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Abstrat. Finite (nondeterministi) automata are very useful building bloks

in the �eld of string mathing. This is partiularly true in the ase of multiple

pattern mathing, where the use of fator-based automata an redue substan-

tially the number of omputational steps when the patterns have large ommon

fators.

Diret simulation of nondeterministi automata an be performed very eÆ-

iently using the bit-parallelism tehnique, though this is not neessarily true

for fator-based automata.

In this paper we present an algorithm for the multiple string mathing problem,

based on the bit-parallel simulation of nondeterministi fator-based automata

whih satisfy a partiular ordering ondition. We also show how to enfore

suh ondition by suitably modifying a minimal initial automaton, through

equivalene preserving transformations. The resulting automaton turns out

to be smaller than the orresponding maximal automata used by existing bit-

parallel algorithms, as they do not take any advantage of ommon fators in

patterns.

Keywords: multiple string mathing, bit-parallelism, text searhing.

1 Introdution

Given a set P = fP

1

; : : : ; P

r

g of patterns and a text T , all strings over a �nite alphabet

� of size �, the multiple pattern mathing problem is to determine all the positions

where any of the patterns in P ours in T . This problem arises naturally in many

appliations, and several algorithms exist to solve it. For example, the UNIX fgrep

and egrep programs support multi-pattern mathing through the -f option. The

worst ase omplexity of multiple pattern mathing is 
(n) and it has been ahieved

by the Aho-Corasik algorithm [AC75℄. From a pratial point of view, the best

average omplexity bound for multi-pattern mathing algorithms isO(n log

�

(rm)=m),

where m is the minimum length of any pattern in P. Suh bound has been reahed,

for instane, by the Dawg-Math algorithm [CCG

+

93℄ and by the Multi-BDM

algorithm [CR94℄. We ite also that the Boyer-Moore strategy has been extended

to multi-pattern mathing, suh as in the Commenz-Walter [CW79℄ and in the

Wu-Manber [WM91℄ algorithms.
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In this paper we are mainly interested on automata based solutions of the pattern

mathing problem, and on their implementation by bit-parallelism. In general, (non-

deterministi) automata allow to handle lasses of haraters and multiple patterns

in a simple, eÆient, and exible way, leading to algorithms whih are asymptotially

optimal both in spae and time [KMP77, AC75℄.

The bit-parallelism tehnique [BYG92℄ onsists in exploiting the intrinsi paral-

lelism of the bit operations inside a omputer word. It an be pro�tably used for the

simulation of �nite automata even in their nondeterministi form.

The paper is organized as follows. After introduing in Setion 2 the basi nota-

tions used in the paper, in Setion 3 we survey the most signi�ant algorithms for the

single and multiple pattern mathing problem whih make use of fator-based deter-

ministi �nite automata. Then, in Setion 4 we desribe the bit-parallelism tehnique

and disuss some of the single and multi-pattern mathing algorithms based on it.

Existing algorithms in the multi-pattern ase do not take any partiular advantage of

the presene of large ommon fators in the patterns. Thus, in Setion 5 we present

a new solution for the multi-pattern mathing problem whih eÆiently mixes the

advantages in spae obtained from fator-based automata with the simpliity and

exibility of bit-parallelism. Finally, we draw our onlusions and propose some hints

for future work in Setion 6.

2 Basi De�nitions and Terminology

We introdue here the basi notations and terminology used in the paper. A string

P of length m is represented as an array P [0 :: m � 1℄. Thus P [i℄ will denote the

(i + 1)-st harater of P , for i = 0; : : : ; m� 1. We denote the length of P by jP j. In

addition, if P = fP

1

; P

2

; : : : ; P

r

g is a set of strings, we denote by size(P) the sum of

the lengths of its strings, namely size(P) =

P

r

i=1

jP

i

j.

For any two strings P and P

0

, we write P

0

A P to indiate that P

0

is a proper

suÆx of P , P

0

� P to indiate that P

0

is a proper pre�x of P , and P:P

0

to denote

the onatenation of P

0

to P . Given a set of patterns P = fP

1

; P

2

; : : : ; P

r

g in an

alphabet �, the trie T assoiated with P is a rooted direted tree, whose edges are

labeled by single haraters of �, suh that (i) distint edges out of a same node are

labeled by distint haraters, (ii) all paths in T from the root are labeled by pre�xes

of the strings in P, (iii) for eah string P in P there exists a path in T from the root

whih is labeled by P .

If we do not insist on property (i) above, we obtain a more relaxed form of trie,

whih we all nondeterministi trie. Sine all tries onsidered in this paper are non-

deterministi, for the sake of simpliity we will refer to them just as \tries."

For any node p in a trie T , we denote by lbl(p) the string whih labels the path

from the root of T to the node p and put len(p) = jlbl(p)j, i.e., len(p) is the length

of the path from the root of T to p. Additionally, for any edge (p; q) in T , we denote

the label of (p; q) by lbl(p; q). We also denote by hildren

T

(p) the set of the hildren

of p in the trie T .

Given a (nondeterministi) trie T relative to a set of patterns P = fP

1

; P

2

; : : : ; P

r

g

over an alphabet �, we an naturally assoiate with T the following anonial non-

deterministi �nite automaton (NFA)

b

T = (Q

T

; q

0

; F

T

; Æ

T

), where:
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� Q

T

is the set of nodes of T (set of states);

� q

0

2 Q

T

is the root of T (initial state);

� F

T

=

Def

fq 2 Q

T

j lbl(q) 2 Pg (set of �nal or terminal states);

� Æ

T

: Q

T

� �!P(Q

T

), with

Æ

T

(q; ) =

Def

�

fp 2 Q

T

j lbl(q): = lbl(p)g if q 6= q

0

fp 2 Q

T

j lbl(q): = lbl(p)g [ fq

0

g if q = q

0

;

for q 2 Q

T

,  2 �, and where P(�) is the powerset operator (transition fun-

tion).

