
Flipping Letters to Minimize the Support of

a String

Giuseppe Lancia, Franca Rinaldi, and Romeo Rizzi

Dipartimento di Matematica e Informatica
Via delle Scienze 206
33100 Udine, Italy

lancia,rinaldi,rizzi@dimi.uniud.it

Abstract. We consider a problem defined on strings and inspired by the way DNA
encodes amino-acids as triplets of nucleotides. Given a string s on an alphabet Σ, a
word-length k and a budget D, we want to determine the smallest number of distinct k-
mers that can be left in s, if we are allowed to replace up to D letters of s. This problem
has several parameters, and we discuss its complexity under all sorts of restrictions on
the parameters values. We prove that some versions of the problem are polynomial,
while the others are NP-hard.

Keywords: De Bruijn graphs, codons, string algorithms, parametrized complexity.

1 Introduction

In the problem studied in this paper, we consider a string s, of length n, over some
alphabet Σ. For 1 ≤ k ≤ n, we call a string of length k a k-mer. Note that there
are altogether |Σ|k possible k-mers, and that s possesses (as substrings) at most
n− k + 1 distinct k-mers. Trivially, there are strings exhibiting only one k-mer (e.g.,
s = 00000000), while s = 1110100011 is a shortest string exhibiting all possible binary
3-mers (for results about the the problem of building a shortest string which possesses
all possible k-mers see [2, 6, 5]).

Now, suppose we are allowed to replace up to D letters in s, so as to obtain a new
string t. What is the smallest possible number of distinct k-mers that can be left in
t?

For instance, assume Σ = {0, 1} and

s = 011010011.

There are 6 different 3-mers in s, namely, 011, 110 101, 010, 100, 001. If we are
allowed to flip up to D = 2 letters, we can obtain the new string

t = 010010010,

which has only 3 distinct 3-mers, i.e., 010, 100 and 001.
The problem of flipping the right bits, so as to destroy the largest possible number

of k-mers (i.e., to leave the fewest possible number of them) has the natural appeal
for combinatorial mathematicians, in that it is a cute and challenging combinatorial
question. We were inspired to study this problem by considering the way genes encode
proteins in an organism’s genome [4]. We will briefly discuss the situation here, but,
before doing so, we remark that the applications of this paper’s results to biology are

Proceedings of the Prague Stringology Conference ’06

just marginal. Our interest in the problem is purely on its theoretical aspects, and
we will not focus on its practical applications.

A gene can be seen as a string over the alphabet {A,C,G,T}. The letters {A,C,G,T}
are called nucleotides. Each substring of 3 consecutive nucleotides is called a codon, as
it encodes for a particular amino-acid. The amino-acids are the basic constituents of
proteins, and a protein is a chain of amino-acids, determined by the gene’s sequence.
A gene has 3 possible (open) reading frames (ORFs). I.e., depending on where we start
to read, we may obtain a particular set of codons. At ORF number i, for i = 1, 2, 3,
one reads all the codons that start at positions j, where (j = i) mod 3. For instance,
the 3 ORFs of the gene TACAGATAAGATACA are as follows:

T A C A G A T A A G A T A C A
ORF1 ↑ ↑ ↑ ↑ ↑
ORF2 ↑ ↑ ↑ ↑ ↑
ORF3 ↑ ↑ ↑ ↑ ↑
giving rise to the following codons: ORF1 = {TAC,AGA, TAA,GAT,ACA},

ORF2 = {ACA,GAT,AAG,ATA}, ORF3 = {CAG,ATA,AGA, TAC}. Altogether,
the distinct codons that we see in this gene are

{TAC,AGA, TAA,GAT,ACA,AAG,ATA,CAG}.

The number of distinct amino-acids a protein consists of is related to its complex-
ity. Hence, we can consider a “complex” gene as one which shows the use of a large
number of distinct codons (therefore relating the number of codons to the informa-
tion content of the gene). Since DNA undergoes random mutations during time, the
change of some of the nucleotides in the gene may result in a new sequence which
displays much fewer codons than it originally did. Hence, we are led to formulate the
question of how few different codons can still be present, in the worst case, after a
certain number of mutations have taken place.

