
Bit-Parallel Computation of Lo
al Similarity S
ore

Matri
es with Unitary Weights

Heikki Hyyr�o

1

and Gonzalo Navarro

2�

1

Department of Computer S
ien
es, University of Tampere, Finland.

e-mail: heikki.hyyro�gmail.
om

2

Department of Computer S
ien
e, University of Chile.

e-mail: gnavarro�d

.u
hile.
l

Abstra
t. Lo
al similarity
omputation between two sequen
es permits de-

te
ting all the relevant alignments present between subsequen
es thereof. A

well-known dynami
 programming algorithm works in time O(mn), m and n be-

ing the lengths of the subsequen
es. The algorithm is rather slow when applied

over many sequen
e pairs. In this paper we present the �rst bit-parallel
ompu-

tation of the s
ore matrix, for a simpli�ed
hoi
e of s
ores. If the
omputer word

has w bits, then the resulting algorithm works in O(mn logmin(m;n;w)=w)

time, a
hieving up to 8-fold speedups in pra
ti
e. Some DNA
omparison ap-

pli
ations use pre
isely the simpli�ed s
ores we handle, and thus our algorithm

is dire
tly appli
able. In others, our method
an be used as a raw �lter to

dis
ard most of the strings, so the
lassi
al algorithm
an be fo
used only on

the substring pairs that
an yield relevant results.

1 Introdu
tion and Related Work

Sequen
e
omparison is a fundamental task in Computational Biology, in order to

dete
t relevant similarities between a pair of geneti
 or protein sequen
es [3℄. Three

kinds of similarities are of interest: (i) global similarity
ompares two strings as a

whole, (ii) semiglobal (or semilo
al) similarity looks for substrings of a given string

that are similar to a se
ond given string, (iii) lo
al similarity looks for similar sub-

strings of two given strings.

Similarity is usually expressed using a s
ore fun
tion, whi
h gives prizes or penal-

ties to operations on the strings and to pairings of
hara
ters of the two strings.

Usually pairing the same
hara
ter in both strings involves a prize be
ause we have

found a similarity. Pairing di�erent
hara
ters, inserting or removing
hara
ters, in-

volves penalties. The spe
i�
 values for prizes and penalties depend on the biologi
al

model used for the similarity (for example, logarithms of mutation probabilities). The

similarity is then expressed as the highest possible s
ore of a sequen
e of operations

that align one string to the other.

Global and semiglobal similarity �nd appli
ations in other areas su
h as text

sear
hing. Global similarity
omputation is then seen as a distan
e
omputation. The

�

Partially funded by Millennium Nu
leus Center for Web Resear
h, Grant P04-067-F, Mideplan,

Chile.

95

Pro
eedings of the Prague Stringology Conferen
e '05

distan
e is never negative, and the smaller it is, the more similar the sequen
es are.

Semiglobal similarity
an be
onverted into an approximate sear
h problem, namely

to �nd the approximate o

urren
es of a short pattern inside a long text. Lo
al

similarity, on the other hand, is more spe
i�
 to
omputational biology appli
ations.

All these sorts of similarity
omputations
an be easily
arried out in O(mn) time

using dynami
 programming. Given strings A

1:::m

and B

1:::n

, the general method

is to
ompute an (m + 1) � (n + 1) matrix C whose
ell C

i;j

gives the maximum

s
ore/minimum distan
e to align/
onvert A

:::i

to B

:::j

. The
ells of row 0 and
olumn

0 form initially known boundary
ases, and the remaining m� n
ells are
omputed

using a re
urren
e. For example, for global similarity s
ore
omputation we may have

C

i;0

= �i, C

0;j

= �j, and for i; j > 0

C

i;j

= max(C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

� 1; C

i�1;j

� 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 1 else � 1

where we have assumed that all penalties are �1 and prizes are +1. More
ompli-

ated s
ore fun
tions
an be real-valued and depend on the
hara
ters involved. The

maximum s
ore for the strings A and B is C

m;n

.

If we are instead
omputing distan
e, we may have C

i;0

= i, C

0;j

= j, and for

i; j > 0

C

i;j

= min(C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

+ 1; C

i�1;j

+ 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 0 else 1

where we have assumed that all
osts are 1. The minimum distan
e between A and

B is C

m;n

.

Semiglobal similarity
omputation is obtained by using the above formulas ex
ept

that C

0;j

= 0, so that an alignment of A
an start afresh at any position in B. High

s
ore/low distan
e at
ell C

m;j

tells us that an interesting alignment ends at position

j in B.

Lo
al similarity
omputation needs a somewhat di�erent arrangement and,
uri-

ously, it seems not expressible using the distan
e model, but just the s
ore model. In

this
ase we have C

i;0

= C

0;j

= 0, and for i; j > 0

C

i;j

= max(0; C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

� 1; C

i�1;j

� 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 1 else � 1

where we remark the 0 value involved in the maximum. The obje
tive of this zero

is that if an alignment in progress has given us more penalties than prizes, then it

is better to start afresh from that position. Any
ell value C

i;j

that is high enough

indi
ates that similar substrings end at position i in A and j in B.