Thus the words node and state will often be used interhangeably. Likewise, we

will often identify a trie T with its orresponding NFA

b

T .

3 Automata Based String Mathing Algorithms

Automata play a very important role in the design of eÆient pattern mathing al-

gorithms. For instane the well known Knuth-Morris-Pratt algorithm [KMP77℄

uses a deterministi automaton that searhes a pattern in a text by performing its

transitions on the text haraters. The main result relative to the Knuth-Morris-

Pratt algorithm is that its automaton an be onstruted in O(m)-time and -spae,

whereas pattern searh takes O(n)-time, thus reahing the best bound for a pattern

mathing algorithm (as usual, m and n denote the length of the pattern and text,

respetively). In the ase of multiple pattern mathing, the Aho-Corasik algo-

rithm [AC75℄ has been the �rst having a linear behavior. It is also based on the au-

tomata approah and an be viewed muh as a generalization of theKnuth-Morris-

Pratt algorithm to the multi-pattern ase. In partiular, the Aho-Corasik au-

tomaton is a trie T for the set of patterns P, with a failure funtion f : Q

T

! Q

T

whih is followed when no transition is possible on a text harater. The funtion f

is de�ned on eah node u 2 Q

T

in suh way that:

� lbl(f(u)) A lbl(u), and

� len(f(u)) � len(p), for eah p 2 Q

T

suh that lbl(p) A lbl(u) .

The Aho-Corasik automaton an be onstruted in linear time and spae [CR94℄.

Automata based solutions have been also developed to design algorithms whih

have optimal sublinear performanes on average. For instane, several algorithms

have been developed to extend to the multiple pattern mathing ase the eÆient

Boyer-Moore strategy [BM77℄. Among them, we ite the Commenz-Walter al-

gorithm [CW79℄ whih extends the Horspool algorithm [Hor80℄ through a suÆx

based approah. The Commenz-Walter algorithm starts by reading the text bak-

wards from position j, initially set to ` = minfjP

k

j : P

k

2 Pg. Then haraters are

mathed against the labels of the trie T for the set P

r

of the reverse patterns. When

a �nal state is reahed, an ourrene is reported. If no mathing is possible with

the urrent harater, then position j is shifted by the minimum nonnull depth in T
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of an edge labeled by the previous read harater T [j℄. If no edge in T is labeled by

T [j℄, then j is inreased by `.

Another type of automaton, alled suÆx automaton (or Dawg, for Direted

Ayli Word Graph), has been introdued for the single pattern mathing prob-

lem in [CCG

+

93, CCG

+

94, CR94, Raf97℄ and later generalized to the multi-pattern

ase. A suÆx automaton for a set P of patterns is a trie for the set P

r

that reognizes

all the suÆxes of the patterns in P.

For instane, the Reverse-Fator algorithm [CCG

+

94℄, for the single pattern

mathing problem, omputes shifts whih math pre�xes of the pattern, rather than

suÆxes, using the smallest suÆx automaton of the reverse of the pattern. Despite its

quadrati worst-ase time omplexity, the Reverse-Fator algorithm is very fast in

pratie. Other optimal sublinear algorithms on average, like Bakward-DAWG-

Math (BDM) and Turbo-BDM [CCG

+

94, CR94℄, have been obtained with this

approah, and have been also extended to multiple pattern mathing in [CCG

+

93,

CR94, Raf97℄.

4 String Mathing and Bit-Parallelism

In general, it is muh easier to onstrut a nondeterministi automaton rather than a

deterministi one, due to its simpliity and regularity. Thus, it would be desirable to

be able to simulate eÆiently the parallel omputation of an NFA. This an be done

using the bit-parallelism tehnique [BYG92℄. Suh tehnique onsists in exploiting

the intrinsi parallelism of the bit operations inside a omputer word. In favorable

ases it allows to ut down the overall number of operations by a fator of !, where !

is the number of bits in a omputer word. For this reason, although string mathing

algorithms based on bit-parallelism are usually simple and have very low memory

requirements, they generally work well only with patterns of moderate length.

In the ontext of string mathing, suh tehnique has been espeially used to speed-

up algorithms based on automata. The simulation is arried out by representing an

automaton as an array of L bits, where L+1 is the number of states of the automaton.

The initial state does not need to be represented, beause it is always ative. Bits

orresponding to ative states are set to 1, whereas bits orresponding to inative

states are set to 0.

To simulate eÆiently an NFA using the bit-parallelism tehnique, its states must

be mapped into the positions of a bit-vetor by a suitable bijetion.

In the ase of a trie (or better, the NFA assoiated with it), we sueded to

simulate it eÆiently provided that the bijetion is a weakly safe topologial ordering,

in a sense whih will be explained later.

For the time being, we just reall that a topologial ordering of a trie T is a

bijetion � : Q

T

! f0; : : : ; jQ

T

j � 1g, whih agrees with the edges of T , namely

suh that �(p) < �(q) whenever (p; q) is in T . It is onvenient to assoiate with �

its inverse � : f0; : : : ; jQ

T

j � 1g ! Q

T

, whih is assumed to map eah position of a

bit-vetor to the orresponding state of T .

