). The row, resp. column of length 2 is generated by

81

Proceedings of the Prague Stringology Conference ’06

H, resp. V , thus rule II) can be applied again to produce the square 3 × 3, etc. By
induction on the size, we can show that each non-empty square picture over {a} can
be generated and that there is no way to generate any non-square picture.

If we restrict right-hand sides of productions to be composed of at most two
elements we obtain grammars from [17]. Let 2SCFG denote such a grammar and let
us summarize the allowed types of productions:

P1. (column concatenation) N → A B

P2. (row concatenation) N →
A

B

P3. (renaming) N → A

N is a nonterminal, A and B are terminals or nonterminals.

A characterization of 2CFG’s follows:

– L(2CFG) is not comparable to L(2FSA), neither to L(2OTA).
– L(2SCFG) is a proper subset of L(2CFG).
– There is no analogy to the Chomsky normal form of productions.
– Time complexity of recognition depends on size of production’s right-hand sides.
– The emptiness problem is not decidable.

We define two languages to demonstrate the incomparability between L(2FSA)
and L(2CFG).

1. L1 = {P |P ∈ {a}∗∗ ∧ cols(P) = rows2(P)}
2. Let L2 be a language over {a, b}, consisting of square pictures, where each row

and each column contains exactly one symbol b.

L1 can be generated by a 2CFG, but it cannot be recognized by any 2FSA. On the
other hand, L2 is recognizable by a 2FSA (even by a 2DFSA), but it cannot be
generated by any 2CFG.

The well known Cocke-Younger-Kasami algorithm [10, 20, 1] for recognition of
languages generated by one-dimensional context-free grammars can be generalized
on 2SCFG’s [17]. Time complexity of the algorithm is

O
(

m2n2(m + n)
)

,

where m, resp. n denote the number of rows, resp. columns of the picture. It is
also possible to generalize the algorithm on languages generated by 2CFG’s, but
time complexity depends on sizes of production’s right-hand sides in this case. Let
G = (VT , VN , S0,P) be a 2CFG and

p = max {rows(W) |N → W ∈ P} , q = max {cols(W) |N → W ∈ P} .

Now, time complexity of the algorithm is

O
(

mp+1nq+1
)

.

82

2D Context-Free Grammars: Mathematical Formulae Recognition

4 General Idea of Structural Construction

Principles related to the structural construction are explained in this section. The
recognition process works with regions of the input image. A region is a connected
set of pixels having some common property. The region is assigned a label determining
which structure was recognized to be represented by the region (e.g., a fraction line
as a part of a formula) and also a penalty giving the cost of derivation of the region.
We consider two finite sets of labels: VT is a set of terminals and VN is a set of
nonterminals. There is also one distinguished label S0 ∈ VN corresponding to the
whole structure we want to recognize.

At the beginning, there are so called terminal regions only, labelled by terminals.
These regions can correspond to single pixels of the input image or to regions detected
by an external tool. Usually, the property of regions is that they decompose an image
into disjoint components. We relax this requirement and allow that regions to share
some pixels.

A set of rules specifying how labelled regions can be combined to produce larger
regions (their unions) is defined. A rule N → N1, . . . , Nk is interpreted as follows.
If there are regions R1, . . . , Rk labelled by N1, . . . , Nk, their sizes and positions fulfil
some constraints connected to the rule then their union R =

⋃k

i=1
Ri with the label N

can be derived. The penalty of this derivation is computed from penalties of particular
regions Ri. The rules are applied during an iterative process to derive larger and larger
regions. The process ends when all possible regions have been derived. If the whole
image was assigned by S0 and the penalty of related derivation fits into some limit
then the desired structure in the image was successfully recognized.

The described recognition process is too general and would be highly complex in
time and space. Because of this, we need to seek some convenient unifications of rules
and region shapes that will lead to an acceptable implementation. The formalisms
resulting in these unifications can be based on 2D CF grammars we have already
presented. Namely 2SCFG’s are considered in [17]. In this case, permitted regions are
only rectangles to suppress the complexity of derivations. Rules (or productions – to
be consistent with the grammar terminology) are of types P1, P2 and P3.

Two observations can be made for the usage of the grammars: The complexity is
still high and the constructs supported by the grammars are not rich enough to model
relationships among symbols in mathematical formulae. We will address these two
issues in the following section by introducing a suitable extension of the grammars.

5 Formulae Recognition Based on the Structural

Construction

The main ideas taken from the structural construction we follow in our approach can
be expressed in the following way:

Perform ‘rough segmentation’ of the input image. For each possible elementary
symbol, find all occurrences of it and let the structural analysis decide, structure of
which formula fits the input image best and how does the image segmentation looks
like.

