
Reordering Finite Automata States for Fast String

Reognition

E. Ketha Ngassam

a

, Derrik G. Kourie

b

, and Brue W. Watson

b

a

Shool of Computing, University of South Afria,

Pretoria 0003, South Afria

b

Department of Computer Siene, University of Pretoria,

Pretoria 0002, South Afria

e-mail:

a

ngassek�unisa.a.za,

b

fdkourie, bwatsong�s.up.a.za

Abstrat. The spatial and temporal loality of referene on whih ahe mem-

ory relies to minimize ahe swaps, is exploited to design a new algorithm for

�nite automaton string reognition. It is shown that the algorithm, referred

to as the state reordering algorithm, outperforms the traditional table-driven

algorithm for strings that tend to repeatedly aess the same set of states.

Keywords: Automata, Implementation, Performane, State Reordering, Cahe

Loality of Referene

1 Introdution

Traditionally, �nite automata (FAs) are implemented using the table-driven (TD) al-

gorithm extensively disussed in [1℄. In this ase, the proessing time of the reognizer

is memory load dependant in the sense that for automata of onsiderable size

1

, the

time taken to proess a string not only depends on the length of the string but also

on the time taken to do a lookup in the transition matrix.

In [2, 3℄, we reported on investigations based on hardoded FAs whih appeared

to be faster than the TD algorithm, but only for automata of relatively small sizes

2

.

Further investigations revealed that, although memory load and string length are

major proessing time fators, the kind of string being tested for aeptane is also

ritial. In e�et, no matter the size of the string being tested for aeptane and

the size of the automaton upon whih the reognizer relies, a string that drives the

automaton into a set of `sink' states throughout the reognition proess is always

proessed at optimum due to omputer's ahe memory [4℄. In suh kinds of strings,

the hardoded algorithm outperforms its TD ounterpart. This is explained by the

fat that the instrutions that makeup the hardoded algorithm always remain in

ahe|hene the fast proessing speed. In this regard, ahe memory plays an im-

portant role in determining the eÆieny of FA-based string reognition algorithms.

1

In this paper, we use automaton size to mean the number of states of the automaton. The two

terms are used interhangeably.

2

In fat experiments revealed that hardoded algorithm is faster than TD for FAs of size up to

about 360 states on an Intel Pentium 4. This was true for alphabet sizes of up to about 50 symbols.

69

Proeedings of the Prague Stringology Conferene '05

Cahe memory operation is based on what is sometimes referred to as the priniple

of temporal and spatial loality of referene. Sine data/instrutions are fethed from

memory in bloks, the temporal loality of referene refers to the premise that there

is a strong hane that the same data/instrution will be used in the near future.

Similarly, spatial loality of referene refers to the premise that there is a strong

hane that other data within a given blok will be fethed in the immediate future.

These two priniples are of importane in the design and implementation of eÆient

algorithms. Moreover, the nature of the ahe itself guarantees that data found in

ahe is proessed faster than data residing in the main memory. Page swaps into

ahe our when data being sought is not in ahe and the ahe is full. In this ase,

a poliy suh as that of LRU (least reently used) data is normally used to determine

what is to be swapped out. For more information on ahe, refer to [5℄.

In this paper, we provide an alternative algorithm for string reognition, referred

to as the State Reordering (SR) algorithm that makes use of the spatial and temporal

loality priniples. The algorithm reorders the states of the original automaton a-

ording to the string being proessed. Only states needed are reorganized in memory.

In ertain irumstanes, the reordering inreases the probability of reusing the

hunks of data already present in the ahe. The evidene suggests that our algorithm

will outperform the TD algorithm for large automata when proessing long sequenes

that exerise a limited number of states. The provision is that the strings are long

enough to amortize the ost of reordering the states. This would be the ase, for

example, in a network intrusion detetion system, where a ontinuous stream of data

is being proessed by an FA-based system.