For later purposes, given a topologial ordering � of T , it is also onvenient to

assoiate to eah edge (p; q) in T its �-interval [�(p); �(q)[, also denoted by Int

�

(p; q).

The length �(q) � �(p) of the �-interval [�(p); �(q)[ will be denoted by jInt

�

(p; q)j.
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Notie that sine � is a topologial ordering of T , then jInt

�

(p; q)j � 1, for eah edge

(p; q) in T .

4.1 Searhing for a Single Pattern

In the ase of single pattern mathing, the trie T assoiated with a given pattern P

of length m is linear. Thus, the orresponding NFA

b

T is obtained from T just by

adding a self-loop on its initial state, labeled by all symbols of the alphabet �, to

allow the san to begin at any position in the text. Plainly, in this ase we have only

one possible topologial ordering of T , whose inverse �

1

is reursively de�ned by:

�

1

(i) =

�

Æ

T

(q

0

; P [0℄) if i = 0

Æ

T

(�

1

(i� 1); P [i� 1℄) if 1 � i � m� 1 :

Thus, for i = 0; 1; : : : ; m� 1, state �

1

(i) is simulated by the i-th bit of a bit-vetor.

The initial state does not need to be represented, beause it is always ative. Fig-

ure 1(A) shows the nondeterministi �nite automaton whih reognizes the pattern

P = aababb.

The �rst result, onerning single pattern mathing algorithms using the bit-

parallelism tehnique, is due to Baeza-Yates and Gonnet [BYG92℄. Their algorithm,

named Shift-And, maintains, for eah symbol  of the alphabet �, a bit mask B[℄

whose i-th bit is set to 1, provided that P [i℄ = , where P is the pattern. The urrent

on�guration of the automaton is maintained in a bit mask D, whih is initialized to

0

L

, sine initially all (noninitial) states are inative. Moreover a �nal-state bit-mask

M = 10

L�1

maintains the position of the �nal state of the automaton, whereas an

initial-state bit-mask I = 0

L�1

1 maintains the position of the node adjaent to the

initial state.

While sanning a text T from left to right, the Shift-And algorithm simulates

automaton transitions by the following basi shift-and operation, for eah position j:

D = ((D� 1) j I) & B[T [j℄℄ :

If the �nal state is ative, i.e. D & M 6= 0

L

, a mathing is reported at position j.

It turns out that the Shift-And algorithm has an O(dmn=!e) worst-ase running

time and requires O(dL=!e)-spae.

Other algorithms based on bit-parallelism use a Boyer-Moore strategy, to sim-

ulate a right to left san of the pattern. For instane, the BNDM algorithm is the

bit-parallel implementation of the Reverse-Fator algorithm. It is based on the

nondeterministi version of the smallest suÆx automaton of the reverse of the pattern

P . Unlike the Shift-And algorithm, haraters of text and pattern are ompared

from right to left until the entire pattern is read or no transition by the automaton

is possible. Then the pattern is shifted by ` positions to the right, where ` is the

length of the last mathed pre�x. Despite its quadrati worst-ase running time, the

BNDM algorithm performs well in pratial ases.

4.2 Searhing for Multiple Patterns

Existing algorithms that searh for a set P = fP

1

; : : : ; P

r

g of patterns, using bit-

parallelism, simulate the behavior of the maximal trie of P. This is the trie T of
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Figure 1: (A) An NFA whih reognizes the pattern P = aababb. (B)

An NFA obtained from the maximal trie T of the set of patterns P =

faaabb; aabba; abaab; ababbg. (C) The parallel topologial ordering of T . (D) The

sequential topologial ordering of T .

P obtained from the linear tries T

1

; T

2

; : : : ; T

r

for the patterns P

1

; P

2

; : : : ; P

r

, respe-

tively, by merging the roots of T

1

; T

2

; : : : ; T

r

in a single node. Plainly, the number

of states of T is given by jT j =

P

r

i=1

jT

i

j � r + 1 = size(P) + 1, so that it an be

represented by a bit-vetor of L = size(P) bits. For instane, Figure 1(B) shows the

maximal trie relative to the set of patterns P = faaabb; aabba; abaab; ababbg. Two

di�erent topologial orderings have been used in literature to simulate a maximal

trie of a set of pattern P. A �rst arrangement, �

par

, has been proposed in [WM91℄,

under the restrition that all patterns in the set P have the same length. Given a

set P = fP

1

; P

2

; : : : ; P

r

g of r distint patterns of the same length m, the topologial

ordering �

par

of the trie T relative to P is obtained just by interleaving the NFAs of

the patterns of P in a parallel fashion. More preisely, the inverse �

par

of �

par

an be

reursively de�ned by

�

par

(kr + j) =

�

Æ

T

j+1

(q

0

; P

j+1

[0℄) if k = 0

Æ

T

j+1

(�

par

((k � 1)r + j); P

j+1

[k℄) if 1 � k � m� 1 ;

with 0 � j � r � 1. Figure 1(C) shows the parallel topologial ordering of the NFA

of Figure 1(B). Using suh arrangement, it is possible to searh for patterns in P just

as in the ase of a single pattern. The only di�erene with the single pattern ase is

that the shift is not by a single bit, but by r bits (sine onseutive nodes are r bits

apart in the parallel arrangement). Moreover, we need to use the new initial-state

and �nal-state masks I = 0

r(m�1)

1

r

and M = 1

r

0

r(m�1)

, respetively. Figure 2 (left

side) shows the ode of an implementation of the Shift-And algorithm, based on a

parallel ordering of the maximal trie for a set P of patterns having the same length.