Mu
h e�ort has been
arried out in order to eÆ
iently
ompute the distan
e ma-

trix, both for global and semiglobal alignments. In parti
ular, bit-parallelism has

given the best results in pra
ti
e. Bit-parallelism pa
ks several values inside a
om-

puter word and updates them all in one shot. The bit-parallel algorithm that best

\parallelizes" the matrix
omputation is from Myers [8℄, whi
h
omputes semiglobal

similarity and is easily adapted to
ompute global similarity [4, 5, 6℄. Using Myers'

algorithm, both similarities
an be
omputed in O(mn=w) time using a
omputer

96

Bit-Parallel Computation of Lo
al Similarity S
ore Matri
es with Unitary Weights

word of w bits, whi
h is the optimal bit-parallel speedup. Myers' algorithm strongly

relies on the fa
t that
onse
utive
ells of C

i;j

di�er only by �1, 0, or 1. Several other

bit-parallel algorithms exploiting the same property have been proposed [9℄.

Other approa
hes to speed up the
omputation exist. Di�erent Four-Russians

te
hniques [7, 11℄ obtain O(mn= log(mn)) time. The same
omplexity is obtained by

using a Ziv-Lempel fa
toring [2℄, whi
h generalizes to lo
al similarity with arbitrary

weights. In pra
ti
e, when appli
able, bit-parallel algorithms are faster.

Bit-parallel
omputation of s
ore matri
es, however, has not been attempted.

Bergeron and Hamel [1℄ have extended Myers' s
heme to handle arbitrary integer

weights for substitutions, as well as a �xed weight
 for insertions and deletions.

Their algorithm is O(mn
 log(
)=w) time. This s
heme
annot be used to
ompute

lo
al similarity.

In general, global and semiglobal s
ore
omputation
an be
onverted into dis-

tan
e
omputation. However, lo
al similarity is of di�erent nature and
annot be

easily mapped to a known distan
e
omputation s
heme. In this paper we present

a bit-parallel algorithm inspired on Myers' s
heme (and more pre
isely on Hyyr�o's

version [4℄), whi
h obtains O(mn logmin(m;n; w)=w) time. The algorithm assumes

that aligning two
hara
ters yields a prize of +1 when they are equal and a penalty

of �1 otherwise, and that inserting or deleting
hara
ters has a penalty of �1.

The main obsta
les to obtain the algorithm are (1) that the re
urren
e is more

ompli
ated than the one a�orded by Myers (in parti
ular, di�eren
es of +2 among

ontiguous
ells are possible), and (2) that the zero in the maximization involves

knowing absolute
ell values, while the whole philosophy of Myers' s
heme relies on

storing di�erential values.

We implemented the algorithm and
ompared it against plain dynami
 program-

ming, whi
h is
urrently the only alternative. We show that up to 8-fold speedups

are obtained using our algorithm.

Our algorithm
annot repla
e dynami
 programming be
ause it
annot handle

other prize and penalty values. On the other hand, while s
ore
omputations on

protein sequen
es are always weighted, there are many
ases of s
ore
omputations

on DNA sequen
es where our simpli�ed model is a
tually used [3℄. It may also be

feasible to use our method as a fast �lter to dis
ard most of the matrix and let the

weighted dynami
 programming algorithm
on
entrate only on the matrix areas that

look promising.

2 A Bit-Parallel Design

Let us fo
us on the simple s
ore fun
tion depi
ted in the Introdu
tion, that is,

C

i;0

= C

0;j

= 0 and, for i; j > 0;

C

i;j

= max(0; C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

� 1; C

i�1;j

� 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 1 else � 1

We prove now some properties of matrix C. Note, to start, that C
ontains no

negative values.

97

Pro
eedings of the Prague Stringology Conferen
e '05

Lemma 1: Given the above de�nition of matrix C, it holds

C

i;j

� C

i�1;j�1

2 �1; 0;+1 for any i; j > 0

C

i;j

� C

i;j�1

2 �1; 0;+1;+2 for any i � 0; j > 0

C

i;j

� C

i�1;j

2 �1; 0;+1;+2 for any i > 0; j � 0

Proof: We pro
eed indu
tively, so we assume it proved for any (i

0

; j

0

) su
h that j

0

< j,

or j

0

= j and i

0

< i. The base
ases are immediate. Now, for the indu
tive
ase, let us

start with the �rst proposition. The option C

i�1;j�1

+Æ(A

i

; B

j

) in the \max"
lause of

the formula for C

i;j

guarantees that C

i;j

�C

i�1;j�1

� �1. Indu
tive Hypothesis tells us

that C

i�1;j

� C

i�1;j�1

+2 and C

i;j�1

� C

i�1;j�1

+2, and thus C

i;j

= max(0; C

i�1;j�1

+

Æ(A

i

; B

j

); C

i;j�1

�1; C

i�1;j

�1) � max(C

i�1;j�1

+Æ(A

i

; B

j

); C

i�1;j�1

+1; C

i�1;j�1

+1) =

C

i�1;j�1

+ 1. Here we removed the zero from the \max"
lause as it is known that

C

i�1;j�1

+ 1 � 1 > 0. By
ombining the two previous observations, we have that

�1 � C

i;j

� C

i�1;j�1

� 1.

