
Bit-Parallel Computation of Loal Similarity Sore

Matries with Unitary Weights

Heikki Hyyr�o

1

and Gonzalo Navarro

2�

1

Department of Computer Sienes, University of Tampere, Finland.

e-mail: heikki.hyyro�gmail.om

2

Department of Computer Siene, University of Chile.

e-mail: gnavarro�d.uhile.l

Abstrat. Loal similarity omputation between two sequenes permits de-

teting all the relevant alignments present between subsequenes thereof. A

well-known dynami programming algorithm works in time O(mn), m and n be-

ing the lengths of the subsequenes. The algorithm is rather slow when applied

over many sequene pairs. In this paper we present the �rst bit-parallel ompu-

tation of the sore matrix, for a simpli�ed hoie of sores. If the omputer word

has w bits, then the resulting algorithm works in O(mn logmin(m;n;w)=w)

time, ahieving up to 8-fold speedups in pratie. Some DNA omparison ap-

pliations use preisely the simpli�ed sores we handle, and thus our algorithm

is diretly appliable. In others, our method an be used as a raw �lter to

disard most of the strings, so the lassial algorithm an be foused only on

the substring pairs that an yield relevant results.

1 Introdution and Related Work

Sequene omparison is a fundamental task in Computational Biology, in order to

detet relevant similarities between a pair of geneti or protein sequenes [3℄. Three

kinds of similarities are of interest: (i) global similarity ompares two strings as a

whole, (ii) semiglobal (or semiloal) similarity looks for substrings of a given string

that are similar to a seond given string, (iii) loal similarity looks for similar sub-

strings of two given strings.

Similarity is usually expressed using a sore funtion, whih gives prizes or penal-

ties to operations on the strings and to pairings of haraters of the two strings.

Usually pairing the same harater in both strings involves a prize beause we have

found a similarity. Pairing di�erent haraters, inserting or removing haraters, in-

volves penalties. The spei� values for prizes and penalties depend on the biologial

model used for the similarity (for example, logarithms of mutation probabilities). The

similarity is then expressed as the highest possible sore of a sequene of operations

that align one string to the other.

Global and semiglobal similarity �nd appliations in other areas suh as text

searhing. Global similarity omputation is then seen as a distane omputation. The

�

Partially funded by Millennium Nuleus Center for Web Researh, Grant P04-067-F, Mideplan,

Chile.

95

Proeedings of the Prague Stringology Conferene '05

distane is never negative, and the smaller it is, the more similar the sequenes are.

Semiglobal similarity an be onverted into an approximate searh problem, namely

to �nd the approximate ourrenes of a short pattern inside a long text. Loal

similarity, on the other hand, is more spei� to omputational biology appliations.

All these sorts of similarity omputations an be easily arried out in O(mn) time

using dynami programming. Given strings A

1:::m

and B

1:::n

, the general method

is to ompute an (m + 1) � (n + 1) matrix C whose ell C

i;j

gives the maximum

sore/minimum distane to align/onvert A

:::i

to B

:::j

. The ells of row 0 and olumn

0 form initially known boundary ases, and the remaining m� n ells are omputed

using a reurrene. For example, for global similarity sore omputation we may have

C

i;0

= �i, C

0;j

= �j, and for i; j > 0

C

i;j

= max(C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

� 1; C

i�1;j

� 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 1 else � 1

where we have assumed that all penalties are �1 and prizes are +1. More ompli-

ated sore funtions an be real-valued and depend on the haraters involved. The

maximum sore for the strings A and B is C

m;n

.

If we are instead omputing distane, we may have C

i;0

= i, C

0;j

= j, and for

i; j > 0

C

i;j

= min(C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

+ 1; C

i�1;j

+ 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 0 else 1

where we have assumed that all osts are 1. The minimum distane between A and

B is C

m;n

.

Semiglobal similarity omputation is obtained by using the above formulas exept

that C

0;j

= 0, so that an alignment of A an start afresh at any position in B. High

sore/low distane at ell C

m;j

tells us that an interesting alignment ends at position

j in B.

Loal similarity omputation needs a somewhat di�erent arrangement and, uri-

ously, it seems not expressible using the distane model, but just the sore model. In

this ase we have C

i;0

= C

0;j

= 0, and for i; j > 0

C

i;j

= max(0; C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

� 1; C

i�1;j

� 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 1 else � 1

where we remark the 0 value involved in the maximum. The objetive of this zero

is that if an alignment in progress has given us more penalties than prizes, then it

is better to start afresh from that position. Any ell value C

i;j

that is high enough

indiates that similar substrings end at position i in A and j in B.

Muh e�ort has been arried out in order to eÆiently ompute the distane ma-

trix, both for global and semiglobal alignments. In partiular, bit-parallelism has

given the best results in pratie. Bit-parallelism paks several values inside a om-

puter word and updates them all in one shot. The bit-parallel algorithm that best

\parallelizes" the matrix omputation is from Myers [8℄, whih omputes semiglobal

similarity and is easily adapted to ompute global similarity [4, 5, 6℄. Using Myers'

algorithm, both similarities an be omputed in O(mn=w) time using a omputer

96

Bit-Parallel Computation of Loal Similarity Sore Matries with Unitary Weights

word of w bits, whih is the optimal bit-parallel speedup. Myers' algorithm strongly

relies on the fat that onseutive ells of C

i;j

di�er only by �1, 0, or 1. Several other

bit-parallel algorithms exploiting the same property have been proposed [9℄.