An alternative arrangement, �

seq

, has been proposed in [NR98℄. It onsists in
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Parallel-Shift-And (T , fP

1

; : : : ; P

r

g) Sequential-Shift-And (T , fP

1

; : : : ; P

r

g)

1. n = length(T ) 1. n = length(T )

2. m = length(P

1

) 2. m = length(P

1

)

3. L = m

r

3. L = m

r

4. for  2 � do B[℄ = 0

L

4. for  2 � do B[℄ = 0

L

5. l = 0 5. l = 0

6. for i = 0 to m� 1 do 6. for k = 1 to r do

7. for k = 1 to r do 7. for i = 0 to m� 1 do

8. B[P

k

[i℄℄ = (B[P

k

[i℄℄ j (0

L�1

1� l + k)) 8. B[P

k

[i℄℄ = (B[P

k

[i℄℄ j (0

L�1

1� l + i))

9. l = l + r 9. l = l +m

10. I = 0

r(m�1)

1

r

10. I = (0

m�1

1)

r

11. M = 1

r

0

r(m�1)

11. M = (10

m�1

)

r

12. D = 0

L

12. D = 0

L

13. for j = 0 to n� 1 do 13. for j = 0 to n� 1 do

14. if D & M 6= 0

L

then print(j) 14. if D & M 6= 0

L

then print(j)

15. D = ((D � r) j I) & B[T [j℄℄ 15. D = ((D � 1) j I) & B[T [j℄℄

Figure 2: On the left, the Parallel-Shift-And algorithm whih uses a parallel

ordering of the maximal trie T of the set P, and, on the right, the Sequential-

Shift-And algorithm whih uses a sequential ordering of the nodes of T .

onatenating in a sequential fashion the di�erent branhes of the maximal trie of a

set P of patterns. More preisely, given a set P = fP

1

; P

2

; : : : ; P

r

g of patterns (not

neessarily of the same length), the inverse �

seq

of the ordering �

seq

relative to the

maximal trie of P is reursively de�ned by

�

seq

�

P

h�1

j=1

jP

j

j+ i

�

=

�

Æ

T

h

(q

0

; P

h

[0℄) if i = 0

Æ

T

h

(�

seq

(

P

h�1

j=1

jP

j

j+ i� 1); P

h

[i� 1℄) if 1 � i � jP

h

j � 1 ;

with 1 � h � r.

Figure 1(D) shows the sequential topologial ordering of the NFA in Figure 1(B).

In this ase, we return to single bit shifts, whereas the initial-state and �nal-state

masks are

I = (0

jP

1

j�1

1)(0

jP

2

j�1

1) � � � (0

jP

r

j�1

1)

M = (10

jP

1

j�1

)(10

jP

2

j�1

) � � � (10

jP

r

j�1

) :

On some proessors, shifts by a single position is faster than shift by r > 1

positions. In suh ases the arrangement �

seq

yields faster algorithms. Moreover, as

already observed, suh arrangement allows to deal with sets of patterns of di�erent

lengths.

Figure 2 (right side) shows the ode of an implementation of the Shift-And

algorithm, based on a sequential ordering of the maximal trie of a set P. Though not

neessary, for the sake of simpliity we have assumed that the patterns in P have the

same length m.

5 A new spae eÆient approah

In this setion we propose a new approah to bit-parallel multiple pattern mathing.

Unlike existing solutions, presented in the previous setion, whih make use of the
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maximal trie of a set P of patterns, here we propose a solution whih simulates, using

bit-parallelism, a fator-based automaton thus reduing the number of states and,

aordingly, the number of bits needed for its representation.

Below we introdue the important notion of (weakly) safe topologial ordering of

a trie. Then, in Setion 5.1 we present an eÆient variant of the Shift-And al-

gorithm, based on a trie for P admitting a weakly safe topologial ordering. Our

proposed algorithm, alled Multiple-Trie-Shift-And, searhes a text T for any

pattern in a set P in O(ndL=!e)-time, where n = jT j, L = size(P), and ! is the

size of a omputer word. Subsequently, in Setion 5.2 we present an algorithm,

named Construt-Safe-Topologial-Ordering, whih given a (minimal) trie

T for a set P of patterns onstruts another trie T

0

for P admitting a weakly safe

topologial ordering (in general, the size of T

0

may be larger than the size of T ).

The Construt-Safe-Topologial-Ordering algorithm is based on a DFS ap-

proah and runs in O(L)-time and -spae, under suitable hypotheses.

Let �

u

be a topologial ordering of the subtrie T

u

of T rooted in u. Also, let (p; q)

be an edge of T

u

.

We say that (p; q) is a long-bit edge (relative to the ordering �

u

) if the length of the

�

u

-interval of (p; q) is greater than 1, i.e., in symbols, jInt

�

u

(p; q)j > 1.

1

Otherwise,

i.e. if jInt

�

u

(p; q)j = 1, we say that (p; q) is a 1-bit edge (relative to the ordering �

u

).

Additionally, if (p; q) is a long-bit edge of T

u

, we say that the label lbl(p; q) of the edge

(p; q) is an engaged symbol for the node u. It is onvenient to de�ne the following

funtion and set

L

�

u

() =

Def

f(p; q) 2 T

u

j lbl(p; q) =  and jInt

�

u

(p; q)j > 1g

A

�

u

=

Def

f 2 � j L

�

u

() 6= ;g ;

for  in the alphabet �, u in T , and �

u

a topologial ordering of T

u

. In other

words, L

�

u

() is the olletion of long-bit edges of T

u

labeled by , whereas A

�

u

is the

olletion of all engaged symbols for u.