83

Proceedings of the Prague Stringology Conference ’06

5.1 Specification and Goals of the Pilot Study

The pilot study was expected to support elements and constructs as numbers, vari-
ables, brackets, subscripts, superscripts, basic unary and binary operators, power to
operations, fractions, sums, integrals and square roots.

We consider the inputs to be black and white images, however, the used method
can be easily adopted to gray-scale images as well since it is general enough and does
not depend on this assumption.

Our main goal was to investigate whether the structural construction can be
successfully applied to off-line formulae recognition. In particular, we were interested
how the method can deal with the following situations.

a) Symbols touching vertically or horizontally.
b) Symbols split into several components.
c) Ambiguities.
d) Misplaced symbols.
e) Noise.

Examples of these situations are given in Figure 2. Cases a) and b) demostrate
standard formulae. Case c) illustrates a fraction line and a minus sign represented
by the same image, the meaning is being given by the context. And finally, case
d) includes an additional symbol A that is by mistake placed into the formula. We
require our method to exclude such a misplaced symbol and recognize the formula
composed of the other symbols.

a) b) c) d)

Figure 2. Corner cases we would like to handle

5.2 Extension of 2D Context-free Grammars

We use an extension of 2D CF grammars to model relationships among mathematical
symbols. In this section, we give a description of the productions form and their
application.

Let N → A ⊕ B denote a production of our 2D CF grammar extension. The
interpretation is similar to the interpretations of productions N → A|B and N → A

B
,

regions labelled A and B can be united, producing a region labelled N . But this time
we do not require the regions to touch each other. Permitted mutual positions of the
regions are defined by a constraint that is connected to the production. The form of
the constraint is depicted in Figure 3.

R and S are two regions in the image, F is a feature point of S (the center of left
border in this particular case). C is a dashed rectangle the size and position of which
is given relative to the size and position of R. It represents the mentioned constraint.
The considered production can be applied when the following conditions are fulfilled:

84

2D Context-Free Grammars: Mathematical Formulae Recognition

R

(A)

C

F

S

(B)

Figure 3. General production scheme of N → A ⊕ B

– R, resp. S can be labelled by A, resp. B.
– feature point F is located inside C.

The resulting region is the smallest rectangle containing R and S. Feature points are
some specific points of a region. We usually use corners and centers of bounding edges.
We also compute baseline (when a new region is derived) and take the intersection
with left or right bounding edge.

Figure 4 shows usage of a production to model ‘power to’ relationship where the
constraint is defined for the bottom-left corner of the region storing the symbol four.

Figure 4. Example of the production usage

The penalty of the derived region is computed based on the following factors:

– Used production.
– Penalties of R and S.
– Percentage of black pixels in the new region that are neither in R nor S.
– Relative sizes and positions of R and S.

To finish the description we will make three remarks. First, note that R and S

can overlap. Second, we have defined the constraint on the location of S, assuming
we know the location and size of R. In our structural analysis, we will also need the
opposite case, i.e., to look for S while knowing R. We slightly extend the production
form by attaching one more constraint C ′ of the mentioned meaning. And finally, in
some cases of formulae constructs, it is more convenient to compose a new region
from three regions instead of two (consider, e.g., a variable with a subscript and
superscript). This can be easily supported by introducing productions of the from
N → A1 ⊕ A2 ⊕ A3.

85

Proceedings of the Prague Stringology Conference ’06

5.3 Architecture

Our software consists of two independent layers. The first layer performs terminals
detection, while the second one is responsible for structural analysis. An external OCR
tool is used within the first layer. Structural analysis is driven by a grammar defining
supported mathematical formulae. The parsing algorithm is of a general nature and
it can be used to recognize another types of structures if supported by a proper
grammar.

5.4 Terminals Detection

We have developed an OCR tool for classification of image regions. The tool is based
on a simple extraction of features from the input picture. The k-nearest neighbor
classifier is implemented to classify the extracted vectors.

We have tested two methods for terminal symbols detection. The first method
works with rectangular scanning windows of some specific sizes. Each of the windows
is being moved trough the input image. Whenever it is in a new position, its content
is evaluated by the OCR tool (provided that the number of black pixels exceeds some
defined threshold). The result of the evaluation is a set of terminals assigned by a
penalty, where the penalty corresponds to the belief that the scanning window stores
a particular symbol. Only the terminals with a sufficiently low penalty are included in
the result. For example, we have a window to detect subscripts and another window
to detect variables and numbers. Sizes of the windows are determined by expected
sizes of symbols in the formulae which means the method requires tuning for typical
inputs.