Other approahes to speed up the omputation exist. Di�erent Four-Russians

tehniques [7, 11℄ obtain O(mn= log(mn)) time. The same omplexity is obtained by

using a Ziv-Lempel fatoring [2℄, whih generalizes to loal similarity with arbitrary

weights. In pratie, when appliable, bit-parallel algorithms are faster.

Bit-parallel omputation of sore matries, however, has not been attempted.

Bergeron and Hamel [1℄ have extended Myers' sheme to handle arbitrary integer

weights for substitutions, as well as a �xed weight for insertions and deletions.

Their algorithm is O(mn log()=w) time. This sheme annot be used to ompute

loal similarity.

In general, global and semiglobal sore omputation an be onverted into dis-

tane omputation. However, loal similarity is of di�erent nature and annot be

easily mapped to a known distane omputation sheme. In this paper we present

a bit-parallel algorithm inspired on Myers' sheme (and more preisely on Hyyr�o's

version [4℄), whih obtains O(mn logmin(m;n; w)=w) time. The algorithm assumes

that aligning two haraters yields a prize of +1 when they are equal and a penalty

of �1 otherwise, and that inserting or deleting haraters has a penalty of �1.

The main obstales to obtain the algorithm are (1) that the reurrene is more

ompliated than the one a�orded by Myers (in partiular, di�erenes of +2 among

ontiguous ells are possible), and (2) that the zero in the maximization involves

knowing absolute ell values, while the whole philosophy of Myers' sheme relies on

storing di�erential values.

We implemented the algorithm and ompared it against plain dynami program-

ming, whih is urrently the only alternative. We show that up to 8-fold speedups

are obtained using our algorithm.

Our algorithm annot replae dynami programming beause it annot handle

other prize and penalty values. On the other hand, while sore omputations on

protein sequenes are always weighted, there are many ases of sore omputations

on DNA sequenes where our simpli�ed model is atually used [3℄. It may also be

feasible to use our method as a fast �lter to disard most of the matrix and let the

weighted dynami programming algorithm onentrate only on the matrix areas that

look promising.

2 A Bit-Parallel Design

Let us fous on the simple sore funtion depited in the Introdution, that is,

C

i;0

= C

0;j

= 0 and, for i; j > 0;

C

i;j

= max(0; C

i�1;j�1

+ Æ(A

i

; B

j

); C

i;j�1

� 1; C

i�1;j

� 1)

where Æ(A

i

; B

j

) = if A

i

= B

j

then 1 else � 1

We prove now some properties of matrix C. Note, to start, that C ontains no

negative values.

97

Proeedings of the Prague Stringology Conferene '05

Lemma 1: Given the above de�nition of matrix C, it holds

C

i;j

� C

i�1;j�1

2 �1; 0;+1 for any i; j > 0

C

i;j

� C

i;j�1

2 �1; 0;+1;+2 for any i � 0; j > 0

C

i;j

� C

i�1;j

2 �1; 0;+1;+2 for any i > 0; j � 0

Proof: We proeed indutively, so we assume it proved for any (i

0

; j

0

) suh that j

0

< j,

or j

0

= j and i

0

< i. The base ases are immediate. Now, for the indutive ase, let us

start with the �rst proposition. The option C

i�1;j�1

+Æ(A

i

; B

j

) in the \max" lause of

the formula for C

i;j

guarantees that C

i;j

�C

i�1;j�1

� �1. Indutive Hypothesis tells us

that C

i�1;j

� C

i�1;j�1

+2 and C

i;j�1

� C

i�1;j�1

+2, and thus C

i;j

= max(0; C

i�1;j�1

+

Æ(A

i

; B

j

); C

i;j�1

�1; C

i�1;j

�1) � max(C

i�1;j�1

+Æ(A

i

; B

j

); C

i�1;j�1

+1; C

i�1;j�1

+1) =

C

i�1;j�1

+ 1. Here we removed the zero from the \max" lause as it is known that

C

i�1;j�1

+ 1 � 1 > 0. By ombining the two previous observations, we have that

�1 � C

i;j

� C

i�1;j�1

� 1.