Let us now
onsider the se
ond proposition. First we note that C

i;j

� C

i;j�1

�

�1 be
ause of the option C

i;j�1

� 1 inside the \max"
lause. From our Indu
tive

Hypothesis and the above-proved �rst proposition we have that C

i;j�1

� C

i�1;j�1

�1 �

C

i;j

�1�1 = C

i;j

�2. Thus �1 � C

i;j

�C

i;j�1

� 2. The third proposition is symmetri

with the se
ond and
omes out similarly. 2

Given the ranges of values proved for
onse
utive di�eren
es, we will represent matrix

C in
rementally using the following bit matri
es:

M

i;j

� A

i

= B

j

DP

i;j

� C

i;j

� C

i�1;j�1

= +1

Z

i;j

� C

i;j

= 0 DZ

i;j

� C

i;j

� C

i�1;j�1

= 0

DM

i;j

� C

i;j

� C

i�1;j�1

= �1

HT

i;j

� C

i;j

� C

i;j�1

= +2 V T

i;j

� C

i;j

� C

i�1;j

= +2

HP

i;j

� C

i;j

� C

i;j�1

= +1 V P

i;j

� C

i;j

� C

i�1;j

= +1

HZ

i;j

� C

i;j

� C

i;j�1

= 0 V Z

i;j

� C

i;j

� C

i�1;j

= 0

HM

i;j

� C

i;j

� C

i;j�1

= �1 VM

i;j

� C

i;j

� C

i�1;j

= �1

Here M and Z stand for \mat
h" and \zero", respe
tively. D, H, and V stand for

\diagonal", \horizontal", and \verti
al", respe
tively. T , P , Z, and M stand for

\plus two", \plus one", \zero", and \minus one", respe
tively. When a
ell refers to

a value out of bounds, su
h as HP

i;0

, its value is not really important.

The above information
learly represents the
ells of matrix C. For example,

C

i;j

=

i

X

r=1

(2� V T

r;j

+ 1� V P

r;j

� 1� VM

r;j

)

The next step is to derive logi
al properties that relate those bit matri
es, so as

to permit an eÆ
ient bit-parallel implementation.

DP

i;j

� M

i;j

_ V T

i;j�1

_ HT

i�1;j

:

It is
lear that if either A

i

= B

j

, C

i;j�1

= C

i�1;j�1

+ 2, or C

i�1;j

= C

i�1;j�1

+ 2,

then C

i;j

= C

i�1;j�1

+ 1. Moreover, if none of them hold, there is no way for

C

i;j

to get the value C

i�1;j�1

+ 1.

98

Bit-Parallel Computation of Lo
al Similarity S
ore Matri
es with Unitary Weights

DZ

i;j

� � DP

i;j

^ (Z

i�1;j�1

_ V P

i;j�1

_ HP

i�1;j

) :

From the s
ore re
urren
e we
an easily derive the rule that C

i;j

= C

i�1;j�1

if and

only if C

i;j

6= C

i�1;j�1

+1 and max(0; C

i;j�1

�1; C

i�1;j

�1) = C

i�1;j�1

. Moreover,

sin
e 0 � C

i�1;j�1

and the
ondition C

i;j

6= C

i�1;j�1

+ 1 implies that C

i;j�1

<

C

i�1;j�1

+ 2 and C

i�1;j

< C

i�1;j�1

+ 2, it turns out that already C

i�1;j�1

�

max(0; C

i;j�1

� 1; C

i�1;j

� 1), so the
ondition max(0; C

i;j�1

� 1; C

i�1;j

� 1) =

C

i�1;j�1

an be
hanged into the form C

i�1;j�1

2 f0; C

i;j�1

� 1; C

i�1;j

� 1g.

This results in the above formula for DZ

i;j

.

DM

i;j

� � (DP

i;j

_DZ

i;j

) : As it is the only remaining
hoi
e.

HT

i;j

� DP

i;j

^ VM

i;j�1

:

From now on we build on D� and the other bit matri
es, by exhaustively exam-

ining all the
hoi
es for C

i;j

� C

i�1;j�1

using submatri
es where the lower right

ell is C

i;j

= x and the upper left
an thus have a value x� 1, x or x+ 1. The

lower left
ell is C

i;j�1

, whi
h in this parti
ular item must have the value x� 2.

We dis
ard
ases that are not possible a

ording to Lemma 1 and express the

remaining
ases as logi
al
onditions. We put \�" in the remaining
orner to

signal impossible
ases.

x� 1

x� 2 x

x �

x� 2 x

x+ 1 �

x� 2 x

HP

i;j

� (DP

i;j

^ V Z

i;j�1

) _ (DZ

i;j

^ VM

i;j�1

) :

x� 1

x� 1 x

x

x� 1 x

x + 1 �

x� 1 x

HM

i;j

� V T

i;j�1

_ (DZ

i;j

^ V P

i;j�1

) _ (DM

i;j

^ V Z

i;j�1

) :

x� 1

x + 1 x

x

x + 1 x

x+ 1

x+ 1 x

Note the simpli�
ation in the �rst
ondition sin
e V T

i;j�1

) DP

i;j

.

HZ

i;j

� � (HT

i;j

_HP

i;j

_HM

i;j

) : As it is the only remaining
hoi
e.

V T

i;j

� DP

i;j

^HM

i�1;j

:

Now we fo
us on the upper right
orner.

x� 1 x� 2

x

x x� 2

� x

x+ 1 x� 2

� x

V P

i;j

� (DP

i;j

^HZ

i�1;j

) _ (DZ

i;j

^HM

i�1;j

) :

x� 1 x� 1

x

x x� 1

x

x+ 1 x� 1

� x

VM

i;j

� HT

i�1;j

_ (DZ

i;j

^HP

i�1;j

) _ (DM

i;j

^HZ

i�1;j

) :

x� 1 x + 1

x

x x+ 1

x

x+ 1 x + 1

x

V Z

i;j

� � (V T

i;j

_ V P

i;j

_ VM

i;j

) : As it is the only remaining
hoi
e.