Finally, a topologial ordering � of a trie T is said to be

� safe, if for eah  2 �, the intervals in fInt

�

(p; q) j (p; q) 2 L

�

()g are pairwise

disjoint, i.e., if the �-intervals of any two distint long-bit egdes labeled by a

same harater are disjoint;

� weakly safe, if for eah  2 �, the intervals in fInt

�

(p; q) j (p; q) 2 L

�

() and p 6=

root(T )g are pairwise disjoint, i.e., if the �-intervals of any two distint long-bit

egdes labeled by a same harater and not originating from the root of T are

disjoint.

Figures 3(B)-(C) show two di�erent topologial orderings of the trie in Figure

3(A). In partiular, onerning the ordering �

0

relative to Figure 3(B), we have

L

�

0

(a) = f(3; 6); (8; 9)g and L

�

0

(b) = f(1; 2)g; hene �

0

is a weakly safe topolog-

ial ordering sine �

0

(9) = 6 < 10 = �

0

(3). On the other hand, the ordering

�

00

relative to Figure 3(C) is not weakly safe, sine in this ase we have L

�

00

(a) =

f(1; 8); (3; 6); (8; 9)g, L

�

0

(b) = ;, and �

00

(1) = 1 < �

00

(3) = 3 < �

00

(6) = 6 < �

00

(8) =

8, i.e. Int

�

00

(3; 6) � Int

�

00

(1; 8).

1

The notion of �

u

-interval and the notation jInt

�

u

(p; q)j have been introdued just before Se-

tion 4.1.
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Figure 3: (A) The minimal trie of the set of patterns P =

fababb; abaab; aaabb; aabbag. (B) A weakly safe topologial ordering of the

trie in (A). (C) A topologial ordering of the trie in (A) whih is not weakly safe.

5.1 The Multiple-Trie-Shift-And Algorithm

Given a text T and a set P = fP

1

; P

2

; : : : ; P

r

g of patterns, the Multiple-Trie-

Shift-And algorithm whih we present below searhes for any pattern of P in the

text T in O(ndL=!e)-time, where n = jT j, L = size(P), and ! is the size of a

omputer word. Besides the text T , it takes as input a pair T and �, where T is a

trie for P and � is a weakly safe topologial ordering of T (as will be shown in the

next setion, suh T and � an be eÆiently onstruted starting from a minimal trie

for P). The Multiple-Trie-Shift-And algorithm simulates its input automaton

T using bit-parallelism. Sine jQ

T

j � L + 1, in general our algorithm deals with

smaller automata than the algorithms reviewed in Setion 4.2.

Let T

1

; T

2

; : : : ; T

h

be the subtries of T rooted in the hildren of root(T ) and let

ff

1

; f

2

; : : : ; f

k

g be the set of �nal states of T . The algorithm initializes two bit-masks

of length L = jT j � 1, respetively the initial-state mask I and the �nal-state mask

M , as follows

I = (0

jQ

T

h

j�1

1) � � � (0

jQ

T

2

j�1

1)(0

jQ

T

1

j�1

1)

M = (10

�(f

k

)��(f

k�1

)�1

) � � � (10

�(f

2

)��(f

1

)�1

)(10

�(f

1

)�1

) :

Subsequently, for eah symbol  2 �, theMultiple-Trie-Shift-And algorithm

initializes as shown below three more bit-masks of length L, namely B[℄; IS [℄ and

GS [℄, whih allow to perform the automaton transitions.

For eah state q 2 Q

T

suh that lbl(q)[len(q) � 1℄ = , we set the �(q)-th bit of

B[℄ to 1.

Let L

�

() = f(p

1

; q

1

); (p

2

; q

2

); : : : ; (p

t

; q

t

)g be the set of long-bit edges in � labeled
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Multiple-Trie-Shift-And (T , T , �)

/* Initialization */

1. n = length(T )

2. � = �

�1

3. L = jQ

T

j � 1

4. I =M = 0

L

5. for eah  2 � do B[℄ = IS [℄ = GS [℄ = 0

L

6. root = �(0)

7. for eah q 2 hildren

T

(root) do

8.  = lbl(root ; q)

9. B[℄ = (B[℄ j (0

L�1

1� (�(q)� 1)))

10. for i = 1 to L do

11. p = �(i)

12. if is final(p) then M = (M j (0

L�1

1� (i� 1)))

13. if p 2 hildren

T

(root) then I = (I j (0

L�1

1� (i� 1)))

14. for eah q 2 hildren

T

(p) do

15.  = lbl(p; q)

16. if �(q) > i+ 1 then

17. IS [℄ = (IS [℄ j (0

L�1

1� (�(q)� 1)))

18. GS [℄ = (GS [℄ j (0

L��(q)+�(p)+1

1

�(q)��(p)�1

� �(p)))

19. else B[℄ = (B[℄ j (0

L�1

1� (�(q) � 1)))

/* Searhing Phase */

20. D = 0

L

21. for j = 0 to n� 1 do

22. if D & M 6= 0

L

then print(j)

23. D

0

= (D � 1) & B[T [j℄℄

24. D

00

= ((((D & IS [T [j℄℄) � 1) + GS [T [j℄℄) & �GS [T [j℄℄)

25. D = (D

0

j D

00

) j (I & B[T [j℄℄)

Figure 4: TheMultiple-Trie-Shift-And algorithm for the multiple string math-

ing problem.