The struture of the rest of this paper is as follows. In Setion 2 we present and

explain the SR algorithm. Setion 3 assesses it from a theoretial perspetive. Setion

4 deals with the experimental omparison of SR and TD. Finally, in setion 5, the

onlusion and further diretions for this work are o�ered.

2 The State Reordering Algorithm

In this setion, we present the new SR algorithm and provide a theoretial analysis

of the algorithm based on strings of onsiderable length. The onditions under whih

the algorithm appears to be most eÆient are also disussed. We further the analysis

by providing a lass of strings that an bene�t from our algorithm provided that the

set of states visited remains unhanged.

pro tdReognizer(table; inString)

; state; index : = 0; 0

do (index < inString:length()) ^ (state � 0)!

state; index : = table[state℄[inString[index℄℄; index + 1

od

Figure 1: Table-driven string reognizer

It is lear from the pseudoode of the TD algorithm (see Figure 1) that its aess

70

Reordering Finite Automata States for Fast String Reognition

to the transition table in memory is entirely dependent on the string being examined.

Sine data is fethed by the proessor from memory in hunks, the arbitrary organi-

zation of the table's entries results in frequent ahe misses in the next yle. Put

di�erently, the probability of �nding the desired datum from the ahe is relatively

low. The proessor is then fored to perform a page swap in order to get the desired

entry. This approah may result in ineÆienies when the table is onsiderably large.

Figure 2 provides a high-level spei�ation of the SR algorithm. Just as in �gure

1, the transition table and the input string (inString) are provided as parameters.

Also provided as parameters are: the start address (start) where information about

reordered states is stored; and an indiation of the amount of spae to be reserved for

eah reordered state (size). By a reordered state, we mean a state (as represented

by a row in the original transition table) whose information have been opied (and

modi�ed | see below) into a speially reserved plae in memory, indiated by the

dynami two-dimensional array, srTable. The main loop onsists of an alternation-

(i.e. if-) statement, and an assignment statement to inrement the value of the urrent

index into inString. The loop ondition orresponds identially to that of the TD

algorithm. The alternation statement has two guards: the �rst deals with a transition

to the next state when the urrent state has not yet been reordered; and the seond

deals with a transition from a reordered state.

The algorithm uses an auxiliary array, srMap. The invariant of the algorithm's

main loop:

8i : [0; n) � srMap[i℄ = k ^ k � 0, k 2 [0; pos) ^ isReordered(i; k; index� 1)

artiulates the nature of srMap, namely that the i

th

entry of srMap is a positive

value, k, if and only if k indexes an entry in srTable (i.e. k 2 [0; pos)) and that \the

k

th

entry is a reordered state that orresponds to the i

th

row in the original transition

table". The prediate isReordered(i; k; index � 1) is an assertion that orresponds

to the words in quotes in the previous sentene, as will be disussed below.

The variable pos holds the index of the next srTable entry to be reated in

memory. Thus, the �rst statement of the �rst guarded ommand assigns pos to

srMap[state℄, where state is the urrent state, and the next symbol to be aessed

is inString[index℄. The variable nextB points to the next memory address where

spae for the entry srTable[pos℄ is to be alloated. The seond statement of the �rst

guarded ommand alloates the required memory for the srTable[pos℄ entry, and the

third statement opies the transition table values for row state over into a row at

srTable[pos℄.

However, eah entry srTable[k℄[j℄ is required to have the following property: if its

value, say m, is less than the total number of states, n, this should be onstrued to

mean that if symbol j is enountered when in reordered state k, then a transition is to

be made to state m where m is not a reordered state. However, if m is indeed greater

or equal to the total number of states, then this should be onstrued to mean that

the transition in reordered state k upon enountering symbol j is to the reordered

state in srTable[m � n℄. Thus, eah time a reordered state is added into memory,

it is neessary to hek all reordered state entries to re-establish this property. An

inner double loop in the �rst guarded ommand ahieves this objetive. Note that

the prediate isReordered(i; k; index� 1) is onsistent with this property required of

srTable entries. It relies on the existene of a set visited(p) whih designates the set

of all states visited when reognizing the �rst p elements of the string inString.