Let us now onsider the seond proposition. First we note that C

i;j

� C

i;j�1

�

�1 beause of the option C

i;j�1

� 1 inside the \max" lause. From our Indutive

Hypothesis and the above-proved �rst proposition we have that C

i;j�1

� C

i�1;j�1

�1 �

C

i;j

�1�1 = C

i;j

�2. Thus �1 � C

i;j

�C

i;j�1

� 2. The third proposition is symmetri

with the seond and omes out similarly. 2

Given the ranges of values proved for onseutive di�erenes, we will represent matrix

C inrementally using the following bit matries:

M

i;j

� A

i

= B

j

DP

i;j

� C

i;j

� C

i�1;j�1

= +1

Z

i;j

� C

i;j

= 0 DZ

i;j

� C

i;j

� C

i�1;j�1

= 0

DM

i;j

� C

i;j

� C

i�1;j�1

= �1

HT

i;j

� C

i;j

� C

i;j�1

= +2 V T

i;j

� C

i;j

� C

i�1;j

= +2

HP

i;j

� C

i;j

� C

i;j�1

= +1 V P

i;j

� C

i;j

� C

i�1;j

= +1

HZ

i;j

� C

i;j

� C

i;j�1

= 0 V Z

i;j

� C

i;j

� C

i�1;j

= 0

HM

i;j

� C

i;j

� C

i;j�1

= �1 VM

i;j

� C

i;j

� C

i�1;j

= �1

Here M and Z stand for \math" and \zero", respetively. D, H, and V stand for

\diagonal", \horizontal", and \vertial", respetively. T , P , Z, and M stand for

\plus two", \plus one", \zero", and \minus one", respetively. When a ell refers to

a value out of bounds, suh as HP

i;0

, its value is not really important.

The above information learly represents the ells of matrix C. For example,

C

i;j

=

i

X

r=1

(2� V T

r;j

+ 1� V P

r;j

� 1� VM

r;j

)

The next step is to derive logial properties that relate those bit matries, so as

to permit an eÆient bit-parallel implementation.

DP

i;j

� M

i;j

_ V T

i;j�1

_ HT

i�1;j

:

It is lear that if either A

i

= B

j

, C

i;j�1

= C

i�1;j�1

+ 2, or C

i�1;j

= C

i�1;j�1

+ 2,

then C

i;j

= C

i�1;j�1

+ 1. Moreover, if none of them hold, there is no way for

C

i;j

to get the value C

i�1;j�1

+ 1.

98

Bit-Parallel Computation of Loal Similarity Sore Matries with Unitary Weights

DZ

i;j

� � DP

i;j

^ (Z

i�1;j�1

_ V P

i;j�1

_ HP

i�1;j

) :

From the sore reurrene we an easily derive the rule that C

i;j

= C

i�1;j�1

if and

only if C

i;j

6= C

i�1;j�1

+1 and max(0; C

i;j�1

�1; C

i�1;j

�1) = C

i�1;j�1

. Moreover,

sine 0 � C

i�1;j�1

and the ondition C

i;j

6= C

i�1;j�1

+ 1 implies that C

i;j�1

<

C

i�1;j�1

+ 2 and C

i�1;j

< C

i�1;j�1

+ 2, it turns out that already C

i�1;j�1

�

max(0; C

i;j�1

� 1; C

i�1;j

� 1), so the ondition max(0; C

i;j�1

� 1; C

i�1;j

� 1) =

C

i�1;j�1

an be hanged into the form C

i�1;j�1

2 f0; C

i;j�1

� 1; C

i�1;j

� 1g.

This results in the above formula for DZ

i;j

.

DM

i;j

� � (DP

i;j

_DZ

i;j

) : As it is the only remaining hoie.

HT

i;j

� DP

i;j

^ VM

i;j�1

:

From now on we build on D� and the other bit matries, by exhaustively exam-

ining all the hoies for C

i;j

� C

i�1;j�1

using submatries where the lower right

ell is C

i;j

= x and the upper left an thus have a value x� 1, x or x+ 1. The

lower left ell is C

i;j�1

, whih in this partiular item must have the value x� 2.

We disard ases that are not possible aording to Lemma 1 and express the

remaining ases as logial onditions. We put \�" in the remaining orner to

signal impossible ases.

x� 1

x� 2 x

x �

x� 2 x

x+ 1 �

x� 2 x

HP

i;j

� (DP

i;j

^ V Z

i;j�1

) _ (DZ

i;j

^ VM

i;j�1

) :

x� 1

x� 1 x

x

x� 1 x

x + 1 �

x� 1 x

HM

i;j

� V T

i;j�1

_ (DZ

i;j

^ V P

i;j�1

) _ (DM

i;j

^ V Z

i;j�1

) :

x� 1

x + 1 x

x

x + 1 x

x+ 1

x+ 1 x

Note the simpli�ation in the �rst ondition sine V T

i;j�1

) DP

i;j

.

HZ

i;j

� � (HT

i;j

_HP

i;j

_HM

i;j

) : As it is the only remaining hoie.

V T

i;j

� DP

i;j

^HM

i�1;j

:

Now we fous on the upper right orner.

x� 1 x� 2

x

x x� 2

� x

x+ 1 x� 2

� x

V P

i;j

� (DP

i;j

^HZ

i�1;j

) _ (DZ

i;j

^HM

i�1;j

) :

x� 1 x� 1

x

x x� 1

x

x+ 1 x� 1

� x

VM

i;j

� HT

i�1;j

_ (DZ

i;j

^HP

i�1;j

) _ (DM

i;j

^HZ

i�1;j

) :

x� 1 x + 1

x

x x+ 1

x

x+ 1 x + 1

x

V Z

i;j

� � (V T

i;j

_ V P

i;j

_ VM

i;j

) : As it is the only remaining hoie.