99

Pro
eedings of the Prague Stringology Conferen
e '05

3 A Bit-Parallel Algorithm

Up to now we have fo
used on how to
ompute the C matrix without regard for whi
h

should be the output of the algorithm. As explained,
omputational biologists are

interested in matrix positions where the lo
al s
ore ex
eeds some threshold k. Those

positions are then subje
t of further analysis.

Hen
e our algorithm will re
eive two strings A and B, as well as a threshold value

k, and will point out all the positions (i; j) of matrix C where the s
ore of the lo
al

alignment between A

:::i

and B

:::j

is at least k, that is, where C

i;j

� k.

The idea of the bit-parallel algorithm is to pro
ess C
olumn by
olumn (just like

the standard dynami
 programming algorithm). However, the bit-parallel algorithm

will pro
ess all the
olumn in one shot, not row by row. In this se
tion we assume

m � w, that is, we
an pa
k all bits of a
olumn G

j

= G

1:::m;j

in a single
omputer

word, for any matrix G. Note that row zero is not represented. When needed, the

ith bit of ve
tor G

j

will be written as G

j

(i) = G

i;j

.

Therefore, our
omputation will pro
eed with
olumn bit ve
tors DP

j

, DM

j

,

DZ

j

, and so on, for j = 0 : : : n, ea
h pa
ked in a
omputer word. After step j of the

algorithm, the ve
tors will hold the bits
orresponding to
olumn j of the matrix.

We will use the usual C instru
tions to handle bits: \&" as the bitwise-and, \j" as

the bitwise-or, \

^

" as the bitwise-xor, \�" as the bitwise-not, and \<<" to shift all

the bits one position to the left and enter a zero at the rightmost position. Sometimes

we will treat bit ve
tors as integers and perform arithmeti
 operations on them.

In a pre
omputation step, explained in Se
tion 3.1, the \mat
h" matrixM is built

in a suitable way for bit-parallel pro
essing. The boundary
onditions of matrix C are

handled by giving the proper values to Z

0

and V �

0

ve
tors, namely V P

0

= VM

0

=

V T

0

= 0 and Z

0

= V Z

0

= 2

m

� 1. Then we pro
ess the
hara
ters of B (matrix

olumns) one by one. Ea
h step j
omputes the bit ve
tors for
olumn j from the

ve
tors of
olumn j � 1. First, the diagonal ve
tors D�

j

as well as the horizontal

ve
tor HP

j

are
omputed. Ve
tor HP

j

is
omputed already at this stage as we use

it in
omputing DZ

j

. This part is
omplex and is explained in Se
tion 3.2. Then

the rest of the horizontal and verti
al ve
tors H�

j

and V �

j

are easy to
ompute, as

explained in Se
tion 3.3. Finally, in Se
tion 3.4, we show how to �nd and report high

enough s
ores in
olumn j, and how the same me
hanism handles also
omputing

ve
tor Z

j

. The way this last part is done is again slightly
ompli
ated and uses a

te
hnique that is rather di�erent from all the rest.

3.1 Computing Matrix M

Matrix M is represented as a table indexed by alphabet
hara
ters. M [
℄ is a bit

ve
tor su
h that M [
℄(i) = 1 i� A

i

=
. This table is pre
omputed before �lling

matrix C. This way the
ell value M

i;j

is a
tually represented by M [B

j

℄(i).

Matrix M is pre
omputed in O(m+ j�j) time, where � is the alphabet of A and

B, as follows. First initialize M [
℄ 0 for every
 2 � and then traverse string A

hara
ter-wise, setting bit M [A

i

℄(i) 1.

100

Bit-Parallel Computation of Lo
al Similarity S
ore Matri
es with Unitary Weights

3.2 Computing Ve
tors D�

j

and HP

j

Let us start with DP

j

. As seen in Se
tion 2, DP

i;j

� M

i;j

_ V T

i;j�1

_ HT

i�1;j

.

Sin
e we are
omputing all the values at
olumn j in one shot,
omponent HT

i�1;j

is

troublesome be
ause it is not yet
omputed (M

i;j

= M [B

j

℄(i) is known so it is not

problemati
). Let us expand HT

i�1;j

using its de�nition:

DP

i;j

� M

i;j

_ V T

i;j�1

_ (DP

i�1;j

^ VM

i�1;j�1

)

where now the problemati
 value belongs to the same DP
olumn. Let us express this

re
urren
e in ve
tor form. We de�ne temporary ve
tors X(i) �M [B

j

℄(i) _ V T

j�1

(i)

and Y (i) � VM

j�1

(i). Then the re
urren
e for ve
tor DP

j

is

DP

j

(i) � X(i) _ (DP

j

(i� 1) ^ Y (i� 1))

This parti
ular kind of
ir
ular dependen
y has already been solved by Myers [8℄ in

his simpler formulation for edit distan
e
omputation. Following Hyyr�o's explanation

[4, 10℄, we unroll DP

j

(i� 1) to obtain

DP

j

(i) � X(i) _ (X(i� 1) ^ Y (i� 1)) _ (DP

j

(i� 2) ^ Y (i� 1) ^ Y (i� 2))

and unrolling repeatedly we obtain

DP

j

(i) � _

i

r=0

�

X(i� r) ^

�

^

i�1

s=i�r

Y (s)