1.1 Notation and paper organization

Let s be the input string over an alphabet Σ. We denote by n = |s| the length of
s, and by σ = |Σ| the alphabet size. For a given k ∈ N, we denote by K = Σk the
set of all k-mers over Σ. Furthermore, for a string x, we define its support, denoted
by K(x) ⊆ K, as the set of all k-mers which are substrings of s. For a string x, and
1 ≤ i ≤ j ≤ |x|, we denote by x[i, · · · , j] the substring of x from position i to position
j. If i = j, we shorthand x[i] = x[i, · · · , i] to represent the i-th character of x. Finally,
given two strings x and y of the same length, we denote by dH(x, y) their Hamming
distance, i.e., the number of positions in which they differ.

The problem studied in this paper can be stated as follows:

“KMER”: given s ∈ Σn, a length k ∈ N for k-mers, and a budget D ∈ N,
find a string t ∈ Σn such that dH(s, t) ≤ D and |K(t)| is minimum.

Notice that this problem has four parameters:

1. The string length n;
2. The alphabet size σ;
3. The k-mer length k;
4. The budget D.

10

Flipping Letters to Minimize the Support of a String

σ free σ bounded σ free σ bounded

k free k free k bounded k bounded

n free 1 2 3 4

NP-hard NP-hard NP-hard POLY
D free for σ = 2 for k = 2 O(n)
n bounded 5 6 7 8

IMP. IMP. IMP. IMP.
D free

n free 9 10 11 12

POLY POLY POLY POLY
D bounded O(k σD nD+1) O(k nD+1) O(σD nD+1) O(nD+1)
n bounded 13 14 15 16

IMP. IMP. IMP. O(1)
D bounded

Table 1. Parameterized complexity of “KMER”

In the remainder of the paper we will address the complexity of the problem
when one or more of these parameters are limited to take some bounded values. For
instance, when reasoning about genes and DNA sequences, it is σ = 4 and k = 3.

In Section 2 we characterize all possible cases for (n, σ, k,D), classifying them as
either polynomial or NP-hard. In Section 3 we consider the polynomial cases of the
problem “KMER”, arising when D is bounded (as shown in Section 3.1) and when
σ and k are both bounded (as shown in Section 3.2). In Section 4 we address the
NP-hard cases of the problem, which happen when n and D are unbounded and at
most one of σ and k is bounded. Finally, we draw some conclusions in Section 5.

2 Parameterized complexity

The problem has four parameters: the string length n, the alphabet size σ, the k-mer
size k, and the budget D. We may consider all possibilities in which some of the
parameters are bounded by constants (denoted as “bounded” in Table 1), and some
depend on the input (denoted as “free” in Table 1). All the cases are described in
Table 1.

Before analyzing the cases, we make the following remark:

Remark 1. We can always assume
(i) D ≤ n;
(ii) k ≤ n;
(iii) σ ≤ n.

Proof. Remarks (i) and (ii) are obvious. As for Remark (iii), we can reason as follows.
Let α be any symbol occurring in s. Let t′ be obtained from t by replacing with α each
symbol which does not occur in s. It is not difficult to see that dH(s, t′) ≤ dH(s, t) and
|K(t′)| ≤ |K(t)|. Hence, t′ is an optimal solution as well. Therefore, we can restrict
Σ to the symbols originally in s and hence σ ≤ n. ⊓⊔

We have the following situation:

– Cells 1, 2, 3: These cases are NP-hard, as shown in the Section 4 (in particular,
the problem is NP-hard even for σ = 2 or for k = 2).

11

Proceedings of the Prague Stringology Conference ’06

– Cell 4: This case is polynomial, as described in Section 3.2. The complexity is
O(2σk

σk+1n) = O(n).
– Cells 5, 6, 7, 8: Because of Remark 1(i), these cases are impossible (denoted by

“IMP.” in the table).
– Cells 9, 10, 11, 12: All these cases are polynomial, as described in Section 3.1. The

intuition is that, in these cases, there are only a polynomial number of possible
solutions, which can be checked exhaustively.