99

Proeedings of the Prague Stringology Conferene '05

3 A Bit-Parallel Algorithm

Up to now we have foused on how to ompute the C matrix without regard for whih

should be the output of the algorithm. As explained, omputational biologists are

interested in matrix positions where the loal sore exeeds some threshold k. Those

positions are then subjet of further analysis.

Hene our algorithm will reeive two strings A and B, as well as a threshold value

k, and will point out all the positions (i; j) of matrix C where the sore of the loal

alignment between A

:::i

and B

:::j

is at least k, that is, where C

i;j

� k.

The idea of the bit-parallel algorithm is to proess C olumn by olumn (just like

the standard dynami programming algorithm). However, the bit-parallel algorithm

will proess all the olumn in one shot, not row by row. In this setion we assume

m � w, that is, we an pak all bits of a olumn G

j

= G

1:::m;j

in a single omputer

word, for any matrix G. Note that row zero is not represented. When needed, the

ith bit of vetor G

j

will be written as G

j

(i) = G

i;j

.

Therefore, our omputation will proeed with olumn bit vetors DP

j

, DM

j

,

DZ

j

, and so on, for j = 0 : : : n, eah paked in a omputer word. After step j of the

algorithm, the vetors will hold the bits orresponding to olumn j of the matrix.

We will use the usual C instrutions to handle bits: \&" as the bitwise-and, \j" as

the bitwise-or, \

^

" as the bitwise-xor, \�" as the bitwise-not, and \<<" to shift all

the bits one position to the left and enter a zero at the rightmost position. Sometimes

we will treat bit vetors as integers and perform arithmeti operations on them.

In a preomputation step, explained in Setion 3.1, the \math" matrixM is built

in a suitable way for bit-parallel proessing. The boundary onditions of matrix C are

handled by giving the proper values to Z

0

and V �

0

vetors, namely V P

0

= VM

0

=

V T

0

= 0 and Z

0

= V Z

0

= 2

m

� 1. Then we proess the haraters of B (matrix

olumns) one by one. Eah step j omputes the bit vetors for olumn j from the

vetors of olumn j � 1. First, the diagonal vetors D�

j

as well as the horizontal

vetor HP

j

are omputed. Vetor HP

j

is omputed already at this stage as we use

it in omputing DZ

j

. This part is omplex and is explained in Setion 3.2. Then

the rest of the horizontal and vertial vetors H�

j

and V �

j

are easy to ompute, as

explained in Setion 3.3. Finally, in Setion 3.4, we show how to �nd and report high

enough sores in olumn j, and how the same mehanism handles also omputing

vetor Z

j

. The way this last part is done is again slightly ompliated and uses a

tehnique that is rather di�erent from all the rest.

3.1 Computing Matrix M

Matrix M is represented as a table indexed by alphabet haraters. M [℄ is a bit

vetor suh that M [℄(i) = 1 i� A

i

= . This table is preomputed before �lling

matrix C. This way the ell value M

i;j

is atually represented by M [B

j

℄(i).

Matrix M is preomputed in O(m+ j�j) time, where � is the alphabet of A and

B, as follows. First initialize M [℄ 0 for every 2 � and then traverse string A

harater-wise, setting bit M [A

i

℄(i) 1.

100

Bit-Parallel Computation of Loal Similarity Sore Matries with Unitary Weights

3.2 Computing Vetors D�

j

and HP

j

Let us start with DP

j

. As seen in Setion 2, DP

i;j

� M

i;j

_ V T

i;j�1

_ HT

i�1;j

.

Sine we are omputing all the values at olumn j in one shot, omponent HT

i�1;j

is

troublesome beause it is not yet omputed (M

i;j

= M [B

j

℄(i) is known so it is not

problemati). Let us expand HT

i�1;j

using its de�nition:

DP

i;j

� M

i;j

_ V T

i;j�1

_ (DP

i�1;j

^ VM

i�1;j�1

)

where now the problemati value belongs to the same DP olumn. Let us express this

reurrene in vetor form. We de�ne temporary vetors X(i) �M [B

j

℄(i) _ V T

j�1

(i)

and Y (i) � VM

j�1

(i). Then the reurrene for vetor DP

j

is

DP

j

(i) � X(i) _ (DP

j

(i� 1) ^ Y (i� 1))

This partiular kind of irular dependeny has already been solved by Myers [8℄ in

his simpler formulation for edit distane omputation. Following Hyyr�o's explanation

[4, 10℄, we unroll DP

j

(i� 1) to obtain

DP

j

(i) � X(i) _ (X(i� 1) ^ Y (i� 1)) _ (DP

j

(i� 2) ^ Y (i� 1) ^ Y (i� 2))

and unrolling repeatedly we obtain

DP

j

(i) � _

i

r=0

�

X(i� r) ^

�

^

i�1

s=i�r

Y (s)

