
Bakward Pattern Mathing Automaton

Jan Anto�s and Bo�rivoj Melihar

Department of Computer Siene & Engineering

Faulty of Eletrial Engineering

Czeh Tehnial University

Karlovo n�am. 13, 121 35 Prague 2

e-mail: fantosj,meliharg�fel.vut.z

Abstrat. We present a new algorithm to solve a large number of bakward

pattern mathing problems. This algorithm is spei�ed by the theory of �nite

automata. The algorithm is based on the utilization of a formal tool alled

\Bakward Pattern Mathing Automaton", whih we speify in this paper. In-

trodution of suh a tool presents a formal base to the world of bakward pattern

mathing.

Keywords: bakward pattern mathing, string mathing, sequene mathing,

approximate pattern mathing, subpattern mathing, don't are symbols, �nite

automata, formal tool

1 Introdution

Pattern mathing (string and sequene mathing) is an essential part of many applia-

tions. This disipline has been intensively studied sine the beginning of the seventies

and many pattern mathing problems have been disovered and extensively studied.

A number of new algorithms was presented. Yet these algorithms lak a ommon

theory and are often hard to understand, evaluate and proof. One reason for suh a

diversity is the nonexistene of a uniform formalism needed for the spei�ation of

the problems themselves.

In 1996 a formalism was found, whih allows priniples of mathing algorithms to

be formally spei�ed. This formalism is based on a �nding, that all one-dimensional

mathing algorithms are sequential problems and thus an be solved by the use of

�nite automata [MH97a℄.

At the same time a lassi�ation of mathing problems was presented. This lassi-

�ation is not (and annot be) omplete, but it lassi�es 192 di�erent pattern math-

ing problems in a six-dimensional spae [MH97℄

1

. Together with the new formalism

it resulted in an interesting fat: Having a �nite automaton to desribe the pattern

mathing problem of one string in a text, all the other 191 problems an be solved by

simple operations applied to this one automaton [MH97℄. Only a forward mathing

tehnique was explored in [MH97℄ leaving the question open, if similar operations

1

The number of problems was further inreased to 336 in the following years by the addition of

approximate mathing over well-ordered alphabets.

81

Proeedings of the Prague Stringology Conferene '05

an be de�ned to solve all the above mentioned pattern mathing problems using the

bakward pattern mathing algorithm.

The motivation of this paper is to present a formal spei�ation of a bakward

pattern mathing automaton whih will be used as a model in a general bakward

pattern mathing algorithm. The algorithm itself is simple and general and is the

same for any bakward pattern mathing problem. The only part that is hanged is

the model of the problem whih is fed to the algorithm input. This paper spei�es

the algorithm and the model and shows the onstrution of the model for a seleted

problem. It is important to mention that models for other 336 problems (as well as

any future ones) an be obtained from the already de�ned models by simple operations

over the �nite automata.

2 Basi De�nitions

This paper uses ommon notions from graph and �nite automata theory. Only notions

not ommonly used, or notions that are spei� to this paper are mentioned in this

setion.

De�nition 2.1 (Complement of symbol). Given an alphabet A and a symbol a 2

A, the omplement of a aording to A is the set of symbols a = fs : s 2 A; s 6= ag.

De�nition 2.2 (Proper pre�x). w is a proper pre�x of P when w 2 pref(P) ^

(wv 2 P; v 2 A

+

) whih an also be expressed as w 2 pref(P n fwg).

De�nition 2.3 (Move of FA). A move of a �nite automaton is suh a hange of

on�guration of the �nite automaton, that exatly one symbol has been read from the

automaton input.

Remark. Note the di�erene between a move and a transition. While a move is

a hange of on�guration resulting from reading a symbol a transition is a relation

`

M

� (Q�A

�

)� (Q�A

�

) de�ned as (q; aw) `

M

(p; w) where p 2 Æ(q; a), a 2 A[f"g,

w 2 A

�

, p; q 2 Q. Beause an automaton an ontain "-transitions, one move an

look for example like: (q

1

; aw) ` (q

2

; aw) ` (q

3

; w) given a 2 A, w 2 A

�

, q

2

2 Æ(q

1

; "),

q

3

2 Æ(q

2

; a).