by the symbol , arranged in suh a way that �(p

1

) < �(q

1

) � �(p

2

) < �(q

2

) � � � � �

�(p

t

) < �(q

t

). The mask IS [℄ is the initial-shift bit-mask of . It marks all nodes in

� from whih a long-bit edge labeled with symbol  originates. In other words, for

eah edge (p; q) 2 L

�

(), the �(p)-th bit of IS [℄ is set to 1. More formally,

IS [℄ = (0

L�p

t

1)(0

p

t

�p

t�1

�1

1) � � � (0

p

2

�p

1

�1

1)(0

p

1

�1

) :

Finally, the mask GS [℄ is the gap-shift bit-mask of . For eah long-bit edge

(p; q) 2 L

�

(), the bits of GS [℄ from position (�(p)+ 1) up to position (�(q)� 1) are

set to 1. More formally,

GS [℄ = (0

L�q

t

+1

1

q

t

�p

t

�1

)(0

p

t

�q

t�1

+1

1

q

t�1

�p

t�1

�1

) � � � (0

p

2

�q

1

+1

1

q

1

�p

1

�1

)(0

p

1

) :

During the searhing phase (lines 20-25), a bit-mask D maintains the ative state

of the automaton. For eah position j of the text T , the algorithm performs three

main steps

1-bit transitions (line 22):

This is made in a simple way by shifting the mask D by one position to the
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left. Then all transitions labeled with symbols di�erent from T [j℄ are deleted

by performing an and operation with the bit-mask B[T [j℄℄. More formally, the

operation that simulates 1-bit transitions is

(D � 1) & B[T [j℄℄ :

Long-bit transitions (line 23):

First, the operation (D & IS [T [j℄℄) isolates all ative states from whih long-bit

edges originate. Then the resulting mask is shifted by one position to the left

and its value is added to the value of the bit-mask GS [T [j℄℄. This has the e�et

that, if (p; q) 2 L

�

(T [j℄) and p is an ative state in D, then the �(q)-th bit of

D is set to 1 and all bits from position �(p) up to position �(q)� 1 are set to

0. However, if (p; q) 2 L

�

(T [j℄) and p is not an ative state in D, then all bits

from position �(p) + 1 up to position �(q) � 1 maintain their value 1. These

undesirable bits are deleted by performing an and operation with the bit-mask

�GS [T [j℄℄. More formally, long-bit transitions are simulated by the operation

((((D & IS [T [j℄℄) � 1) + GS [T [j℄℄) & �GS [T [j℄℄) :

Transitions from the initial state (line 24):

The transitions starting from the initial state are performed by omputing an

or operation with the mask I. As in the 1-bit transition ase, all transitions

labeled with symbols di�erent from T [j℄ are deleted by performing an and

operation with the bit-mask B[T [j℄℄. Formally, transitions from the initial state

are simulated by the following operation

(D j I) & B[T [j℄℄ :

The Multiple-Trie-Shift-And algorithm, shown in Figure 4, runs in O(n)

time if L � !, where ! is the length of a omputer word. However if L > ! the

algorithm has a O(ndL=!e) worst-ase time omplexity.

In the following setion we desribe an algorithm that, given a minimal trie T for

a set P = fP

1

; P

2

; : : : ; P

r

g of patterns, it onstruts another trie T

0

, equivalent to T ,

together with a weakly safe topologial ordering � for T

0

.

5.2 Construting a Trie with a Weakly Safe Topologial Or-

dering

Before entering into the details of the algorithm, we need to introdue some further

useful onepts.

For eah node q 2 Q

T

we de�ne the set B(q) of binding symbols of q as the

olletion of all haraters whih label some edge (p; p

0

) originating from a predeessor

p of q, but suh that p

0

does not lie on the path from the root(T ) to q. In symbols

B(q) =

Def

flbl(p; p

0

) j p; p

0

2 Q

T

; lbl(p) � lbl(q) ; and lbl(p

0

) 6v lbl(q)g :
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In addition, for eah node q 2 Q

T

, we de�ne the funtion bind

q

: � ! f1; 2; : : :

: : : ; len(q)g suh that for eah  2 �

bind

q

() =

Def

8

>

>

<

>

>

:

1 + max

8

<

:

len(p)

�

�

�

�

�

�

p 2 Q

T

; lbl(p) � lbl(q) ; and

 = lbl(p; p

0

) ; lbl(p

0

) 6v lbl(q)

for some p

0

2 Q

T

9

=

;

if  2 B(q)

0 otherwise :

Observe that, if lbl(p) � lbl(q), then len(p) < len(q) and therefore 0 � bind

q

() �

len(q), for  2 �. For eah h 2 f1; : : : ; len(q)g we de�ne the set B

h

(q) � B(q) by

putting

B

h

(q) =

Def

f 2 B(q) j bind

q

() = hg:

Next, let again q 2 Q

T

and let w = jhildren

T

(q)j. Also, for eah node s 2

hildren

T

(q), let �

s

be a safe topologial ordering for T

s

. We say that the set

hildren

T

(q) is resolved w.r.t. the above orderings �

s

, if there exists an ordering

s

1

; s

2

; : : : ; s

w

of the hildren of q in T suh that the onatenation �

s

1

:�

s

2

: � � � :�

s

w

yields a safe topologial ordering �

q

for T

q

. Observe that the edge (q; s

1

) is a 1-bit

edge for �

q

, whereas the edges (q; s

i

), for i = 2; : : : ; w, are long-bit edges for �

q

.