��

that is, any bit set in X before position i
an propagate through a sequen
e of bits

set in Y that rea
h position i� 1, so as to set position i in DP

j

. Myers [8℄ has shown

that the above formula
an be
omputed using bit-parallelism as follows:

X M [B

j

℄ j V T

j�1

Y VM

j�1

DP

j

 ((Y + (X & Y))

^

Y) j X

Let us now
onsider DZ. From Se
tion 2 we have

DZ

i;j

� � DP

i;j

^ (Z

i�1;j�1

_ V P

i;j�1

_ HP

i�1;j

)

where this time the problem arises with HP

i�1;j

. But it turns out that ve
tor HP

j

an be
omputed on
e the ve
tor DP

j

is known. In Se
tion 2 we gave the formula

HP

i;j

� (DP

i;j

^ V Z

i;j�1

) _ (DZ

i;j

^ VM

i;j�1

)

for it. If we look at the situation where the
ondition DZ

i;j

^ VM

i;j�1

is true, we

an have C

i;j

= x only if C

i�1;j

= x + 1, that is, only if HP

i�1;j

is true. Also, DP

i;j

must obviously be false. Hen
e, DZ

i;j

^ VM

i;j�1

) HP

i�1;j

^ VM

i;j�1

^ � DP

i;j

.

Moreover, it is straighforward to see that the
ondition DZ

i;j

^ VM

i;j�1

is true

whenever HP

i�1;j

^ VM

i;j�1

^ � DP

i;j

is true, and thus we have the following

alternative formula for HP

i;j

:

HP

i;j

� (DP

i;j

^ V Z

i;j�1

) _ (HP

i�1;j

^ VM

i;j�1

^ � DP

i;j

)

The
ir
ular dependen
y on HP

j

an be solved in similar fashion as in the
ase of

omputing ve
tor DP

j

. In this
ase, de�ning temporary ve
tors X and Y su
h that

101

Pro
eedings of the Prague Stringology Conferen
e '05

X(i) � DP

j

(i) ^ V Z

j�1

(i) and Y (i) � VM

j�1

(i + 1)^ � DP

j

(i + 1), the pre
eding

formula for HP

i;j

gets the ve
tor form

HP

j

(i) � X(i) _ (HP

j

(i� 1) ^ Y (i� 1))

whi
h is identi
al to the previous
ir
ular dependen
y for
omputing DP

j

. We get

immediately the following bit-parallel formula for
omputing HP

j

:

X DP

j

& V Z

j�1

Y (VM

j�1

& � DP

j

) >> 1

HP

j

 ((Y + (X & Y))

^

Y) j X

On
e ve
tor HP

j

is available,
omputing the ve
tor DZ

j

be
omes easy: a straight-

forward
onversion of its formula leads into the following bit-parallel
ode.

DZ

j

 � DP

j

& (((Z

j�1

<< 1) j 1) j V P

j�1

j (HP

j

<< 1))

where, after the shift of Z

j�1

we have introdu
ed a \1" at its lowest bit to re
e
t the

fa
t that C

0;j�1

= 0 (that is, Z

0;j�1

= 1) for any j (re
all that row zero of Z is not

represented). Similarly, HP

0;j

= 0 be
ause C

0;j

� C

0;j�1

= 0 6= 1, so we leave the

new rightmost bit in zero after shifting HP

j

. Finally, we have the following simple

bit-parallel formula for DM

j

.

DM

j

 � (DP

j

j DZ

j

)

3.3 Computing Other Ve
tors H�

j

and V �

j

On
e DP

j

, HP

j

, DM

j

, andDZ

j

orresponding to the
urrent
olumn j are
omputed,

the rest
ows easily by following the formulas used in Se
tion 2. Again, when we shift

a bit ve
tor to the left, we add or not a \1" bit at the rightmost position depending

on whi
h is the value of that ve
tor at the unrepresented row zero.

HT

j

 DP

j

& VM

j�1

HM

j

 V T

j�1

j (DZ

j

& V P

j�1

) j (DM

j

& V Z

j�1

)

HZ

j

 � (HT

j

j HP

j

j HM

j

)

V T

j

 DP

j

& (HM

j

<< 1)

V P

j

 (DP

j

& ((HZ

j

<< 1) j 1)) j (DZ

j

& (HM

j

<< 1))

VM

j

 (HT

j

<< 1) j (DZ

j

& (HP

j

<< 1)) j (DM

j

& ((HZ

j

<< 1) j 1))

V Z

j

 � (V T

j

j V P

j

j VM

j

)

3.4 Keeping S
ores and Computing Ve
tor Z

j

On
e the bit ve
tors for
olumn j have been
omputed, we
he
k whether some
ell

values in
olumn j of matrix C ex
eed the mat
hing threshold k. At the same time it

is also
onvenient to
he
k whi
h
ells have the value zero and re
ord those positions

into ve
tor Z

j

. Unfortunately the di�erential information of the bit ve
tors does not

allow us to make this in any simple and fast way. The naive approa
h would be to

use the di�eren
e information between adja
ent
ell values to
ompute and
he
k the

ell values C

1:::m;j

. This would take O(m) time per
olumn, making the overall run

time O(mn), the same as with
lassi
al dynami
 programming.

102

Bit-Parallel Computation of Lo
al Similarity S
ore Matri
es with Unitary Weights

On the other hand, as shown by Myers [8℄, a single value C

i;1:::n

an be tra
ked in

onstant time per
olumn by using the horizontal ve
tors H�

j

. The problem is that

we need to tra
k all the rows i, falling again to O(m) time per
olumn.