De�nition 2.4 (Colletion). A Colletion is a set, that an ontain dupliates.

We will use symbols [and ℄ to mark the olletion.

De�nition 2.5 (Reversed string). Let us have string u 2 A

�

, u = a

1

a

2

: : : a

n

; a

i

2

A. Then string v = u

R

, where v 2 A

�

and v = a

n

a

n�1

: : : a

1

; a

i

2 A is alled reversed

string. All reversed strings from a set of strings W � A

�

will be denoted by W

R

.

Remark. A partiular substring of a string s, where the substring starts at position

i of the string s and ends at positions j (inlusive), will be denoted as s

i

: : : s

j

.

3 Problem Spei�ation

3.1 Brief Introdution to Bakward Pattern Mathing

Bakward pattern mathing an greatly speed up the pattern mathing proess be-

ause it is apable of skipping parts of the text. Thus we an ahieve time omplexity

82

Bakward Pattern Mathing Automaton

lower then O(n). The main point of bakward pattern mathing is that the pattern

is ompared from the right to left. Several tehniques exist, this paper is going to

explore the BDM method [CR94℄. The pre�x of the pattern is searhed for in the

text. When the longest pre�x is found, the position in the text is shifted aordingly.

The algorithm is therefore skipping parts of the text, where no math an our. This

priniple is visualized in Figure 1.

TEXT

PATTERN

longest prefix found

equal prefix

shift

this is not a prefix => a match cannot occur here

new position in text
matching direction

Figure 1: The bakward pattern mathing priniple followed in this paper

3.2 Classi�ation of Pattern Mathing Problems

The lassi�ation of pattern mathing problems has been desribed in [MH97℄. This

subsetion presents a brief extrat of the main ideas. See [MH97℄ for full details.

Pattern mathing problems for a �nite size alphabet an be lassi�ed aording to

several riteria. We will use six riteria for lassi�ation leading to a six-dimensional

spae in whih one point orresponds to a partiular pattern mathing problem. Let

us make a list of all dimensions inluding possible values in eah dimension:

1. Nature of the pattern: string, sequene.

2. Integrity of the pattern: full pattern, subpattern.

3. Number of patterns: one, �nite number, in�nite number.

4. The way of mathing: exat, approximate mathing with Hamming distane (R-

mathing), approximate mathing with Levenshtein distane (DIR-mathing),

approximate mathing with generalized Levenshtein distane (DIRT-mathing),

approximate with �-mathing, approximate with �-mathing, approximate with

max(�;�)-mathing.

5. Importane of symbols in pattern: take are of all symbols, don't are of some

symbols.

6. Number of instanes of pattern: one, �nite sequene.

If we ount the number of possible pattern mathing problems, we obtain

N = 2 � 2 � 3 � 7 � 2 � 2 = 336:

83

Proeedings of the Prague Stringology Conferene '05

In order to make referenes to a partiular pattern mathing problem easy, we

will use abbreviations for all the problems. These abbreviations are summarized in

Table 1. Using this method, we an, for example, refer to exat string mathing of

one string as the SFOECO problem.

Instead of a single pattern mathing problem we will use the notion of a family of

pattern mathing problems. In this ase we will use symbol ? instead of a partiular

letter. For example SFO??? is the family of all the problems onerning one full

string mathing.

We will denote a pattern mathing problem by symbol �. A pattern mathing

problem an be then written, for example, as � = SFOECO or � = SFO???.

Dimension 1 2 3 4 5 6

S F O E C O

Q S F R D C

I D

T

�

�

M

Table 1: Abbreviations of dimension values

Remark. The input to the pattern mathing algorithm is text T and pattern set P .