��

that is, any bit set in X before position i an propagate through a sequene of bits

set in Y that reah position i� 1, so as to set position i in DP

j

. Myers [8℄ has shown

that the above formula an be omputed using bit-parallelism as follows:

X M [B

j

℄ j V T

j�1

Y VM

j�1

DP

j

 ((Y + (X & Y))

^

Y) j X

Let us now onsider DZ. From Setion 2 we have

DZ

i;j

� � DP

i;j

^ (Z

i�1;j�1

_ V P

i;j�1

_ HP

i�1;j

)

where this time the problem arises with HP

i�1;j

. But it turns out that vetor HP

j

an be omputed one the vetor DP

j

is known. In Setion 2 we gave the formula

HP

i;j

� (DP

i;j

^ V Z

i;j�1

) _ (DZ

i;j

^ VM

i;j�1

)

for it. If we look at the situation where the ondition DZ

i;j

^ VM

i;j�1

is true, we

an have C

i;j

= x only if C

i�1;j

= x + 1, that is, only if HP

i�1;j

is true. Also, DP

i;j

must obviously be false. Hene, DZ

i;j

^ VM

i;j�1

) HP

i�1;j

^ VM

i;j�1

^ � DP

i;j

.

Moreover, it is straighforward to see that the ondition DZ

i;j

^ VM

i;j�1

is true

whenever HP

i�1;j

^ VM

i;j�1

^ � DP

i;j

is true, and thus we have the following

alternative formula for HP

i;j

:

HP

i;j

� (DP

i;j

^ V Z

i;j�1

) _ (HP

i�1;j

^ VM

i;j�1

^ � DP

i;j

)

The irular dependeny on HP

j

an be solved in similar fashion as in the ase of

omputing vetor DP

j

. In this ase, de�ning temporary vetors X and Y suh that

101

Proeedings of the Prague Stringology Conferene '05

X(i) � DP

j

(i) ^ V Z

j�1

(i) and Y (i) � VM

j�1

(i + 1)^ � DP

j

(i + 1), the preeding

formula for HP

i;j

gets the vetor form

HP

j

(i) � X(i) _ (HP

j

(i� 1) ^ Y (i� 1))

whih is idential to the previous irular dependeny for omputing DP

j

. We get

immediately the following bit-parallel formula for omputing HP

j

:

X DP

j

& V Z

j�1

Y (VM

j�1

& � DP

j

) >> 1

HP

j

 ((Y + (X & Y))

^

Y) j X

One vetor HP

j

is available, omputing the vetor DZ

j

beomes easy: a straight-

forward onversion of its formula leads into the following bit-parallel ode.

DZ

j

 � DP

j

& (((Z

j�1

<< 1) j 1) j V P

j�1

j (HP

j

<< 1))

where, after the shift of Z

j�1

we have introdued a \1" at its lowest bit to reet the

fat that C

0;j�1

= 0 (that is, Z

0;j�1

= 1) for any j (reall that row zero of Z is not

represented). Similarly, HP

0;j

= 0 beause C

0;j

� C

0;j�1

= 0 6= 1, so we leave the

new rightmost bit in zero after shifting HP

j

. Finally, we have the following simple

bit-parallel formula for DM

j

.

DM

j

 � (DP

j

j DZ

j

)

3.3 Computing Other Vetors H�

j

and V �

j

One DP

j

, HP

j

, DM

j

, andDZ

j

orresponding to the urrent olumn j are omputed,

the rest ows easily by following the formulas used in Setion 2. Again, when we shift

a bit vetor to the left, we add or not a \1" bit at the rightmost position depending

on whih is the value of that vetor at the unrepresented row zero.

HT

j

 DP

j

& VM

j�1

HM

j

 V T

j�1

j (DZ

j

& V P

j�1

) j (DM

j

& V Z

j�1

)

HZ

j

 � (HT

j

j HP

j

j HM

j

)

V T

j

 DP

j

& (HM

j

<< 1)

V P

j

 (DP

j

& ((HZ

j

<< 1) j 1)) j (DZ

j

& (HM

j

<< 1))

VM

j

 (HT

j

<< 1) j (DZ

j

& (HP

j

<< 1)) j (DM

j

& ((HZ

j

<< 1) j 1))

V Z

j

 � (V T

j

j V P

j

j VM

j

)

3.4 Keeping Sores and Computing Vetor Z

j

One the bit vetors for olumn j have been omputed, we hek whether some ell

values in olumn j of matrix C exeed the mathing threshold k. At the same time it

is also onvenient to hek whih ells have the value zero and reord those positions

into vetor Z

j

. Unfortunately the di�erential information of the bit vetors does not

allow us to make this in any simple and fast way. The naive approah would be to

use the di�erene information between adjaent ell values to ompute and hek the

ell values C

1:::m;j

. This would take O(m) time per olumn, making the overall run

time O(mn), the same as with lassial dynami programming.