Our approa
h is to set up multiple witnesses into a single bit ve
tor, and then

s
an the
olumn in parallel with the witnesses. Ea
h witness will be asso
iated with

some i and keep tra
k of the
ell values C

i;1:::n

, that is, the
ell values on row i of

C. A somewhat similar method was used in [5, 6℄ as part of an approximate string

mat
hing algorithm.

Let MW

j

be a length-m bit ve
tor that holds the multiple witnesses at
olumn

j and let Q denote the number of bits taken by ea
h witness. Then MW

j

an hold

r = bm=Q
 witnesses. Let MW

j

fig denote a witness that has its �rst bit in position

i of MW

j

. MW

j

fig o

upies the bits MW

j

(i : : : i+Q� 1) and keeps tra
k of the
ell

values on row i of C. The �rst witness is always MW

j

f1g, and the rest are spread

evenly into MW

j

. This
an be done in su
h manner that the largest empty gap after

the region of any witness is d(m�rQ)=re. Let us de�ne Q

0

= Q+d(m�rQ)=re, that

is, Q

0

gives the maximum distan
e between the �rst bit of a witness and the �rst bit

of the next witness or, for the last witness, the position after the last bit of the whole

ve
tor.

Assume that C

i;j

= x and the witness MW

j

fig exists. For reasons that be
ome

lear below, we re
ord the value x into MW

j

fig in the form 2

Q�1

� x. To guarantee

that the witnesses
an represent all possible s
ore values from zero to min(m;n), the

parameter Q is determined as the minimum number for whi
h 2

Q�1

� min(m;n),

that is, Q = dlog

2

min(m;n)e + 1. Figure 1 exempli�es (ve
tors S, E, K will be

introdu
ed soon).

0

1

2

3

0

2

2

1

00

1

2

3

4

5

6

7

8

C
j

0

1

0

1

0

MWj

1

0

0

The witness MWj{1} represents

the value C1,j = 0 as 2Q−1 − 0 =

8 = 10002.

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

S E K

0

1

0

0

0

1

0

0

k − 1 = 2 =

00102

k − 1 = 2 =

00102

The witness MWj{5} represents

the value C5,j = 2 as 2Q−1 − 2 =

6 = 01102.

m = 8, k = 3,

Q = ⌈log
2
m⌉ + 1 = 4

Figure 1: Example of usage of MW , S, E, and K ve
tors.

With these
onventions the witnesses have the following properties:

(1) The Qth bit of MW

j

fig is set if and only if C

i;j

= 0.

(2) Adding some value x to C

i;j

orresponds to subtra
ting x from MW

j

fig, and

vi
e versa.

(3) If we add k � 1 to MW

j

fig, then the Qth bit of MW

j

fig is set if and only if

C

i;j

< k.

The witnesses are initialized to MW

0

fig = 2

Q�1

sin
e all values in
olumn 0 of C are

zero. After that the witness values are
omputed by using the horizontal ve
tors. For

103

Pro
eedings of the Prague Stringology Conferen
e '05

example, ifMW

j�1

fig = x and the ith bit ofHT

j

is set, thenMW

j

fig =MW

j�1

fig�

2 = x� 2 (note that we subtra
ted the +2 due to property (2)). When MW

j�1

and

the horizontal ve
tors H�

j

are available, all witnesses MW

j

f1g : : :MW

j

frg may be

omputed in bit-parallel fashion. To a
hieve this, we use a \start" bit mask S with

bits set in those lo
ations that
orrespond to the �rst bits of witnesses. Then, the

whole witness ve
tor MW

j

may be
omputed as:

MW

j

 MW

j�1

� 2(HT

j

& S)� (HP

j

& S) + (HM

j

& S)

On
e MW

j

and the verti
al ve
tors V �

j

are available, all
ell values in
olumn j of C

an be s
anned in bit-parallel manner. First we
opy MW

j

into an auxiliary ve
tor

X. At this stage ea
h witness MW

j

fig
opied into X represents the value C

i;j

. Then

ea
h witness MW

j

is updated Q

0

� 1 times. First to represent the value C

i+1;j

, then

the value C

i+2;j

, and so on until the value C

i+Q

0

�1;j

. After Q

0

� 1 iterations, all
ells

of
olumn j have been s
anned (some possibly twi
e if Q

0

6= Q). At ea
h stage of

the s
an we
he
k the
urrent witness values for mat
hes or zeros. For this we use

an \end" bit mask E S << (Q � 1) that has a bit set in those positions that

orrespond to the last bits of the witnesses. In addition we use a bit mask K that

holds the value k � 1 at ea
h witness lo
ation.

When the witnesses MW

j

fig in X represent the
ells C

i+h;j

, the ve
tor ((X +

K) & E) >> (Q � 1 � h) has bits set in those positions u where C

u;j

< k, and the

ve
tor (X & E) >> (Q� 1� h) has bits set in those positions u where C

u;j

= 0.

Our strategy for
he
king mat
hes is to re
ord during the s
an whether
olumn j

ontains any mat
hes or not. These may then be
he
ked more
arefully, if desired,

but if all mat
hing lo
ations are re
orded exa
tly, the run time be
omes again O(mn)

in the worst
ase.