Beause it is often diÆult to de�ne the set P , we will sometimes speify the input to

the algorithm using the base pattern set P

�

and the pattern mathing problem �. Let

us show how these relate to eah other on a few examples:

� = SFOECO; P

�

= fbananag) P = fbananag;

� = SSOECO; P

�

= fbananag) P = fw : w 2 fat(banana)g:

To further simplify the notation and to make the text more readable we will use

an abbreviation of the above statements. For example:

P = fbananag

SFORCO

) P = fw : w 2 A

�

; D

H

(w; banana) � kg;

where D

H

is the Hamming distane and k is the maximum distane still onsidered

to be a math.

4 Range of Problems Solved by This Paper

In this paper we will present a general algorithm whih is apable of solving all the

above mentioned problems. This algorithm should also solve any future problems.

The algorithm uses the Bakward Pattern Mathing Automaton (BPMA) whih is

used as a model of a partiular pattern mathing problem. Some of these BPMA are

presented here as examples. In the ase of new pattern mathing problems de�ned in

the future, the only task is to de�ne the appropriate BPMA. A very important part

of this paper is to show, that these BPMA an be derived from the simplest BPMA

for the SFOECO problem (exat pattern mathing of one string) only by the simple

operations performed over the �nite automaton.

84

Bakward Pattern Mathing Automaton

5 The Solution

The motivation is to design a simple algorithm whih an be applied to a vast range

of problems. Suh an algorithm has to be independent of the atual problem we are

trying to solve. We thus separate the pattern mathing into two phases.

Phase One is the "onstrution phase". The input to Phase One is the type of

problem spei�ed by � and the set of patterns P that we want to math. The output

of Phase One is the model M of the problem � applied to the base set of patterns

P

�

. Model M has the form of an attributed nondeterministi �nite automaton.

Constrution of this model is di�erent for di�erent problems, but it has a ommon

base: the basi pattern mathing model is onstruted �rst and then automaton

operations are applied to it and the �nal model is derived.

Phase Two is the \mathing phase". The input to Phase Two is the model M

(the model of the pattern mathing problem onstruted in Phase one) and the text

T . The output of Phase Two is the set of ourrenes of patterns p 2 P in text

T . The automaton M is repeatedly used in the mathing phase and attributes of its

states and transitions are evaluated. Phase Two is thus ompletely independent of

the problem �.

6 Bakward Pattern Mathing Automaton

Eah pattern mathing problem an be desribed using its model in the form of an

attributed nondeterministi �nite automaton (De�nition 6.1). This model is then

used in the pattern mathing phase.

De�nition 6.1 (Attributed Nondeterministi Finite Automaton). Attributed

Nondeterministi Finite Automaton (ANFA)M is �ve-tupleM = (NFA;R;

q

;

Æ

; G)

where

NFA is nondeterministi �nite automaton NFA = (Q;A; Æ; q

0

; F),

R is a �nite set of attributes. Every attribute has a domain H(r)

speifying possible values of attribute r. R = R

q

[R

Æ

,

q

is a mapping Q�R

q

! H(r) [; where r 2 R

q

,

Æ

is a mapping Q�Q� A�R

Æ

! H(r) [; where r 2 R

Æ

,

G is a �nite set of semanti rules of the following form:

p:r g(q:r

1

; : : : ; q:r

n

; p:r

1

; : : : ; p:r

m

; t

q;p;a

:r

1

; : : : ; t

q;p;a

:r

k

)

where q:r denotes a

q

(q; r) and reads as \value of attribute r of state q",

t

q;p;a

:r denotes

Æ

(q; p; a; r) and reads as \value of attribute r of transition

Æ(q; a) 3 p ", and where m;n; k 2 N.

At plaes, where no onfusion arises, we will use t:r instead of t

q;p;a

:r.

In this paper we are going to de�ne ANFA ommon to the S????O pattern math-

ing problems. We are going to all this automaton BPMA (Bakward Pattern Math-

ing Automaton). If more pattern mathing problems are to be solved, there might

be a need to extend its set of attributes R and/or its set of semanti rules G.