71

Proeedings of the Prague Stringology Conferene '05

fAssume n is the number of states and a is the alphabet sizeg

pro srReognizer(table; inString; start; size)

; srMap[0::n� 1℄ : = �1

;nextB; state; index; pos : = start; 0; 0; 0

f Invariant , (8i : [0; n) � srMap[i℄ = k ^ k � 0,

k 2 [0; pos) ^ isReordered(i; k; index� 1)

isReordered(i; k; p) , 8j : [0; a) �m = srTable[k℄[j℄)

((m < n ^ table[i℄[j℄ = m, m =2 visited(p))

_ (m � n, 9r : [0; n) � srMap[r℄ = m� n ^ r 2 visited(p)))

g

;do (index < inString:length() ^ state � 0)!

if state < n!

srMap[state℄ : = pos

; srTable[pos℄ : = mallo(nextB; size)

; srTable[pos℄[0::a� 1℄ : = table[state℄[0::a � 1℄

; k; j : = 0; 0

do k � pos!

do j < a!

m : = srTable[k℄[j℄

; if m < n ^ srMap[m℄ < 0! skipfm =2 visited(index)g

[℄ m < n ^ srMap[m℄ � 0! srTable[k℄[j℄ : = srMap[m℄ + n

[℄ m � n! skipfm already updatedg

f i

; j : = j + 1

od

; k : = k + 1

od

; state; pos; nextB : = srTable[pos℄[inString[index℄℄; pos + 1; nextB + size

[℄ state � n! state : = srTable[state � n℄[inString[index℄℄

f i

; index : = index + 1

od

Figure 2: The state reordering string reognizer

The double loop is followed by assignments to update state, pos and nextB. If this

new value of state turns out to be in the interval [0; n) then it represents a transition

to a non-reordered state, and will be dealt with in the next loop iteration by the �rst

guard, in the way just desribed. However, if state turns out to be � n then it will

be dealt with in the next iteration by the seond guard.

This seond guard uses srTable to perform the reognition of the string being

tested for aeptane, as if it were the transition table in the onventional TD al-

gorithm, but orreting, of ourse, for the o�set by n in the state's value. In fat,

at every iteration of the loop, whenever the next state is a reordered one, then this

72

Reordering Finite Automata States for Fast String Reognition

seond guard's statement is exeuted, followed by the �nal statement to inrement

the index value.

The SR algorithm is thus subdivided into two parts: the reordering setion, rep-

resented by the �rst guard's body, in whih a state that has not been reated is

reordered|i.e. inserted into the srTable; and what we shall all the hot-spot setion,

represented by the seond guard.

At �rst sight, the SR algorithm might appear to be less eÆient than the TD

version, due to the various tests that have to be made at eah iteration as well as to

the work done to reate new \reordered" states. The SR algorithm would obviously

be at a disadvantage in ases where, for a relatively large number of loop iterations,

the reordering path is followed, sine the time taken to alloate and opy memory will

hamper the overall proessing time. However, as a result of reordering, previously

used states are organized ontiguously in memory in the same order in whih they are

�rst traversed. This ould be advantageous if it redued the number of ahe misses

in iterations where the hot-spot is exeuted. We defer further disussion about these

matters to setion 3

A pratial example of the SR algorithm is shown in the subsetion below.

2.1 An illustrative example

Consider an automaton M(s

0

;�; Q; F; Æ) where s

0

= 0, � = fa; b; g,

Q = F = f0; 1; 2; 3; 4; 5; 6g, and Æ de�ned by a two-dimensional array, given below.