The mat
h
he
king is done by using an auxiliary ve
tor Y that is initialized by

setting Y E. When MW

j

fig represents C

i+h;j

, we set Y Y & (X + K).

There is at least one mat
h in
olumn j if and only if Y 6= E after the Q

0

iterations

(
onsisting of the initial stage and Q

0

� 1 update stages). The zero ve
tor Z

j

is

omputed by initializing it to zero and setting Z Z j ((X & E) >> (Q� 1� h))

when MW

j

fig represents C

i+h;j

.

omputes MW

j

, then it updates the witnesses in the auxiliary ve
tor X to go

through all
ell values in
olumn j. It also re
ords mat
hing
olumns as well as

omputes the ve
tor Z

j

during the s
an. The �rst stage is handled separately, and

for this reason for example the ve
tor Z

j

is dire
tly given a non-zero value.

Figure 2 gives the
omplete algorithm. Note that, by
arefully
hoosing the update

order, we manage to keep only one
opy of ea
h ve
tor.

3.5 Analysis

Up to now we have assumed that m � w. In this
ase
omputing the M table takes

O(m+j�j) time, and the rest of the algorithm in Figure 2
learly runs in time O(nQ

0

).

Sin
e Q

0

< 2Q and Q = dlog

2

min(m;n)e+1, we have that nQ

0

= O(n logmin(m;n))

and the total running time is O(j�j+m+ n logmin(m;n)).

If m > w, the length-m bit ve
tors
an be simulated in O(dm=we) time by using

dm=we ve
tors of length w (details are omitted for la
k of spa
e). This results in the

time O(m+dm=wej�j) for
omputing theM table, and the run time of the rest of the

104

Bit-Parallel Computation of Lo
al Similarity S
ore Matri
es with Unitary Weights

Lo
alS
ores (A

1:::m

; B

1:::n

; k)

1. For
 2 � Do M [
℄ 0

2. For i 2 1 : : : m Do M [A

i

℄ M [A

i

℄ j 2

i�1

3. V P; VM; V T 0, V Z;Z 2

m

� 1

4. Q dlog

2

me+ 1

5. r bm=Q

6. S distribute evenly r witnesses and mark their �rst bit

7. MW;E S << (Q� 1)

8. K S � (k � 1)

9. Q

0

 Q+ d(m� rQ)=re

10. For j 2 1 : : : n Do

11. X M [B

j

℄ j V T

12. DP ((VM + (X & VM))

^

VM) j X

13. X DP & V Z

14. Y (VM & � DP) >> 1

15. HP ((Y + (X & Y))

^

Y) j X

16. DZ � DP & (((Z << 1) j 1) j V P j (HP << 1))

17. DM � (DP j DZ)

18. HT DP & VM

19. HM V T j (DZ & V P) j (DM & V Z)

20. HZ � (HT j HP j HM)

21. V T DP & (HM << 1)

22. V P (DP & ((HZ << 1) j 1)) j (DZ & (HM << 1))

23. VM (HT << 1) j (DZ & (HP << 1)) j (DM & ((HZ << 1) j 1))

24. V Z � (V T j V P j VM)

25. MW MW � 2(HT & S)� (HP & S) + (HM & S)

26. X MW

27. Y E

28. Z 0

29. For h 2 0 : : : Q

0

� 1 Do

30. Z Z j ((X & E) >> (Q� 1� h))

31. Y Y & (X +K)

32. X X � 2((V T

j

>> h) & S)� ((V P

j

>> h) & S) + ((VM

j

>> h) & S)

33. If Y 6= E Then Re
ord mat
h at
olumn j

Figure 2: Complete bit-parallel algorithm to
ompute lo
al similarity. Some opti-

mizations have been dis
arded for
larity.

105

Pro
eedings of the Prague Stringology Conferen
e '05

algorithm is multiplied by a fa
tor ofO(dm=we), whi
h yieldsO(mn logmin(m;n)=w),

taking the alphabet size as a
onstant for simpli
ity.

The run time O(mn logmin(m;n; w)=w) mentioned in the beginning of the paper

is �nally a
hieved by observing that the values in di�erent length-w segments of

the bit ve
tors may be stored using delta en
oding. If C

dhw+w=2e;j

= x for some

h � 0, we know from Lemma 1 that the values in the
orresponding length-w se
tion,

C

hw+1:::(h+1)w;j

, must be in the range x � w + 1 : : : x + w. Thus if the witnesses for

se
tion C

hw+1:::(h+1)w;j

represent the values of form C

dhw+w=2e;j

�C

i;j

, we may use the

value Q = dlog

2

min(m;n; 2w)e + 1 in storing the witnesses. Here we use the value

2w instead of w in order to ensure that the sum X +K in mat
h
he
king does not

ause an over
ow. Note that this s
heme requires some modi�
ations in the pro
ess

of
he
king for zero values and/or mat
hes. For example the values in K must be

adjusted depending on the
urrent base-value x.

Compared to the best bit-parallel
omplexity for global and semiglobal similarity

(a
tually, for distan
e
omputation), O(mn=w), we have a logarithmi
 penalty fa
-

tor be
ause of the use of lo
al similarity. At this point it should be
lear that we

an
ompute global and semiglobal s
ores (rather than distan
es) within the same

O(mn=w)
omplexity, just by removing the use of ve
tor Z and
he
king the s
ore

only at a single
ell or a single row. This removes the need for the witnesses and their

logarithmi
 penalty.