De�nition 6.2 (Bakward Pattern Mathing Automaton). A Bakward Pat-

tern Mathing Automaton (BPMA) M is an attributed nondeterministi �nite au-

tomaton M = (NFA;R;

q

;

Æ

; G) where

85

Proeedings of the Prague Stringology Conferene '05

NFA = (Q;A; Æ; q

0

; F);

L(NFA) = pref(P

R

), P is set of patterns,

R = R

q

[R

Æ

,

R

q

= ft; pl; pfg,

H(t) = N,

H(pl) = N,

H(pf) = fTrue;Falseg,

R

Æ

= fptfg,

H(ptf) = fTrue;Falseg,

G = fp:t q:t+ 1;

p:pf if t:ptf = True then True else q:pf ,

p:pl if q 2 F ^ p:pf = True then p:t else q:pl,

t:ptf is preomputed for all transitions,

q

0

:t 0,

q

0

:pf False,

q

0

:pl 0 g for q; p; t : Æ(q; a) 3 p; t � t

q;p;a

.

Let's have a BPMA and

(q

0

; w

R

z

R

) `

�

(q; z

R

); q 2 Q; w; z 2 A

�

;

then we an explain the meaning of BPMA state attributes as follows:

Attribute t is the aronym for Transition Counter. This attribute stores the

number of automaton moves. This number equals the number of symbols read from

the automaton input to reah the urrent on�guration:

q:t = jwj:

Attribute pl is the aronym for Pre�x Length Counter. This attribute stores the

length of some proper pre�x found from the last shift operation. Beause the au-

tomaton is nondeterministi and several options for (q

0

; w

R

z

R

) ` (q; z

R

) are possible,

the value of q:pl does not have to be the atual longest proper pre�x of w, so in the

�nal ount, we have to evaluate all of the q:pl; q 2 F to �nd the pl

max

. The fat

that pl

max

= jpref(P nfwg)j

max

has to be assured by the way the model is built.

Then we an state that:

q:pl 2 fjvj : v; u 2 A

�

; vu = w; v 2 pref(P nfvg)g;

pl

max

= maxfq:pl : q 2 Fg:

Attribute pf is the aronym for Pre�x Flag. Attribute pf of a state q has value

True if from a urrent automaton on�guration every future �nal on�guration

reahed indiates that a proper pre�x of some pattern p 2 P has been found. If

the value of any �nal state is False it indiates, that an ourrene of a pattern has

been found:

q:pf = True) 8u 2 A

�

; 8q

f

2 F; Æ(q; u

R

) 3 q

f

: uw 2 pref(P nfuwg);

q:pf = False ^ q 2 F) w 2 P:

The meaning of the BPMA transition attributes an be explained as follows:

86

Bakward Pattern Mathing Automaton

Attribute ptf is the aronym for Pre�x Transition Flag. Attribute ptf of transition

Æ(q; a) = q

0

; q; q

0

2 Q; a 2 A

�

has valueTrue if by an assoiated move the automaton

will move to suh a on�guration, that any �nal state reahed from there will mean,

that we have found a proper pre�x of some pattern p 2 P :

t

q;q

0

;a

:ptf = True)

8u; v 2 A

�

; 8q

f

2 F; Æ(q

0

; v

R

) 3 q; Æ(q

0

; u

R

) 3 q

f

: uav 2 pref(P nfuavg):

Note, that while some string w 2 P an also be a proper pre�x w 2 pref(Pnfwg),

the automaton mentioned above is inherently nondeterministi: both of the following

situations an happen at the same time:

q

f

2 Æ(q

0

; w

R

) ^ q

f

:pf = True

q

f

2 Æ(q

0

; w

R

) ^ q

f

:pf = False:

This behavior is wanted in this ase beause we want to detet both situations

simultaneously. We need to know that a pattern ourrene has been found and also

we need to know that an ourrene of a proper pre�x has been found, so we an

ompute the appropriate shift funtion.

See the following setions for examples of bakward pattern mathing automata.

7 The Algorithm

7.1 De�nition of the Algorithm

Phase Two has as input model M of pattern mathing problem � and the text T

in whih we want to perform the atual pattern mathing. Phase Two performs

the mathing itself. It onsists of the spei� bakward pattern mathing algorithm.