It would be ideal in theory if we could use views of all sizes to scan the image,
however, this approach is time expensive. Limiting the sizes of used views results
in an acceptable performance but can miss some symbols in the image when their
size differs from the expectation. Because of this we have tested the second method
based on preprocessing the content of the image by computing connected components.
Selection of views that are evaluated by the OCR tool is driven by these components.
The bounding rectangles of the following areas are chosen:

– the components themselves,
– divisions of the components – up to two splitting horizontal and vertical points

are considered,
– combinations of neighboring components.

5.5 Parsing Algorithm

We describe the algorithm that is used for the structural analysis phase. To simplify
the description, we do not explain how information needed to track feature points
and derivation trees is being updated. Just note that whenever a region R is labelled
by N , we record by which production this was derived.

1. Let R be a list of triples (R,N, p), where R is a region, N label assigned to R

and p penalty of this assignment. Initialize R by results of the terminals detection
phase.

2. Iterate through R. Let (R,L, p) ∈ R be the current element. For each production
N → A⊕B such that L = A or L = B, take the rectangular area C defined by the
constraint of the production and find subset S ⊆ R, where for each (R′, L′, p′) ∈ S

86

2D Context-Free Grammars: Mathematical Formulae Recognition

the production can be applied on R and R′. Let R be the derived region, p penalty
of the derivation. If p is greater than some threshold then continue by the next
iteration, otherwise check whether R has been already labelled by N . If not then
append (R,N, p) at the end of R. If there is already (R,N, p2) in R and p < p2

then remove (R,N, p2) from R and append (R,N, p), otherwise ignore the new
derivation.

3. A formula is successfully recognized when the bounding rectangle of the input is
labelled by S0. If not then we can look for the largest region in R labelled by S0.

To make the algorithm fast, we use a data structure storing points of a plane, allowing
it to effectively evaluate queries of the type: for a rectangle, return the points that are
located inside the rectangle (so called orthogonal range searching). A suitable data
structure allowing to search in time O(log n) can be constructed [2].

Our conclusions on time complexity are based on empirical data, we do not give an
exact formula since it depends on many factors, including the number of the terminals
detected during the first phase. Compared to the generalized Cocke-Younger-Kasami
algorithm, time complexity is lower because the algorithm does not process all rect-
angles in the input. It would be possible to derive some upper bound on time, but it
does not give a good idea about expected time. Instead of doing it, we rather discuss
the most problematic case in the section regarding results.

6 Results

We have implemented the pilot study in Java. It includes an user interface allowing
to browse formulae images, run the recognition on them and display results. Except
the results, the interface also provides information helping to understand and tune
the process of structural analysis. For example, it is possible to query for all regions
labelled by a specific nonterminal, for penalties of related derivations, etc.

The implementation has been tested on over 200 handwritten formulae. We can
conclude that after tuning the grammar there were no problems with correctness of
the structural analysis. The problems we have encountered are connected mainly to
the terminals detection phase.

We have faced some limitations when working with rectangular regions. Not all
symbols in a formula can be separated by rectangles. Figure 5 a) shows one of the
simplest examples. The bounding box of symbol r contains a part of the subscript. It
has an impact on recognition of r, which is assigned a bigger penalty in this case. In
general, the recognition does not give good results, when the bounding boxes overlap
too much. This is not usually case of printed formulae.

We were also forced to compose some elementary symbol from more components
due to the mentioned limitation. A typical example is a square root which we consider
to be formed of two parts (the square root argument can be treated as an additional,
third part) – see Figure 5 b).

Other problems are connected to fraction lines. Continual subparts of a fraction
line are also recognized as fraction lines. This leads to a large number of terminal
symbols and possible combinations among them to be checked during the structural
analysis. Figure 5 c) shows an image on which the problem starts to be visible.
Recognition of this formulae takes about 20 seconds and grows fast for larger fractions
(note that the recognition of each formula depicted in Figure 2 takes up to 2 seconds).
We have implemented a preprocessing of detected fraction lines that reduces their

87

Proceedings of the Prague Stringology Conference ’06

a) b) c)

Figure 5. a) Bounding box of r contains a part of the subscript. b) Square root symbol composed
of two parts. c) Formula with several fraction lines.

number. It would be also possible to implement a special method (separated from the
OCR tool) for fraction lines detection.

The last problem we have encountered was the accuracy of the used OCR tool
that was not as high as it should be, but this problem can be solved by choosing a
better tool.