– Cells 13, 15: Because of Remark 1(iii) these are impossible cases (when n is
bounded by a constant, also σ is bounded by a constant).

– Cell 14: This case is impossible by Remark 1(ii).
– Cell 16: This case is trivial. There is only a finite number of possible problem

instances.

3 Polynomial cases

3.1 The case for D fixed

Theorem 2. When D is bounded by a constant, while n is free, the problem“KMER”

can be solved in polynomial time.

Proof. Notice that there are
(

n

D

)

= O(nD) possible choices for the letters of s to

flip, and σD possible ways to flip each one. Hence, there are only O(σDnD) possi-
ble solutions, which is O(nD) when σ is fixed, and O(n2D) otherwise (because of
Remark 1(iii)). Since there are only a polynomial number of solutions, and each so-
lution value can be clearly computed in polynomial time (see Remark 3 here below),
the enumeration of all possible solutions solves “KMER” in polynomial time. ⊓⊔

Remark 3. Given a string t of length n, the number of different k-mers occurring in
t can be computed in O(kn) time.

Proof. To count the k-mers, we scan the string t from left to right, and insert each
k-mer in a trie T , initially empty. The branches of T are associated to the symbols
of Σ and each leaf of T will represent a k-mer of t. A k-mer describes a path in T

to a (possibly non-existing) leaf. Each time a new k-mer x is inserted in T , the path
is followed in T up to the point p where it is no longer possible. If this happens at a
leaf, then x was already present in T . Otherwise, p is an internal node. From p, we
create the new branches that will lead to a new leaf (corresponding to x), and we
increase a leaf counter (which eventually counts all k-mers). Notice that the insertion
in T has cost O(k). ⊓⊔

The complexity of the algorithms for all cases when D is fixed are reported in
Table 1, cells 9–12.

3.2 The case for σ and k fixed

In this section we prove that, when k and σ are both bounded, the problem “KMER”

is polynomially solvable. In order to do so, we start by introducing the following
auxiliary problem, which we call FEAS(A):

FEAS(A): Consider an instance of “KMER” and a given set of k-mers A ⊆
K. Does there exist a string t′ such that dH(s, t′) ≤ D and K(t′) ⊆ A?

12

Flipping Letters to Minimize the Support of a String

000

101

100

011001

010

110

111

Figure 1. The Shift Register Graph G3

In the remainder of the section we will prove the following lemma (actually, we
obtain a slightly stronger result, i.e., we show how to find t′ such that K(t′) ⊆ A and
dH(s, t′) is minimum):

Lemma 4. The problem FEAS(A) can be solved in polynomial time.

We now use Lemma 4 to derive the following theorem.

Theorem 5. For fixed k and σ, the problem “KMER” is polynomially solvable.

Proof. For fixed k and σ, there are O(1) k-mers, and O(1) possible supports for the
solutions (i.e., O(1) possible subsets A of k-mers such that the solution has all its
k-mers in A). For each A, enumerated by non-decreasing cardinality, we check in
polynomial time (by Lemma 4) if there is a solution t′ with support A. We stop as
soon as the answer is “yes”, and t′ is then the optimal solution to “KMER”. ⊓⊔

Note that, as |K| = σk, the above procedure requires to examine, in the worst-

case, O(2σk

) possible supports. Hence, although polynomial, the algorithm suggested
is of little practical use.

We now devote the rest of this section to proving Lemma 4.
The Shift Register Graph, also called De Bruijn Graph, (SRG, [1]) Gk, for a given

k, is a directed graph with node set K, and arcs from i to j whenever i[2, · · · , k] =
j[1, · · · , k − 1] (G3 is depicted in Figure 1). For A ⊆ K, we denote by Gk[A] the
subgraph of Gk induced by the vertices in A. With a slight abuse of notation, we
write (i, j) ∈ Gk[A] to assert that (i, j) is an arc of Gk[A].