This automaton is partially represented in Figure 3, in that it only shows transitions

that will be followed when the string abbaabbaabba is being reognized. The strings

0 1 2 3 4 5 6

a

b

b

a

Figure 3: A State diagram for testing the string abbaabbaabba

abbaabbaabba an be proessed using the SR algorithm as follows:

Initial phase:

After initialization the following holds:

table = ff6; 3; 1g; f2; 5; 4g; f1; 1; 2g; f3; 2; 1g; f4; 6; 0g; f0; 1; 3g; f1; 3; 5gg

(Thus, Æ(0; a) = 6, Æ(0; b) = 3, et.)

inString = abbaabbaabba

inString:length() = 15

srMap = f�1;�1;�1;�1;�1;�1;�1g.

nextB; state; index; pos := start; 0; 0; 0

73

Proeedings of the Prague Stringology Conferene '05

The �rst iteration:

At this stage, all the onditions to enter the loop are satis�ed. Therefore, the loop is

exeuted. A test is made on srMap[state℄ to see whether the state has been reated

or not. For state = 0, the �rst guard is seleted and a new state has to be reated in

memory. This results in the following:

srMap[0℄ = 0, that is the old state 0 will oupy the �rst position in the new memory

spae.

The variable size represents the memory required to store a state. It depends on the

alphabet size (3 for the present example).

The instrutions: srTable[pos℄ := mallo(nextB; size) and srTable[0℄[0::2℄ :=

table[state℄[0::2℄ are then exeuted to produe srTable = ff6; 3; 1gg

The double loop tests whether any entry in the srTable has been reordered to date.

None has, so srTable is left unaltered.

The new value of state is 6, pos beomes 1 and index beomes 1

Later iterations

Suppose the substring abba has already been proessed. If the double inner loop was

not part of the algorithm then srTable would simply be the following:

ff6; 3; 1g; f1; 3; 5g; f3; 2; 1g; f2; 5; 4g; f0; 1; 3gg. However, the double inner loop has to

make sure that the entries in the new loation are distinguished from those of the old

loation. Therefore, to avoid onit of states, the double inner loop adds n = 7 to

all reordered states.

This results in: srTable = ff8; 9; 10g; f10; 9; 11g; f9; 2; 10g; f2; 11; 4g; f7; 10; 9gg.

Therefore, for the proessing of the string up to this point, only four of the six

automaton states were visited. It an easily be seen that the remaining part of the

string, that is abbaabba, involves the traversal of these reordered states only. Thus

the remaining string is proessed at hot-spot.

Before testing the SR algorithm empirially, it is of interest to assess theoretially

how the SR and TD algorithms are likely to perform relative to one another. Suh

task is undertaken in the following subsetion.

3 A theoretial assessment

In ross-omparing these algorithms, we rely on the fat that data in ahe is proessed

faster than the data that is in main memory. Furthermore, when data is organized

in a ontiguous fashion and data items are aessed sequentially, the number of page

swaps is minimized. By ontrast, when data is aessed in a disorganized or random

fashion, the number of ahe swaps is high.

Now, as a matter of fat, ultimately neither the TD nor the SR algorithms an of

themselves diretly inuene the way in whih ahe is used. They are \vitims", as

it were, of the strings that they are required to reognize. The following is a broad

lassi�ation of the kinds of senarios that ould arise.

1. If an input string ontinuously drives an algorithm through a relatively small

number of states suh that these all remain permanently in ahe, then both

algorithms funtion optimally. Even if the input string is relatively long, the

74

Reordering Finite Automata States for Fast String Reognition

time taken to proess a single symbol is optimized. Of ourse, in suh a ase,

the SR algorithm is a poor one, sine it needlessly inurs the initial setup ost

during the reordering phase.

2. If the input string drives an algorithm through a somewhat larger number of

states, suh that ahe swaps have to be made, then the question is whether

these ahe swaps are at a minimum. Again, this behaviour is entirely dependent

on the input string.

(a) Pathologial strings ould be onstruted to indue worst ase behaviour

for both the TD and SR algorithms, where as many string symbols as

possible indue a transition to a state that is not urrently in ahe.

(b) Likewise, well behaved string examples ould be onstruted where state

transitions are niely ordered to progress from row to row in the original

transition table.

In both these extreme situations, TD would perform better than SR, sine SR

would again inur, without any real gain, the state reordering setup ost.