This algorithm is simple and uni�ed { the algorithm is the same for all the pattern

mathing problems de�ned in 3.2 and possibly for future ones.

The bakward pattern mathing algorithm is desribed in Algorithm 1. This

algorithm uses a nondeterministi pattern mathing model M and therefore it has

to simulate its deterministi behavior. Future work is to onstrut a deterministi

pattern mathing model and to simplify the bakward pattern mathing algorithm.

Also notie, that instead of a set of states, the algorithm uses a olletion of states.

This is required to allow the proessing of one state with di�erent attributes { this

situation an happen when the automaton has two transitions for the same symbol

going from state q to state p and for one transition t

q;p;a

:ptf = True and for the

seond t

q;p;a

:ptf = False.

Algorithm 1: Automaton-based bakward pattern mathing

algorithm

Input: Model M in the form of Bakward Pattern Mathing,

Automaton M = (NFA;R;

q

;

Æ

; G), text T .

Output: Set of numbers, eah number represents a position in text T

where pattern p 2 P ours.

Method:

1 position jP j

min

87

Proeedings of the Prague Stringology Conferene '05

2 offset 0

3 pl

max

 0

4 Q

0

 [q

0

℄ (see De�nition 2.4)

5 while position � jT j do

6 Q

00

 [q : q 2 Æ(q

0

; T

position�offset

); q

0

2 Q

0

℄

7 if Q

00

6= ; then

8 for 8q 2 Q

00

do

9 if q 2 F ^ q:pf = False then

10 output(position� offset)

11 end if

12 if q 2 F ^ q:pf = True then

13 pl

max

 maxfpl

max

; q:plg

14 end if

15 end for

16 Q

0

 Q

00

17 inrement offset

18 else

19 shift maxf1; jP j

min

� pl

max

g

20 position position + shift

21 offset 0

22 pl

max

 0

23 Q

0

 [q

0

℄

24 end if

25 end while

The main idea of the algorithm is as follows:

1. The algorithm omputes the initial position.

2. The algorithm utilizes the BPMA automaton in order to deide, if there is some

pattern ending at this position, i.e. if

9x 2 N : T

x

: : : T

position

2 P:

This event ours if

9q

f

2 F; 9w 2 A

�

: Æ(q

0

; w

R

) 3 q

f

^ q

f

:pf = False:

In this ase, the value of x is output.

3. Simultaneously with Step 2, the algorithm also has to deide what the longest

proper pre�x ending at this position is, i.e. it omputes jwj

max

where

w 2 pref(P nfwg) ^ w = T

position�jwj

: : : T

position

:

This jwj

max

(named pl

max

in the algorithm) equals the following expression in

BMPA:

jwj

max

= maxfq:pl : q 2 Fg:

88

Bakward Pattern Mathing Automaton

4. When the length pl

max

of the longest proper pre�x is known, the algorithm

an attempt to ompute the longest safe shift. A safe shift means how muh it

an advane the position in the text in order not to skip any ourrene of any

pattern. The trivial safe shift is 1. It is easy to see, that the longest safe shift an

never be longer than the shortest pattern p 2 P whih is jP j

min

. Sine we know,

that there is a potential of a pattern ourring at position position � pl

max

,

and we know jP j

min

, the shift of jP j

min

� pl

max

will be safe. So, summarized,

shift an be

shift = maxf1; jP j

min

� pl

max

g:

Note at this point of time, why we are using the proper pre�xes in ontrary

to traditional pre�xes. If we have found string w and w 2 pref(P) but w =2

pref(P nfwg) then w 2 P . The value of shift would always be 1, whih is

ineÆient in most ases, sine there is no possibility of �nding another pattern

starting at the position position� jwj or position� jwj+ 1.

The longest safe shift an be longer than the one mentioned in previous para-

graphs. The idea of a longer safe shift is to selet the shortest pattern that an

start with the pre�x (or pre�xes) ending at the urrent position (w in step 3).