We now describe a Dynamic Programming recurrence for the solution of FEAS(A).
For i ∈ A and h = 1, . . . , n−k+1, define V (i, h) to be the minimum Hamming distance
between s[1, · · · , h + k − 1] and any string which has all its k-mers in A and ends
with k-mer i. We are interested in finding V (A) := mini∈A V (i, n − k + 1). We have
the following recurrence, for 1 < h ≤ n − k + 1 and i ∈ A,

V (i, h) = min
i′ : (i′,i)∈Gk[A]

(V (i′, h − 1) + dH(i[k], s[h + k − 1])) . (1)

The boundary conditions are that V (i, 1) = dH(i, s[1, · · · , k]) for all i ∈ A. The
complexity of this Dynamic Program is |A| × n × O(σ), where O(σ) is the time of
computing the min in (1). In fact, given i ∈ A and a tree T whose leaves are all
kmers of A, built as in the proof of Remark 3, each i′ such that (i′, i) ∈ Gk[A] can be
found as a leaf of T which has the same parent as i. Hence, one only needs to step
up one level from i to its parent p, and follow each branch from p to another leaf.

From the above discussion, it follows that the overall time needed to solve
“KMER” when σ and k are fixed is O(2σk

σk+1n).

13

Proceedings of the Prague Stringology Conference ’06

4 NP-hard cases

In this section we show that the problem “KMER” is NP-hard: For completeness,
we restate here the problem “KMER”:

INSTANCE: An alphabet Σ, an integer k, a string s over Σ, an integer D.
PROBLEM: Find a string t ∈ Σ|s| with dH(s, t) ≤ D and having the smallest
possible number of distinct k-mers.

4.1 NP-hardness for fixed k

Theorem 6. The “KMER”Problem is NP-hard already for k = 2.

The reduction we propose is from the following problem, called “Compact Bi-

partite Subgraph”:

INSTANCE: A bipartite graph G = (U, V ; E), an integer φ, an integer λ.
PROBLEM: Find a set of nodes X ⊆ U∪V with |X| ≤ φ and |E(G[X])| ≥ λ.

Notice that the NP-hardness of the above problem follows trivially from the NP-
completeness of “Balanced Complete Bipartite Subgraph”. The “Balanced

Complete Bipartite Subgraph” problem, also named “GT24” in Garey and
Johnson [3], is the following problem.

INSTANCE: A bipartite graph G = (U, V ; E), an integer K.
QUESTION: Are there two sets U ′ ⊆ U and V ′ ⊆ V with |U ′| = |V ′| = K

and such that (u, v) ∈ E(G[U ′ ∪ V ′]) for each u ∈ U ′ and v ∈ V ′?

And, clearly, the answer to the above question is “yes” if and only if there exists
a set of nodes X ⊆ U ∪ V such that |X| ≤ 2K and |E(G[X])| ≥ K2. (For the “only
if”, notice that if such an X exists then, necessarily, |X ∩ U | = |X ∩ V | = K).

Proof. (Theorem 6) Here we give a reduction from “Compact Bipartite Sub-

graph” to “KMER”. Let A, B be two special symbols and consider Σ = U ∪ V ∪
{A,B}. Set D := |E| −λ and let M := D + 1 play the role of a sufficiently big value.
Consider the following string s = s(G,M), where the product of two strings denotes
their concatenation (and powers are defined accordingly)

s =

(

∏

v∈V

(Bv)M

)

B2M

(

∏

u∈U

(uB)M

)





∏

(u,v)∈E

(BBuAvBB)



 . (2)

A word of explanation is in order to better agree on what the above “simplified”
expression for s actually represents: In our intentions, the string s should be consid-
ered as uniquely defined. In practice, we refer to implicit orderings of the elements
in U , in V , and in E, so that a writing like

∏

v∈V (Bv) uniquely defines a string over
V ∪{B}. More precisely, where v1, . . . , vn is an ordering of V , then

∏

v∈V (Bv) should
be understood as a shorthand for

∏n

i=1(Bvi).

Lemma 7. There exists a string t ∈ Σ|s| with dH(s, t) ≤ D and with at most 1 +
2|U | + 2|V | + φ distinct 2-mers if and only if there exists X ⊆ U ∪ V with |X| ≤ φ

and such that |E(G[X])| ≥ λ.