3. Under the previous senario (i.e. where a large number of states are traversed),

the SR algorithm ould potentially aquire an advantage over the TD algorithm

if the input string exhibited the following harateristis:

(a) the string tended to repeatedly exerise the same subset of states; where

(b) these states were fairly widely distributed over the transition table rows,

thus ausing many ahe misses under TD; but

() where the states were ontiguously plaed in srTable beause the order of

their initial usage reeted their later usage and order.

It is easy to see that under these irumstanes, the hot-spot of the SR algorithm

would repeatedly be exerised in a way that minimized ahe swaps, while the

TD algorithm would inur a high number of ahe swaps.

The laim made in 3 is rather general. It does not attempt to quantify how many

reorderings should take plae, how many times the hot-spot should be exerised, how

long the input string should be, how rows in the transition table should be ordered,

et. Clearly all of these fators ould inuene the extent to whih SR improves over

TD. Indeed, at this point, it is not even lear whether, under pratial onditions, the

ost of state reordering is ever really likely to pay o�. In the next setion, experiments

are desribed that o�er some insights into these matters.

4 Experiments and Results

Various experiments were onduted on a 512MB Intel Pentium 4 mahine, having

two levels of ahe memory (L1 and L2). The L1 data ahe has a apaity of 8KB,

with a speed of 2s. The L2 ahe is bigger and an hold up to 256KB of data

and instrutions with a relative speed of approximately 6s. Data is fethed from

memory in hunks of 64 bytes. During initial program exeution, if referene is made

75

Proeedings of the Prague Stringology Conferene '05

to a data item outside of ahe, another hunk is fethed until both L1 and L2 ahe

are full. A subsequent feth of data not residing in either ahe, results in a page

swap of memory data with data in the lowest ahe. The data to be swapped out

from ahe is determined by the \Least Reently Used Data" poliy.

The SR algorithm was implemented in the NASM assembly language under the

Linux operating system. The TD algorithm was originally implemented in C++,

with the optimizer (O3) turned on. Its NASM implementation was also provided

after several early experiments. The intention was to ensure that the SR algorithm

did not enjoy some hidden advantage beause of being implemented in an assembler

language. It turned out that the NASM version of TD was indeed slightly faster than

its C++ implementation for automata larger than about 3000 states. However, the

di�erene was so small that the overall results of our �ndings apply, no matter whih

TD implementation is onsidered.

For the present experiment, 100 automata of size n = 125; 250; 325; � � � ; 12500

were generated, based on 10 alphabet symbols. The transition table of eah automa-

ton was randomly onstruted in the following sense:

� Firstly, for eah row, i : [0; n � 2℄, a olumn j : [0; a) (orresponding to some

alphabet symbol) is randomly seleted. This olumn is assigned the next state

transition value i + 1. This ensures that there is at least one string of length

n � 1 that will traverse every state of the FA. We shall refer to this string as

the root string of the partiular automaton.

� Next, all remaining ells of the table are assigned a random value in the range

[0; n� 1℄.

Considered graphially, this means that eah node in the FA graph has a transition

to the next state on some random symbol, as well as a transition on eah of the

remaining 9 alphabet symbols to some random state.

For eah automaton, a random string of size n � 1 was generated. This was

repliated 4 times to produe an input string of length 4n � 4 onsisting of 4 iden-

tial segments. Eah of the algorithms was required to use the randomly generated

automaton of size n to reognize suh a string, resulting in 100 runs of eah algorithm.

Before disussing the timing results, onsider the information presented in table 1.

The table gives an overview of the rate at whih state reordering was found to our

when the SR algorithm was run. Data is given as a perentage of the total number

of states in eah partiular run. The �rst olumn relates to the full string that was

proessed, the seond olumn, to the �rst segment, et. Thus, after proessing the

�rst segment, on average a little more than 60% of the states are reordered. Note that

these observations lie in a fairly narrow band, between about 57% and 63%. As a

matter of fat, when the number of reordered states is plotted against the automaton

size (not provided here), a very distint linear trend is observed. However, in the

ase of segments 2 to 4, no obvious trend is observed in relation to automaton size.