In most ases this number an be higher than jP j

min

. Let us ompute P

0

based

on that �nding:

P

0

= fp; p 2 P;w 2 pref(p)g:

The longest safe shift is then

shift = maxf1; minfjP j

min

; jP

0

j

min

� pl

max

gg:

This optimization is not employed in the urrent algorithm. It should be in-

luded in future works.

5. The algorithm advanes its position by the shift value:

position position+ shift

and the algorithm repeats steps 2 through 5 of this explanation until the end

of the text is reahed.

2356
b a n a START

n

4 01
n a

anab

Transition with ptf = TRUE

Transition with ptf = FALSE

Figure 2: Transition diagram of BPMA whih is a model of pattern mathing problem

� = SFOECO and pattern set P

�

= fbananag

89

Proeedings of the Prague Stringology Conferene '05

7.2 Example

Let us demonstrate Algorithm 1 on a simple example. A more advaned example is

given in Setion 8.

Let us have a pattern mathing problem � = SFOECO, pattern set P =

fbananag and text T = banabbababnananbananaba. The model M of this problem

is the nondeterministi pattern mathing automaton given by the transition diagram

spei�ed in Figure 2. The algorithm steps are shown in Figure 3.

 b a n a b b a b a b nan a n b a n aT :

q :

q.tc :

q.plc :

1 2 3 4 5 6 7 8 9 10 131211 14 15 16 17 18 19

0∅
01

01

0∅

1,1,1

0,0,0

06

0

State, pf = TRUE 3

Final state, pf = FALSE

Final state, pf = TRUE 6

n a b a

6

5

0

0

0

0

3

11,1

0,0

4

2

2

2

∅

1,1,1

0,0,0

5

3

1

0

0

2,2

0,0

4

2

3,3

0,0

5

3

4

4

0

5

5

0

6

6

0

State, pf = FALSE 3

6

20 21 22 23

Shift: 6-1=5

Shift: 6-0=6

Shift: 6-2=4

Shift: 6-0=6

Found !

Figure 3: Steps taken during the pattern mathing of P

SFOECO

= fbananag in text

T = banabababnananbananaba

8 BPMA Constrution

The onstrution Phase (i.e. Phase One) is dependent on the Bakward Pattern

Mathing Problem solved. The output of Phase One is the uniform model of the

problem. This model is in the form of a BPMA. Phase Two then uses this model to

perform the atual pattern mathing.

We will demonstrate the onstrution of suh a BPMA on a seleted example:

Let us have a problem � = SFORCO (i.e. approximate R-mathing of one pattern).

R-mathing means approximate mathing where the operation \replae" is allowed.

This kind of approximate mathing was �rst explored by Hamming in [HAM50℄.

Let us have a base pattern set P

�

= fbananag and k = 1. We an express P as

P = fw : D

H

(p; w) � k; p 2 P

�

; w 2 A

�

g;

where k denotes the maximum distane between two patterns that we onsider being

equal (and thus representing a math in the text).

We �rst onstrut the base nondeterministi �nite automaton whih aepts the

language L = P

R

. We an build this automaton inrementally using the given 6D

lassi�ation as an advantage: we an start with the base SFOECO problem �rst

and then add the omplexity dimension by dimension. In our ase there will be only

one more step neessary and it is to hange the hoie of value in the 4

th

dimension:

SFOECO ! SFORCO.

90

Bakward Pattern Mathing Automaton

We �rst build the base automatonM

1

for SFOECO problem: P

SFOECO

= fbananag.

The language aepted by this automaton is L(M

1

) = fananabg.We will use Algo-

rithm 2. The result of this algorithm is given in Figure 4.

Algorithm 2: Constrution of SFOECO base NFA

Input: Pattern p, jpj = m, p 2 A

�

.

Output: Deterministi �nite automaton M .