7 Conclusions

We have showed that the method of structural construction can be applied for off-line
mathematical formulae recognition. Our main contribution to the area of formulae
recognition are the following achievements:

– Segmentation of the image is done during structural analysis (no error corrections
are needed). We took advantage of the rich formula structure which allows this
approach.

– Structural analysis is robust. It is penalty oriented and searches for the formula
structure that best matches the input image. It can easily deal with noises, in-
cluding misplaced symbols.

– We have designed an extension of 2D CF grammars powerful enough to express the
formulae structure. It can be also effectively parsed (thanks to constraints defined
via rectangles and the usage of data structures for orthogonal range searching).

We would like to focus more on printed formulae in the upcoming work. Our future
plans include the usage of learning methods. Provided that a sufficiently large set of
formulae is collected, the methods can be applied on learning etalons of terminal
symbols and productions parameters. The learned etalons can improve the terminals
detection phase, while the learned productions parameters will improve tuning of the
grammar for a concrete typesetting style of formulae (so far we have tuned these
parameters manually).

88

2D Context-Free Grammars: Mathematical Formulae Recognition

References

[1] A. Aho and J. Ullman: The theory of parsing, translation, and compiling, vol. 1 – Parsing,
Prentice-Hall, Englewood Cliff, New Jersey, 1971.

[2] M. Berg, O. Schwarzkopf, M. Kreveld, and M. Overmars: Computational Geometry:

Algorithms and Applications, Springer-Verlag, 2000.
[3] K.-F. Chan and D.-Y. Yeung: Mathematical expression recognition: a survey. IJDAR, 3(1)

2000, pp. 3–15.
[4] N. Chomsky: Syntactic Structures, Mouton and Co, The Hague, 1957.
[5] Y. Eto and M. Suzuki: Mathematical formula recognition using virtual network, in Proceed-

ings of the ICDAR 2001, 2001, pp. 762–767.
[6] K. Fu: Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.
[7] P. Garcia and B. Coüasnon: Using a generic document recognition method for mathematical

formulae recognition, in GREC ’01: Selected Papers from the Fourth International Workshop on
Graphics Recognition Algorithms and Applications, D. Blostein and Y.-B. Kwon, eds., vol. 2390
of LNCS, Berlin, Germany, 2002, Springer-Verlag, pp. 236–244.

[8] D. Giammarresi and A. Restivo: Recognizable picture languages, in Int. J. of Pattern
Recognition and Artificial Inteligence 6(2-3), 1992, pp. 32–45.

[9] K. Inoue and A. Nakamura: Some properties of two-dimensional on-line tessellation accep-

tors, in Information Sciences, vol. 13, 1977, pp. 95–121.
[10] T. Kasami: An efficient recognition and syntax analysis algorithm for context-free languages,

Scientific report AFCLR-65-758, Air Force Cambridge Research Laboratory, Bedford, Mass.,
USA, 1965.

[11] V. Kiyko: Recognition of objects in images of paper based line drawings, in Third International
Conference on Document Analysis and Recognition, Montreal, 1995, pp. 970–973.

[12] S. Lavirotte and L. Pottier: Mathematical formula recognition using graph grammar, in
Proceedings of the SPIE 1998, vol. 3305, San Jose, CA, 1998, pp. 44–52.

[13] E. Miller and P. Viola: Ambiguity and constraint in mathematical expression recognition,
in AAAI/IAAI, 1998, pp. 784–791.

[14] D. Pr̊uša: Two-dimensional Languages, PhD thesis, Faculty of Mathematics and Physics,
Charles University, Prague, 2004.

[15] A. Rosenfeld: Picture Languages - Formal Models of Picture Recognition, Academic Press,
New York, 1979.

[16] B. Savchynsky, M. Schlesinger, and M. Anochina: Parsing and recognition of printed

notes, in Proceedings of the conference Control Systems and Computers, Kiev, Ukraine, 2003,
pp. 30–38, in Russian, preprint in English available.

[17] M. Schlesinger and V. Hlaváč: Ten lectures on statistical and structural pattern recog-

nition, vol. 24 of Computational Imaging and Vision, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2002.

[18] H. Winkler and M. Lang: Online symbol segmentation and recognition in handwritten

mathematical expressions, in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 4, Munich, Germany, 1997, pp. 3377–3380.

[19] Mathjournal 2.0: a software for formulae recognition from the xThink company, 2006,
http://www.xthink.com/MathJournal.html.

[20] D. Younger: Recognition of context-free languages in time n3. Information and Control, 10
1967, pp. 189–208.

89