Nevertheless, the average number of reordered states delines steadily from about

16% in the ase of segment 2, to almost 0% in the ase of segment 4. Overall, about

80% of states were reordered, on average.

These results are broadly in line with expetation. In proessing the �rst n � 1

symbols, roughly 60% of the states are reordered, meaning that they are loated

76

Reordering Finite Automata States for Fast String Reognition

Full String Segment 1 Segment 2 Segment 3 Segment 4

Maximum 95.20% 62.67% 24.80% 9.17% 2.78%

Minimum 62.42% 56.80% 0.40% 0.00% 0.00%

Average 79.06% 61.29% 16.11% 1.60% 0.06%

Table 1: Rate of Reordered State Generation

ontiguously in memory in order of �rst usage. In this sense, the data is optimized in

terms of the spatial loality of referene priniple. Later segments trigger progressively

fewer state reorderings, and onsequently spend more time in the hot-spot part of the

ode. If these later segments were to traverse the reordered states in exatly the

same sequene as the �rst segment, then the probability would be relatively high of

aessing spatially loalized data, and hene of triggering few ahe swaps. Of ourse,

this will only happen in the unlikely event that segment 2 (and therefore also 3 and

4) happen to start o� in state 0.

The experiment above has not been designed to spei�ally generate this \best

ase" senario. Rather, it is far more likely that these later segments will start o� in

some other random state. Nevertheless, on the evidene of table 1, an inreasingly

large proportion of segment 2 to 4 proessing is via the hot-spot. In fat, even in the

ase of the �rst segment's proessing, about 40% of the iterations were through the

hot-spot. Whether this translates into time gains as a result of frequently aessing

spatially loalized data (and therefore having fewer ahe swaps), annot be predited

a priori. To this end, we require the timing data derived from running the respetive

algorithms.

For the purposes of reording timing data, eah algorithm was invoked 50 times

for eah set of input, and the proessing time was reorded in lok yles (s).

For further analysis, we relied on the minimum of these 50 observations. (This was

beause the experiene of earlier studies, whih had shown that oasionally, outlier

data is generated that distorts the average and that is apparently attributable to OS

and CPU overheads.)

The results showed that state reordering is too expensive to provide suh a short-

term payo�. In fat, the ost is at least 100 times than that of making a transition.

In order to gain any advantage from the spatial and temporal loality of referene

of the reordered states, and thus amortize the ost of reordering, the hot-spot would

have to be exerised muh more frequently than was done by the strings of length

4n� 4.

A further experiment was therefore onduted to probe the best ase senario|

one in whih reordered states are traversed in the same order as they were generated.

This was done by essentially repeating the previous experiment with the following

modi�ations: strings were now of length 2n � 2 instead of 4n � 4; it was ensured

that when the n

th

symbol was enountered then the FA would be in state 0; and only

the time taken to proess the seond group of n� 1 symbols was measured. Gnuplot

was used to plot the graphs of number of states against time for both TD and SR

algorithms. The results are provided in �gure 4.

The graph shows that the TD proessing time is super-linear in the size of the

automaton. Although the SR trend appears to be lose to linear, there is, in fat, a

slight suggestion of superlinearity here as well. It is lear that in this ase, SR enjoys

77

Proeedings of the Prague Stringology Conferene '05

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 2000 4000 6000 8000 10000 12000

Min
imu

m t
ime

 in
ccs

Number of states

State Reordering

Table-driven

Figure 4: SR and TD Performane: Input String is Two Repeated Segments of Length

n� 1. Time is for Seond Segment Only

a de�nite time advantage over TD, due to optimal ahe utilization. For example,

at about 9000 state transitions, the SR algorithm is about 60% faster than the TD

algorithm. The graph may be thought of as SR's best ase asymptoti behaviour. On

this evidene, therefore, state reordering is a feasible strategy under onditions that

approximate those disussed in setion 3, item 3. Given that more reent hardware

platforms have been plaing inreasing emphasis on additional ahe memory

3

, the

gains obtained by optimally exerising ahe are likely to inrease.