Method:

1 Q fq

0

; q

1

; : : : ; q

m

g

2 Æ(q

i

; p

m�i

) fq

i+1

g for all i = 0; 1; : : : ; m� 1

3 F fq

m

g

4 M (Q;A; Æ; q

0

; F)

2356
b a n a START4 01

n a

Figure 4: Transition diagram of automatonM

1

, whih is base NFA for � = SFOECO

and P

�

= fbananag

The next step is to onstrut the base automaton M

2

for our hosen SFORCO

problem. We use the already built automaton M

1

and modify it to reognize the

language L(M

2

) = fw : D

H

(ananab; w) � 1; w 2 A

�

g. This is done employing

Algorithm 3. The result is shown in Figure 5.

Algorithm 3: Constrution of SF?R?O base NFA from SF?E?O

base NFA

Input: Nondeterministi �nite automaton M

SF ?E?O

= (Q;A; Æ; q

0

; F).

Output: Nondeterministi �nite automaton M

SF ?R?O

.

Method:

1 Q

0

 ;; F

0

 ;

2 for 8l 2 h0; ki do

3 Q

0

 Q

0

[fq

l;i

: q

i

2 Qg

4 Æ

0

(q

l;i

; a) Æ

0

(q

l;i

; a) [fq

l;j

: q

j

2 Æ(q

i

; a)g for all a 2 A; q

i

2 Q

5 F

0

 F

0

[fq

l;i

: q

i

2 Fg

6 end for

7

8 for 8l 2 h0; k � 1i do

9 Æ

0

(q

l;i

; a) Æ

0

(q

l;i

; a) [fq

l+1;j

: q

j

2 Æ(q

i

; a)g for all a 2 A; q

i

2 Q

10 end for

11

12 M

SF ?R?O

 (Q

0

; A; Æ

0

; q

0;0

; F

0

)

After this step we are ready to build the BPMA itself. We an use a general

Algorithm 4. This algorithm onstruts the BPMA from the given base NFA, where

the base NFA an represent any of the problems solvable by the BPMA itself. The

resulting automaton M is given in Figure 6.

91

Proeedings of the Prague Stringology Conferene '05

0,20,30,50,6
b a n a START0,4 0,00,1

n a

1,21,31,51,6
b a n a

n

1,4 1,1
n

aanab

1,0
a

Figure 5: Transition diagram of base NFA for � = SFORCO; k = 1 and

P

�

= fbananag

Algorithm 4: Constrution of BPMA from given NFA

Input: Nondeterministi �nite automaton M

NFA

= (Q;A; Æ; q

0

; F).

Output: Bakward pattern mathing automaton M

BPMA

.

Method:

1 if 9q 2 Q; 9a 2 A : q

0

2 Æ(q; a) then

2 Q

0

 Q [fq

00

g; q

0

0

 q

00

3 Æ

0

(q; a) Æ(q; a) for all q 2 Q; a 2 A

4 Æ

0

(q

00

; a) Æ(q

0

; a) for all a 2 A

5 else

6 Q

0

 Q; q

0

0

 q

0

7 Æ

0

(q; a) Æ(q; a) for all q 2 Q; a 2 A

8 end if

9 M

0

NFA

 (Q

0

; A; Æ

0

; q

0

0

; F)

10

11 Æ

00

(q

0

; a) Æ

0

(q

0

; a) for all q

0

2 Q

0

; a 2 A

12 Æ

00

(q

0

0

; a)

S

q

0

2Q

0

nfq

0

0

g

Æ

0

(q

0

; a) for all a 2 A

13 M

00

NFA

 (Q

0

; A; Æ

00

; q

0

0

; F)

14

15 t

q;q

0

;a

:ptf True for all a 2 A; q

0

2 Æ(q; a); q 2 Q

16 t

q

0

0

;q

0

;a

:ptf True for all a 2 A; q

0

2 Æ

0

(q

0

0

; a)

17 t

q

0

0

;q

0

;a

:ptf False for all a 2 A; q

0

2

S

q

0

2Q

0

nfq

0

0

g

Æ

0

(q

0

; a)

18 M

BPMA

 (M

00

NFA

; R;

q

;

Æ

; G)

2356
b a n a START

n

4 01
n a

anab

Transition with ptf = TRUE

Transition with ptf = FALSE

891112
b a n a

n

10 7
n

aanab

b a n a
n

Figure 6: Transition diagram of model M of pattern mathing problem

� = SFORCO and pattern set P

�

= fbananag

92

Bakward Pattern Mathing Automaton

We an now feed the resulting automaton M to Phase Two to perform the a-

tual pattern mathing. Let us take text T =is it banana or ananas? and run the

Algorithm 1. The visualization of this proess is presented in Figure 7.