Then, in order for �

q

to be a safe topologial ordering, we must have

lbl(q; s

i

) =2

i�1

[

j=1

A

�

q

(s

j

) ; for eah i = 1; : : : ; w :

Additionally, observe that the set B

len(q)

(s) = flbl(q; s

0

) j s

0

2 hildren

T

(q) n fsg g

de�nes the binding symbols on node s imposed by its predeessor q, for eah s 2

hildren

T

(q). Thus, if A

�

q

(s) \ B

len(q)

(s) 6= ;, for some s 2 hildren

T

(q), then the

node s ould violate some binding in B

len(q)

(s). To maintain suh information during

its exeution, the algorithm in Figure 5 whih we are about to desribe performs a

suitable oloring of the nodes. In partiular, for eah q 2 Q

T

, we de�ne the value

olor(q) whih an assume the following values:

white: The olor of a node q is white provided that it has not been already vis-

ited by the algorithm. Thus, during the initialization phase, olor(q) is set to

white, for eah q 2 Q

T

.

green/red: Suppose that the visit of node q has been ompleted and that a safe

topologial ordering �

q

of T

q

has been onstruted. Then olor(q) is set to

green, provided that �

q

does not violate any binding imposed by its predees-

sor, i.e. provided that A

�

q

\ B

len(q)�1

(q) = ;, otherwise is set to red.

The algorithm whih onstruts a trie T

0

equivalent to a given input trie T and

suh that T

0

is endowed with a weakly safe topologial ordering is shown in Figure 5.

It performs a DFS visit of the trie T , starting from root(T ). When the visit of a node

q 2 Q

T

nfroot(T )g has been ompleted, a safe topologial ordering �

q

for the urrent

subtrie rooted in q has been omputed. The proedure for visiting a node q 2 Q

T

works in the following 6 main steps:

Step 0 (Initialization)

During initialization,A(q) is set to ; and the ordering �

q

is indiretly initialized

by putting �

q

(0) = q (we reall that �

q

= �

�1

q

).
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Construt-Safe-Topologial-Ordering (T )

1. for eah q 2 Q

T

do olor (q) =white

2. �(0) = root(T )

3. i = 1

4. for eah q 2 hildren

T

(root(T )) j olor(q) = white do

5. �

q

= Visit(q; T )

6. for j = 0 to jQ

T

q

j � 1 do �(i+ j) = �

q

(j)

7. i = i+ jQ

T

q

j

8. return (�; T )

Visit (q, T )

/* Step 0 (Initialization) */

1. �

q

(0) = q, i = 1

2. A(q) = ;

/* Step 1 (Reursive alls) */

3. for eah s 2 hildren

T

(q) j olor (s) = white do Visit(s; T )

4. Green(q) = fs 2 hildren

T

(q) j olor (s) = green g

5. Red(q) = fs 2 hildren

T

(q) j olor (s) = red g

/* Step 2 (Resolving nodes of set Green(q)) */

6. if Green(q) 6= ; then

7. Let s 2 Green(q) j bind (lbl(q; s)) � bind(lbl(q; p));8 p 2 Green(q)

8. for j = 0 to jQ

T

s

j � 1 do �

q

(i+ j) = �

s

(j)

9. i = i+ jQ

T

s

j

10. A(q) = A(q) [ A(s)

11. Green(q) = Green(q)� fsg

12. for eah s 2 Green(q) do

13. for j = 0 to jQ

T

s

j � 1 do �

q

(i+ j) = �

s

(j)

14. i = i+ jQ

T

s

j

15. A(q) = A(q) [ A(s) [ flbl(q; s)g

/* Step 3 (Resolving nodes of set Red(q)) */

16. for eah s 2 Red(q) do

17. if lbl (q; s) =2 A(q) then

18. Red(q) = Red(q)� fsg

19. for j = 0 to jQ

T

s

j � 1 do �

q

(i+ j) = �

s

(j)

20. i = i+ jQ

T

s

j

21. if A(q) = ; then A(q) = A(q) [ A(s)

22. else A(q) = A(q) [ A(s) [ flbl(q; s)g

/* Step 4 (Pruning all remaining red nodes) */

23. for eah s 2 Red(q) do

24. onstrut a new trie T

0

for lbl(s)

25. for eah u 2 Q

T

0

do olor (u) =white

26. prune T

s

from T and insert it at the end of T

0

27. merge root(T

0

) with root(T )

/* Step 5 (Setting olor of node q) */

28. if A(q) \ B

len(q)�1

(q) = ; then olor (q) = green

29. else olor (q) = red

30. return �

q

Figure 5: The algorithm for omputing a safe topologial ordering of the trie T .

Step 1. (Reursive alls)

After initialization, all s 2 hildren

T

(q) whih have not been already visited
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are visited. Then, at the end of Step 1, it follows indutively that, for eah

s 2 hildren

T

(q), a safe topologial ordering �

s

has been de�ned and either

olor(s) = green or olor(s) = red.

Step 2. (Resolving nodes of set Green(q))

Suppose Green(q) and Red(q) are the sets of, respetively, green and red

nodes of hildren

T

(q). By onstrution, no node in Green(q) violates any bind-

ing imposed by q. Thus, it is more onvenient to resolve �rst the nodes in

Green(q) and later the ones in Red(q). If Green(q) 6= ;, a node s 2 Green(q)

suh that lbl(q; s) has the largest binding value bind(lbl(q; s)) is seleted. In

this way all engaged edges whih ould violate the binding losest to q are elim-

inated. Then the topologial ordering �

s

is onatenated to �

q

, the edge (q; s)

beomes a 1-bit edge in �

q

, and A(q) is set to the value A(q) [ A(s).