4 Experimental Results

We implemented the O(mn logmin(m;n; w)=w) version of our algorithm and
om-

pared it to the plain dynami
 programming algorithm. Both algorithms were pro-

grammed in C, and we tried to make both implementations as eÆ
ient as possible.

The test
omputer was a 64-bit Spar
 Ultra 2 with 128 mb ram, and the
odes were

ompiled with GCC 3.3.1 with optimization swit
hed on. The test strings were ran-

domly sele
ted DNA sequen
es from the genome of S.
erevisiae (baker's yeast). The

test
ontained two di�erent types of s
enarios. In the �rst we tested with short pat-

terns and a long text. This test involved the mat
hing thresholds k = 1 and k = m�1

to see what kind of e�e
t the value of k has. In the se
ond we tested aligning patterns

and texts that have the same length, and this time we used only k = m � 1. The

results are shown in Fig. 3 (left and right, respe
tively). In them our algorithm is

observed to be 1.2 - 8.5 times faster than the basi
 dynami
 programming algorithm

when w = 64.

5 Con
lusions

We have presented the �rst bit-parallel algorithm to
ompute lo
al similarity s
ore

between two strings, whi
h has many pra
ti
al appli
ations in
omputational biology.

While dynami
 programming, the only existing algorithm, takes timeO(mn) (m and n

being the lengths of the strings), our algorithm needs time O(mn logmin(m;n; w)=w)

using a
omputer word of w bits. Our experiments show up to 8-fold speedups.

Our algorithm
annot repla
e dynami
 programming be
ause it
annot handle

prize and penalty values other than �1. However, it
an be used as a fast �lter

106

Bit-Parallel Computation of Lo
al Similarity S
ore Matri
es with Unitary Weights

 0

 1

 2

 3

 4

 5

 6

 7

m
=32,k=31

m
=32,k=1

m
=16,k=15

m
=16,k=1

m
=8,k=7

m
=8,k=1

m
=4,k=3

m
=4,k=1

D
yn

.P
ro

g.
/O

ur
s

m,k combinations

Ratio for n=500,000, increasing m, and k=1,m-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 128 256 512 1024 2048

D
yn

.P
ro

g.
/O

ur
s

n=m

Ratio for increasing n=m and k=m-1=n-1

Figure 3: Speedup fa
tor of our bit-parallel algorithm over the basi
 dynami
 pro-

gramming algorithm. On the left, aligning long against short strings. On the right,

aligning strings of the same length.

to dis
ard most of the areas and let the dynami
 programming algorithm
on
en-

trate only on the areas that look promising. Moreover, there are some DNA-related

appli
ations where they use pre
isely those �1 penalties.

As future resear
h issues, the most immediate is to investigate whether it is possi-

ble to \pa
k" the logi
al
onditions des
ribing the di�eren
es a
ross the diverse dire
-

tions in a di�erent way that makes the overall formula faster to
ompute. Longer-term

goals are a

omodating other
ost fun
tions apart from the unitary-
ost one, and try-

ing to obtain optimal speedup, removing the term O(logmin(m;n; w)) from the
ost

formula.

Referen
es

[1℄ A. Bergeron and S. Hamel. Ve
tor algorithms for approximate string mat
hing.

International Journal of Foundations of Computer S
ien
e, 13(1):53{65, 2002.

[2℄ M. Cro
hemore, G. Landau, and M. Ziv-Ukelson. A sub-quadrati
 sequen
e

alignment algorithm for unrestri
ted s
oring matri
es. In Pro
. 13th Annual

ACM-SIAM Symposium on Dis
rete Algorithms (SODA'02), pages 679{688,

2002.

[3℄ D. Gus�eld. Algorithms on Strings, Trees and Sequen
es: Computer S
ien
e and

Computational Biology. Cambridge University Press, 1997.

[4℄ H. Hyyr�o. Explaining and extending the bit-parallel approximate string mat
h-

ing algorithm of Myers. Te
hni
al Report A-2001-10, Dept. of Computer and

Information S
ien
es, University of Tampere, Tampere, Finland, 2001.

[5℄ H. Hyyr�o and G. Navarro. Faster bit-parallel approximate string mat
hing. In

Pro
. 13th Combinatorial Pattern Mat
hing (CPM'02), LNCS 2373, pages 203{

224, 2002.

[6℄ H. Hyyr�o and G. Navarro. Bit-parallel witnesses and their appli
ations to ap-

proximate string mat
hing. Algorithmi
a, 41(3):203{231, 2005.

107

Pro
eedings of the Prague Stringology Conferen
e '05

[7℄ W. Masek and M. Paterson. A faster algorithm for
omputing string edit dis-

tan
es. J. of Computer and System S
ien
es, 20:18{31, 1980.

[8℄ G. Myers. A fast bit-ve
tor algorithm for approximate string mat
hing based on

dynami
 progamming. Journal of the ACM, 46(3):395{415, 1999.

[9℄ G. Navarro. A guided tour to approximate string mat
hing. ACM Computing

Surveys, 33(1):31{88, 2001.

[10℄ G. Navarro and M. RaÆnot. Flexible Pattern Mat
hing in Strings { Pra
ti
al on-

line sear
h algorithms for texts and biologi
al sequen
es. Cambridge University

Press, 2002.

[11℄ S. Wu, U. Manber, and E. Myers. A sub-quadrati
 algorithm for approximate

limited expression mat
hing. Algorithmi
a, 15(1):50{67, 1996.

108