6

 i s i t b a n a an o r a n aT :

q :

q.tc :

q.plc :

1 2 3 4 5 6 7 8 9 10 131211 14 15 16 17 18 19

0∅
0
0

Found !

State, pf = TRUE 3

Final state, pf = FALSE

Final state, pf = TRUE 6

n a s ?

State, pf = FALSE 3

6

20 21 22 23

Shift: 6-1=5

12

11

10

9

8

7

1,..,1
0,..,0,1

0

0
0

12

11

9

7

4

2

1,..,1
0,..,0,1

2,2
0,0

5

3

3,3
0,3

4

4
0

56

5
5

∅
Shift: 6-5=1

12

10

8

5

3

1

1,..,1
0,..,0,1

0

0
0

12

4

2

2,2,2
0,0,2

3,3
0,0

5

3

12

4,4
0,4

4

5
0

56

6
0

∅
Shift: 6-4=2

0∅
0
0Shift: 6-1=5

12

11

10

9

8

7

1,..,1
0,..,0,1

12

10

8

5

3

1

1,..,1
0,..,0,1

0

0
0

12

4

2

2,2,2
0,0,2

3,3
0,0

5

3

12

10

4,4
0,4

∅
Shift: 6-4=2

Found !

12

10

8

5

3

1

1,..,1
0,..,0,1

0

0
0

12

4

2

2,2,2
0,0,2

3,3
0,0

5

3

12

4,4
0,4

4

5
0

512

6
0

∅
Shift: 6-4=2

0∅
0
0Shift: 6-1=5

12

11

10

9

8

7

1,..,1
0,..,0,1

Figure 7: Pattern mathing of P = fbananag

SFORCO

in text T = is it banana or

ananas? from the example

93

Proeedings of the Prague Stringology Conferene '05

9 Future Work

The presented algorithm posses some drawbaks, that have to be solved in future

work:

1. The �nite automaton used to speify the pattern mathing algorithm is nonde-

terministi and an equivalent deterministi automaton annot be onstruted

by any known algorithm, beause the automaton is attributed. To resolve this

issue, a new algorithm onstruting the equivalent attributed deterministi au-

tomaton has to be invented.

2. The longest safe shift omputed by the urrent algorithm is not optimal. This

shift an be further optimized by the observation mentioned at the end of Se-

tion 7.1 (Step 4).

3. The pattern mathing algorithm presented in this report has the upper bound

of its time omplexity set higher than O(n), where n is the length of text. The

upper bound an be theoretially lowered to O(n) but this optimization is yet

to be found.

Referenes

[BM77℄ R. S. Boyer, J. S. Moore: A fast string searhing algorithm. C. ACM, Vol.

20, No. 10, pp. 762-772, Otober 1977.

[MH97℄ B. Melihar, J. Holub: 6D Classi�ation of Pattern Mathing Problems.

Proeedings of the Prague Stringology Club Workshop '97, July 1997, pp.

24-32.

[MH97a℄ B. Melihar, J. Holub: Pattern Mathing and Finite Automata. In Pro-

eedings of Summer Shool of Information Systems and Their Appliations

1998, Ruprehtov, Czeh Republi, September 1998, pp. 154-183.

[HAM50℄ R. W. Hamming: Error-deteting and error-orreting odes. Bell System

Tehnial Journal 29:2, 1950, pp. 147-160.

[CR94℄ M. Crohemore, W. Rytter: Text Algorithms. Oxford University Press,

1994.

94