102

Bit-Parallel Computation of Loal Similarity Sore Matries with Unitary Weights

On the other hand, as shown by Myers [8℄, a single value C

i;1:::n

an be traked in

onstant time per olumn by using the horizontal vetors H�

j

. The problem is that

we need to trak all the rows i, falling again to O(m) time per olumn.

Our approah is to set up multiple witnesses into a single bit vetor, and then

san the olumn in parallel with the witnesses. Eah witness will be assoiated with

some i and keep trak of the ell values C

i;1:::n

, that is, the ell values on row i of

C. A somewhat similar method was used in [5, 6℄ as part of an approximate string

mathing algorithm.

Let MW

j

be a length-m bit vetor that holds the multiple witnesses at olumn

j and let Q denote the number of bits taken by eah witness. Then MW

j

an hold

r = bm=Q witnesses. Let MW

j

fig denote a witness that has its �rst bit in position

i of MW

j

. MW

j

fig oupies the bits MW

j

(i : : : i+Q� 1) and keeps trak of the ell

values on row i of C. The �rst witness is always MW

j

f1g, and the rest are spread

evenly into MW

j

. This an be done in suh manner that the largest empty gap after

the region of any witness is d(m�rQ)=re. Let us de�ne Q

0

= Q+d(m�rQ)=re, that

is, Q

0

gives the maximum distane between the �rst bit of a witness and the �rst bit

of the next witness or, for the last witness, the position after the last bit of the whole

vetor.

Assume that C

i;j

= x and the witness MW

j

fig exists. For reasons that beome

lear below, we reord the value x into MW

j

fig in the form 2

Q�1

� x. To guarantee

that the witnesses an represent all possible sore values from zero to min(m;n), the

parameter Q is determined as the minimum number for whih 2

Q�1

� min(m;n),

that is, Q = dlog

2

min(m;n)e + 1. Figure 1 exempli�es (vetors S, E, K will be

introdued soon).

0

1

2

3

0

2

2

1

00

1

2

3

4

5

6

7

8

C
j

0

1

0

1

0

MWj

1

0

0

The witness MWj{1} represents

the value C1,j = 0 as 2Q−1 − 0 =

8 = 10002.

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

S E K

0

1

0

0

0

1

0

0

k − 1 = 2 =

00102

k − 1 = 2 =

00102

The witness MWj{5} represents

the value C5,j = 2 as 2Q−1 − 2 =

6 = 01102.

m = 8, k = 3,

Q = ⌈log
2
m⌉ + 1 = 4

Figure 1: Example of usage of MW , S, E, and K vetors.

With these onventions the witnesses have the following properties:

(1) The Qth bit of MW

j

fig is set if and only if C

i;j

= 0.

(2) Adding some value x to C

i;j

orresponds to subtrating x from MW

j

fig, and

vie versa.

(3) If we add k � 1 to MW

j

fig, then the Qth bit of MW

j

fig is set if and only if

C

i;j

< k.

The witnesses are initialized to MW

0

fig = 2

Q�1

sine all values in olumn 0 of C are

zero. After that the witness values are omputed by using the horizontal vetors. For

103

Proeedings of the Prague Stringology Conferene '05

example, ifMW

j�1

fig = x and the ith bit ofHT

j

is set, thenMW

j

fig =MW

j�1

fig�

2 = x� 2 (note that we subtrated the +2 due to property (2)). When MW

j�1

and

the horizontal vetors H�

j

are available, all witnesses MW

j

f1g : : :MW

j

frg may be

omputed in bit-parallel fashion. To ahieve this, we use a \start" bit mask S with

bits set in those loations that orrespond to the �rst bits of witnesses. Then, the

whole witness vetor MW

j

may be omputed as:

MW

j

 MW

j�1

� 2(HT

j

& S)� (HP

j

& S) + (HM

j

& S)

One MW

j

and the vertial vetors V �

j

are available, all ell values in olumn j of C

an be sanned in bit-parallel manner. First we opy MW

j

into an auxiliary vetor

X. At this stage eah witness MW

j

fig opied into X represents the value C

i;j

. Then

eah witness MW

j

is updated Q

0

� 1 times. First to represent the value C

i+1;j

, then

the value C

i+2;j

, and so on until the value C

i+Q

0

�1;j

. After Q

0

� 1 iterations, all ells

of olumn j have been sanned (some possibly twie if Q

0

6= Q). At eah stage of

the san we hek the urrent witness values for mathes or zeros. For this we use

an \end" bit mask E S << (Q � 1) that has a bit set in those positions that

orrespond to the last bits of the witnesses. In addition we use a bit mask K that

holds the value k � 1 at eah witness loation.

When the witnesses MW

j

fig in X represent the ells C

i+h;j

, the vetor ((X +

K) & E) >> (Q � 1 � h) has bits set in those positions u where C

u;j

< k, and the

vetor (X & E) >> (Q� 1� h) has bits set in those positions u where C

u;j

= 0.

Our strategy for heking mathes is to reord during the san whether olumn j

ontains any mathes or not. These may then be heked more arefully, if desired,

but if all mathing loations are reorded exatly, the run time beomes again O(mn)

in the worst ase.