For eah remaining node s 2 Green(q), the ordering �

s

is onatenated to �

q

, so

that all engaged nodes in �

s

beome engaged nodes in �

q

. Observe that, after

the �rst seletion, the edge (q; s) is a long-bit edge of �

q

, so that A(q) must be

set to the value A(q) [ A(s) [ flbl(q; s)g.

Step 3. (Resolving nodes of set Red(q))

After that all green nodes have been resolved in Step 2, nodes in Red(q) are

also resolved. In partiular, if Red(q) 6= ;, then an attempt is made to selet

a node s 2 Red(q) suh that the symbol lbl(q; s) is not engaged in �

q

, i.e.

lbl(q; s) =2 A(q). If suh a node s is found, the ordering �

s

is onatenated to

the ordering �

q

and the set A(q) of engaged nodes in �

q

is updated aordingly.

Step 3 is reapeted until no further node s 2 Red(q) an be seleted.

Observe that, if Green(q) = ; at the beginning of Step 2, then the �rst seleted

node in Red(q) generates a 1-bit edge in �

q

. This ase is tested in lines 21-22.

Step 4. (Pruning all remaining red nodes)

If Red(q) 6= ; after Step 4, eah subtree rooted at any node s 2 Red(q) is

�rst detahed from T and then re-attahed to T through a freshly introdued

linear path labeled by lbl(s). Notie that Step 4 an ause the trie T to beome

nondeterminsti.

Step 5. (Setting olor of node q)

Finally, if the engaged symbols of q violate some binding in B(q)

len(q)�1

, i.e.

A(q) \ B(q)

len(q)�1

6= ;, olor(q) is set to red. Otherwise olor(q) is set to

green.

At the end of the exeution, the modi�ed T and the funtion � are returned. It

turns out that �

�1

is a weakly safe topologial ordering of T .

Observe that there exist sets of patterns whose minimal tries admit no weakly safe

topologial ordering. The pruning of sub-tries in Step 4 is just intended to separate

in T those patterns whih ause troubles.

Let P be a set of patterns and let T be the minimal trie for P. We evaluate the

omplexity of the algorithm in Figure 5 in terms of L = size(P).

An eÆient implementation of the algorithm Construt-Safe-Topologial-

Ordering maintains, for eah node q 2 Q

T

, the sets B(q)

len(q)�1

and A(q) in two
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bit-vetors. Thus, if we assume that jhildren

T

(q)j � !, for eah q 2 Q

T

, where ! is

the length of a omputer word, the operations of set union and set intersetion an be

performed in onstant time and O(jQ

T

j) spae. Suh assumption is quite reasonable,

sine in pratial ases the degree of a node is rarely greater than !. This is espeially

true if the patterns belong to a natural language where onseutive symbols are not

independent, rather they are strongly related in most ases. For instane the symbol

\q" is almost always followed by the symbol \u", whereas in general the symbol \t"

is followed only by the symbols \a,e,h,i,l,o,r,u,y".

Additionally, if we maintain the topologial orderings �

q

, for eah node q, as

linked-lists, the operations in lines 8, 13, and 19, whih onatenate two di�erent

topologial orderings, an be also performed in onstant time.

The proedure Visit is alled only one for eah node q 2 Q

T

. Sine eah node

s 2 Q

T

, with the exeption of the root, will enter either set Green(q) or set Red(q),

for only one node q 2 Q

T

, we have that

X

q2Q

T

(jGreen(q)j+ jRed(q)j) = jQ

T

j � 1 :

Thus the overall omplexity of Steps 2 and 3 is O(L), sine jQ

T

j = O(L).

In Step 4, the pruning of a red node s onsists in following the path from the

root of the trie to node s. Thus the overall work of Step 4 is bounded again by O(L).

Finally Step 0 and Step 5 are performed in onstant time. Thus, it turns out that

the algorithm Construt-Safe-Topologial-Ordering has a O(L)-time and

-spae omplexity.

It must be remarked that in general the algorithmConstrut-Safe-Topologi-

al-Ordering does not onstrut the minimal trie T

0

, equivalent to a given trie

T , whih is endowed with a weakly safe topologial sorting. A natural variant whih

enfores minimality takes quadrati time.

On the other hand, some experimentations has shown that the heuristis embodied

in Steps 2, 3, and 4 are quite e�etive in keeping the returned trie lose to minimal.

6 Conlusion

In this paper we have presented a new algorithm for the multiple pattern mathing

problem, based on the bit-parallelism tehnique. In partiular, our algorithm is based

on the parallel simulation of a fator-based trie (not neessarily the optimal one) for

the input set of patterns. In fat, our simulation requires that the fator-based trie

admits a topologial ordering whih is weakly safe, in a sense amply explained before.

The omplexity of our algorithm is linear in the length of the text and in the size of

the set of patterns.

We have also shown how to transform a given minimal trie into a trie whih has

a weakly safe topologial ordering in linear time and spae in the size of the set of

patterns. The resulting trie is in general signi�antly smaller than the maximal tries

used in the other multi-pattern mathing algorithms based on bit-parallelism.

Further variations and improvements are still possible. For instane, we expet

that our approah an be extended to obtain a spae eÆient version of the BNDM

algorithm for the multiple pattern mathing problem.
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An interesting open problem is to �nd other suitable topologial orderings on de-

terministi tries whih guarantee that they an be easily simulated by bit-parallelism,

without any need to modify their topology.
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