14

Flipping Letters to Minimize the Support of a String

Proof: Assume given an X ⊆ U ∪ V with |X| ≤ φ and such that |E(G[X])| ≥ λ.
Consider the following string t, where S(u,v) := BBuAvBB if (u, v) ∈ E(G[X]), and
S(u,v) := BBuBvBB if (u, v) ∈ E \ E(G[X]):

t =

(

∏

v∈V

(Bv)M

)

B2M

(

∏

u∈U

(uB)M

)





∏

(u,v)∈E

S(u,v)



 .

Notice that |t| = |s| and dH(s, t) = |E| − |E(G[X])| ≤ |E| − λ = D. Moreover, any
2-mer appearing in t will fall into one of the following categories:

– the single 2-mer BB;
– the 2|U | + 2|V | 2-mers of the form zB and Bz for z ∈ U ∪ V ;
– the |X ∩ U | 2-mers of the form uA with u ∈ X ∩ U ;
– the |X ∩ V | 2-mers of the form Av with v ∈ X ∩ V .

Hence, the number of distinct 2-mers in t is 1+2|U |+2|V |+ |X| ≤ 1+2|U |+2|V |+φ,
as stated.

Conversely, let t be any string such that |t| = |s| and dH(s, t) ≤ D. Then the
2-mer BB certainly appears in t since B2M , which is a substring of s, contains M

disjoint occurrences of BB. Similarly, for each node z ∈ U ∪ V , the 2-mers zB and
Bz certainly appear in t. We are assuming that besides these 1 + 2|U | + 2|V | 2-
mers, string t contains at most φ other 2-mers. Let X be made by those u ∈ U

such that the 2-mer uA occurs in t plus the set of those v ∈ V such that the 2-mer
Av occurs in t. Hence, |X| ≤ φ. Remember that the string s contains the substring
∏

(u,v)∈E(BBuAvBB). Since dH(s, t) ≤ D, it follows that |E \ E(G[X])| ≤ D, and

hence that |E(G[X])| ≥ |E| − D = λ. ⊓⊔

4.2 NP-hardness for fixed |Σ|

In this subsection we prove the following.

Theorem 8. The “KMER”problem is NP-hard already for |Σ| = 2.

A noticeable property of the proposed reduction is that it constructs instances
with k = O(log n), which allows us to infer the following result.

Theorem 9. No algorithm solves the “KMER” problem in O(nPOLY (k)) time unless
NP ⊆ DTIME (nPOLY (log n)). This negative result holds also for |Σ| = 2.

Theorem 9 gives strong evidence that there is no space for improving the O(n|Σ|k)

approach of Section 3.2. Indeed, an O(2|Σ|knPOLY (|Σ|,k)) algorithm would imply an
O(nPOLY (k)) algorithm when |Σ| = 2, and NP ⊆ DTIME (nPOLY (log n)) would follow.

The general approach of the reduction is the same as described in Subsection 4.1
In particular, the reduction will be again from “Compact Bipartite Subgraph”.

The reduction. As in Subsection 4.1, let D := |E| −λ and let M := D +1 play the
role of a sufficiently big value. We now work with Σ = {0, 1}. Before explaining how
to construct s, t and k, we point out that in the construction given in Subsection 4.1
the fact that certain k-mers had to be present in every string t with dH(s, t) ≤ D

played a key role. We hence start the derivation of the reduction to be given here
with the consideration that it is relatively easy to build a string s0 which contains M

15

Proceedings of the Prague Stringology Conference ’06

disjoint copies of each substring s′ in {0, 1}k such that either s′[1] = 1 or s′[k] = 1.

Indeed, s0 :=
(

∏

σ∈{0,1}k−1 1kσ1k
)M

will do the job. Notice also that s0 contains no

k-mer which both starts and ends with 0. Let h = ⌈log2 |U ∪ V |⌉. Then, to each
node z ∈ U ∪ V we can associate a unique binary string f(z) ∈ {0, 1}h, called the
short encoding of z. To each node z ∈ U ∪ V we also associate the long encoding
of z, denoted by f ′(z) ∈ {0, 1}2h+1, defined as f ′(z)[1] = 0, f ′(z)[2i] = f(z)[i] and
f ′(z)[2i + 1] = 1 for each i = 1, 2, . . . , h. When s is a string we denote by [s]R the
reverse of string s. Take k = 2h + 2. Consider the following string s = s(G,M)

s = s0

∏

(u,v)∈E

(1k 0 f ′(u) 0 [f ′(v)]R 0 1k).