The math heking is done by using an auxiliary vetor Y that is initialized by

setting Y E. When MW

j

fig represents C

i+h;j

, we set Y Y & (X + K).

There is at least one math in olumn j if and only if Y 6= E after the Q

0

iterations

(onsisting of the initial stage and Q

0

� 1 update stages). The zero vetor Z

j

is

omputed by initializing it to zero and setting Z Z j ((X & E) >> (Q� 1� h))

when MW

j

fig represents C

i+h;j

.

omputes MW

j

, then it updates the witnesses in the auxiliary vetor X to go

through all ell values in olumn j. It also reords mathing olumns as well as

omputes the vetor Z

j

during the san. The �rst stage is handled separately, and

for this reason for example the vetor Z

j

is diretly given a non-zero value.

Figure 2 gives the omplete algorithm. Note that, by arefully hoosing the update

order, we manage to keep only one opy of eah vetor.

3.5 Analysis

Up to now we have assumed that m � w. In this ase omputing the M table takes

O(m+j�j) time, and the rest of the algorithm in Figure 2 learly runs in time O(nQ

0

).

Sine Q

0

< 2Q and Q = dlog

2

min(m;n)e+1, we have that nQ

0

= O(n logmin(m;n))

and the total running time is O(j�j+m+ n logmin(m;n)).

If m > w, the length-m bit vetors an be simulated in O(dm=we) time by using

dm=we vetors of length w (details are omitted for lak of spae). This results in the

time O(m+dm=wej�j) for omputing theM table, and the run time of the rest of the

104

Bit-Parallel Computation of Loal Similarity Sore Matries with Unitary Weights

LoalSores (A

1:::m

; B

1:::n

; k)

1. For 2 � Do M [℄ 0

2. For i 2 1 : : : m Do M [A

i

℄ M [A

i

℄ j 2

i�1

3. V P; VM; V T 0, V Z;Z 2

m

� 1

4. Q dlog

2

me+ 1

5. r bm=Q

6. S distribute evenly r witnesses and mark their �rst bit

7. MW;E S << (Q� 1)

8. K S � (k � 1)

9. Q

0

 Q+ d(m� rQ)=re

10. For j 2 1 : : : n Do

11. X M [B

j

℄ j V T

12. DP ((VM + (X & VM))

^

VM) j X

13. X DP & V Z

14. Y (VM & � DP) >> 1

15. HP ((Y + (X & Y))

^

Y) j X

16. DZ � DP & (((Z << 1) j 1) j V P j (HP << 1))

17. DM � (DP j DZ)

18. HT DP & VM

19. HM V T j (DZ & V P) j (DM & V Z)

20. HZ � (HT j HP j HM)

21. V T DP & (HM << 1)

22. V P (DP & ((HZ << 1) j 1)) j (DZ & (HM << 1))

23. VM (HT << 1) j (DZ & (HP << 1)) j (DM & ((HZ << 1) j 1))

24. V Z � (V T j V P j VM)

25. MW MW � 2(HT & S)� (HP & S) + (HM & S)

26. X MW

27. Y E

28. Z 0

29. For h 2 0 : : : Q

0

� 1 Do

30. Z Z j ((X & E) >> (Q� 1� h))

31. Y Y & (X +K)

32. X X � 2((V T

j

>> h) & S)� ((V P

j

>> h) & S) + ((VM

j

>> h) & S)

33. If Y 6= E Then Reord math at olumn j

Figure 2: Complete bit-parallel algorithm to ompute loal similarity. Some opti-

mizations have been disarded for larity.

105

Proeedings of the Prague Stringology Conferene '05

algorithm is multiplied by a fator ofO(dm=we), whih yieldsO(mn logmin(m;n)=w),

taking the alphabet size as a onstant for simpliity.

The run time O(mn logmin(m;n; w)=w) mentioned in the beginning of the paper

is �nally ahieved by observing that the values in di�erent length-w segments of

the bit vetors may be stored using delta enoding. If C

dhw+w=2e;j

= x for some

h � 0, we know from Lemma 1 that the values in the orresponding length-w setion,

C

hw+1:::(h+1)w;j

, must be in the range x � w + 1 : : : x + w. Thus if the witnesses for

setion C

hw+1:::(h+1)w;j

represent the values of form C

dhw+w=2e;j

�C

i;j

, we may use the

value Q = dlog

2

min(m;n; 2w)e + 1 in storing the witnesses. Here we use the value

2w instead of w in order to ensure that the sum X +K in math heking does not

ause an overow. Note that this sheme requires some modi�ations in the proess

of heking for zero values and/or mathes. For example the values in K must be

adjusted depending on the urrent base-value x.

Compared to the best bit-parallel omplexity for global and semiglobal similarity

(atually, for distane omputation), O(mn=w), we have a logarithmi penalty fa-

tor beause of the use of loal similarity. At this point it should be lear that we

an ompute global and semiglobal sores (rather than distanes) within the same

O(mn=w) omplexity, just by removing the use of vetor Z and heking the sore

only at a single ell or a single row. This removes the need for the witnesses and their

logarithmi penalty.