5 Conlusion and Future Work:

In this paper, we have disussed the design of an algorithm for FA string reognition

that attempts to leverage an advantage from the fat that ahe memory relies on

the priniple of spatial and temporal loality of referene. Our experiments have

suggested that the SR algorithm ould gain an advantage over the traditional TD

algorithm for long string sequenes that tend to revisit hot-spot states in a ertain

order.

Two appliation areas that immediately suggests themselves as potentially worth

exploring are DNA analysis and network intrusion detetion. In the �rst ase, one

of the ontemporary hallenges is the identi�ation of so-alled miro- and/or mini-

satellites (generially alled approximate tandem repeats) in DNA strings. Here, what

is sought is repeated approximate patterns in the string. The notion of \repetition"

3

For example, the L2 ahe of Intel's Presott-2M Pentium 4 hip, released in February 2005,

has 2048kB, while the Intel Intanium 2 proessor, targeted for release in November 2005, will have

a 3MB of L3 ahe.

78

Reordering Finite Automata States for Fast String Reognition

intuitively orresponds to the idea of proessing within a hot-spot, as disussed ear-

lier. In the latter ase, one would imagine that sanning a stream of network data

for seurity breahes involves, for the most part, the traversal of hot-spot states that

should quikly pass the data down the line. Again, this seems like a possible appli-

ation domain for the SR algorithm. However, a fuller investigation of appropriate

appliation domains for SR is a matter left for future researh.

The algorithm was implemented in NASM on an Intel Pentium 4 mahine. Intel

o�ers many data prefething instrutions for performane enhanement [6℄ that have

not been used in the algorithm. These instrutions should be analyzed in the future

in the hope of speeding up even further the SR implementation.

The algorithm suggested in this paper is part of a set of algorithms under in-

vestigation. The aim is to pakage these in a dynami framework for implementing

FAs with a view to enhaning performane [4℄. We are urrently investigating a

mixed-mode implementation as an alternative to the SR and hardoded implementa-

tions explored to date. One all the algorithms under investigation have been tested,

the �nal design of the dynami framework will be proposed as well as a toolkit for

eÆiently proessing FAs.

Referenes

[1℄ Ketha Ngassam, E. Hardoding Finite Automata. MSC Dissertation. University

of Pretoria, 2003.

[2℄ Ketha Ngassam, E., Watson, B. W. and Kourie, D.G. Preliminary Experiments

in Hardoding Finite Automata. Poster paper, CIAA, Santa Barbara, 299{300,

September 2003.

[3℄ Ketha Ngassam, E., Watson, B. W. and Kourie, D.G. Hardoding Finite State

Automata Proessing. SAICSIT, Johannesburg, 111{121, September 2003.

[4℄ Ketha Ngassam, E., Watson, B. W. and Kourie, D.G. A Framework for the Dy-

nami Implemenation of Finite Automata for Performane Enhanement. Prague

Stringology Conferene, Prague, August 2004.

[5℄ Hannessy, J. L., Patterson D. A. Computer Arhiteture: A Quantitative Ap-

proah. Morgan Kaufmann Publishers, 3rd Edition, 2003.

[6℄ Intel Corporation. The Intel Opimization Referene Manual.

http://www.intel.om/design/pentiumiii/manuals/, 2002.

[7℄ Thompson, K. Regular Expression Searh Algorithm. Communiations of the

ACM. Volume 11, No 6, 323{350, 1968.

[8℄ Knuth, D.E., Morris Jr., J.H. and Pratt, V. R Fast Pattern Mathing in Strings.

SIAM J. Comput. Volume 6, No 1, 323{350, 1977.

[9℄ Yao, A C. The Complexity of Pattern Mathing for a Random String. SIAM J.

COmput., 8(3),pp. 368-387, 1979.

79

Proeedings of the Prague Stringology Conferene '05

[10℄ Gerber, R., The Software Optimization Cookbook: High-Performane Reipes for

the Intel Arhiteture. Intel Corporation, 2002.

80