Lemma 10. There exists a string t ∈ Σ|s| with dH(s, t) ≤ D and with at most
3 · 2k−2 + φ distinct k-mers if and only if there exists X ⊆ U ∪ V with |X| ≤ φ and
such that |E(G[X])| ≥ λ.

Proof: The number of strings s ∈ {0, 1}k is 2k and for 2k−2 of them we have that
s[1] = s[k] = 0. Hence, there are precisely 2k − 2k−2 = 3 · 2k−2 strings s ∈ {0, 1}k

with s[1] = 1 or s[k] = 1, which account for the numbers occurring in the statement.
Assume to be given an X ⊆ U ∪ V with |X| ≤ φ and such that |E(G[X])| ≥ λ.
Consider the following string t,

t = s0

∏

(u,v)∈E

S(u,v) ,

where

S(u, v) :=

{

1k0f ′(u)0[f ′(v)]R 01k if (u, v) ∈ E(G[X])
1k0f ′(u)1[f ′(v)]R01k if (u, v) ∈ E \ E(G[X])

Notice that |t| = |s| and dH(s, t) = |E| − |E(G[X])| ≤ |E| − λ = D. Moreover,
any k-mer appearing in t falls into one of the following categories:

– the 3 · 2k−2 k-mers starting or ending with a 1 symbol;

– the |X ∩ U | k-mers of the form f ′(u)0 with u ∈ X ∩ U ;

– the |X ∩ V | k-mers of the form 0[f ′(v)]R with v ∈ X ∩ V .

Hence, the number of distinct k-mers in t is at most 3 · 2k−2 + φ, as stated.

Conversely, let t be any string such that |t| = |s| and dH(s, t) ≤ D. Then all the
3 · 2k−2 k-mers starting or ending with a 1 symbol do certainly appear in t since s

contains at least M > D disjoint occurrences of each of them.

Assume that besides these 3·2k−2 k-mers, string t contains at most φ other k-mers.
Let X be made by those u ∈ U such that the k-mer f ′(u)0 occurs in t plus the set of
those v ∈ V such that the k-mer 0[f ′(v)]R occurs in t. Hence, |X| ≤ φ. Remember that
the string s contains the substring

∏

(u,v)∈E(1k0f ′(u)0[f ′(v)]R01k). Since dH(s, t) ≤ D,

it follows that |E \ E(G[X])| ≤ D, and hence that |E(G[X])| ≥ |E| − D = λ. ⊓⊔

16

Flipping Letters to Minimize the Support of a String

5 Conclusions

In this paper we have characterized the complexity of the “KMER” problem, un-
der all possible cases for its parameters. For the solution of the NP-hard cases, we
have devised Integer Linear Programming formulations, which, for space reasons, are
not included in this extended abstract. From our first experimental results, the ILP
approach seems suitable for the solution of moderate-size instances of this problem,
while for larger-size instances a possibly different (maybe combinatorial) approach
should be sought.

References

[1] N. D. de Bruijn: A combinatorial problem. Koninklijke Netherlands: Academe Van Weten-
schappen, 49 1946, pp. 758–764.

[2] A. Flaxman, A. W. Harrow, and G. B. Sorkin: Strings with maximally many distinct

subsequences and substrings. The Electronic J. of Combinatorics, 11 2004.
[3] M. R. Garey and D. S. Johnson: Computers and Intractability, a Guide to the Theory of

NP-Completeness, W.H. Freeman and Co, 1979.
[4] J. D. Watson, M. Gilman, J. Witkowski, and M. Zoller: Recombinant DNA, Scientific

American Books, W. H. Freeman and Co., 1992.
[5] D. B. West: Introduction to Graph Theory, Prentice Hall, 1996.
[6] H. S. Wilf: Combinatorial Algorithms: An Update, SIAM CBMS-NSF Regional Conference

Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1989.

17