4 Experimental Results

We implemented the O(mn logmin(m;n; w)=w) version of our algorithm and om-

pared it to the plain dynami programming algorithm. Both algorithms were pro-

grammed in C, and we tried to make both implementations as eÆient as possible.

The test omputer was a 64-bit Spar Ultra 2 with 128 mb ram, and the odes were

ompiled with GCC 3.3.1 with optimization swithed on. The test strings were ran-

domly seleted DNA sequenes from the genome of S. erevisiae (baker's yeast). The

test ontained two di�erent types of senarios. In the �rst we tested with short pat-

terns and a long text. This test involved the mathing thresholds k = 1 and k = m�1

to see what kind of e�et the value of k has. In the seond we tested aligning patterns

and texts that have the same length, and this time we used only k = m � 1. The

results are shown in Fig. 3 (left and right, respetively). In them our algorithm is

observed to be 1.2 - 8.5 times faster than the basi dynami programming algorithm

when w = 64.

5 Conlusions

We have presented the �rst bit-parallel algorithm to ompute loal similarity sore

between two strings, whih has many pratial appliations in omputational biology.

While dynami programming, the only existing algorithm, takes timeO(mn) (m and n

being the lengths of the strings), our algorithm needs time O(mn logmin(m;n; w)=w)

using a omputer word of w bits. Our experiments show up to 8-fold speedups.

Our algorithm annot replae dynami programming beause it annot handle

prize and penalty values other than �1. However, it an be used as a fast �lter

106

Bit-Parallel Computation of Loal Similarity Sore Matries with Unitary Weights

 0

 1

 2

 3

 4

 5

 6

 7

m
=32,k=31

m
=32,k=1

m
=16,k=15

m
=16,k=1

m
=8,k=7

m
=8,k=1

m
=4,k=3

m
=4,k=1

D
yn

.P
ro

g.
/O

ur
s

m,k combinations

Ratio for n=500,000, increasing m, and k=1,m-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 128 256 512 1024 2048

D
yn

.P
ro

g.
/O

ur
s

n=m

Ratio for increasing n=m and k=m-1=n-1

Figure 3: Speedup fator of our bit-parallel algorithm over the basi dynami pro-

gramming algorithm. On the left, aligning long against short strings. On the right,

aligning strings of the same length.

to disard most of the areas and let the dynami programming algorithm onen-

trate only on the areas that look promising. Moreover, there are some DNA-related

appliations where they use preisely those �1 penalties.

As future researh issues, the most immediate is to investigate whether it is possi-

ble to \pak" the logial onditions desribing the di�erenes aross the diverse dire-

tions in a di�erent way that makes the overall formula faster to ompute. Longer-term

goals are aomodating other ost funtions apart from the unitary-ost one, and try-

ing to obtain optimal speedup, removing the term O(logmin(m;n; w)) from the ost

formula.

Referenes

[1℄ A. Bergeron and S. Hamel. Vetor algorithms for approximate string mathing.

International Journal of Foundations of Computer Siene, 13(1):53{65, 2002.

[2℄ M. Crohemore, G. Landau, and M. Ziv-Ukelson. A sub-quadrati sequene

alignment algorithm for unrestrited soring matries. In Pro. 13th Annual

ACM-SIAM Symposium on Disrete Algorithms (SODA'02), pages 679{688,

2002.

[3℄ D. Gus�eld. Algorithms on Strings, Trees and Sequenes: Computer Siene and

Computational Biology. Cambridge University Press, 1997.

[4℄ H. Hyyr�o. Explaining and extending the bit-parallel approximate string math-

ing algorithm of Myers. Tehnial Report A-2001-10, Dept. of Computer and

Information Sienes, University of Tampere, Tampere, Finland, 2001.

[5℄ H. Hyyr�o and G. Navarro. Faster bit-parallel approximate string mathing. In

Pro. 13th Combinatorial Pattern Mathing (CPM'02), LNCS 2373, pages 203{

224, 2002.

[6℄ H. Hyyr�o and G. Navarro. Bit-parallel witnesses and their appliations to ap-

proximate string mathing. Algorithmia, 41(3):203{231, 2005.

107

Proeedings of the Prague Stringology Conferene '05

[7℄ W. Masek and M. Paterson. A faster algorithm for omputing string edit dis-

tanes. J. of Computer and System Sienes, 20:18{31, 1980.

[8℄ G. Myers. A fast bit-vetor algorithm for approximate string mathing based on

dynami progamming. Journal of the ACM, 46(3):395{415, 1999.

[9℄ G. Navarro. A guided tour to approximate string mathing. ACM Computing

Surveys, 33(1):31{88, 2001.

[10℄ G. Navarro and M. RaÆnot. Flexible Pattern Mathing in Strings { Pratial on-

line searh algorithms for texts and biologial sequenes. Cambridge University

Press, 2002.

[11℄ S. Wu, U. Manber, and E. Myers. A sub-quadrati algorithm for approximate

limited expression mathing. Algorithmia, 15(1):50{67, 1996.

108

