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Abstrat. For ertain problems (for example, omputing repetitions and re-

peats, data ompression appliations) it is not neessary that the suÆxes of a

string represented in a suÆx tree or suÆx array should our in lexiographial

order (lexorder). It thus beomes of interest to study possible alternate order-

ings of the suÆxes in these data strutures, that may be easier to onstrut or

more eÆient to use. In this paper we onsider the \reonstrution" of a suÆx

array based on a given reordering of the alphabet, and we desribe simple time-

and spae-eÆient algorithms that aomplish it.
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1 Introdution

We use a small example to introdue the main ideas. Consider the string

1 2 3 4 5 6

x = a b a a b $

whose suÆx tree T

x

is shown in Figure 1 (the onventional sentinel $ is a lexio-

graphially least letter introdued to ensure that every suÆx of x is represented as a

leaf node of T

x

).

Ignoring the sentinel suÆx, a preorder traversal of T

x

allows the suÆx array of x

to be read o� in lexorder from the leaf nodes:

1 2 3 4 5

pos = 3 4 1 5 2

(1)

with the lengths (lps) of the orresponding longest ommon pre�xes (LCPs) read

o� from the internal nodes:

lp = 0 1 2 0 1:
(2)

Let us all the usual suÆx array (for example, (1)) the lexiographial suÆx array

of x (LSA(x)), of ourse unique and well-de�ned for every string x on an ordered
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Figure 1: The suÆx tree T

x

of x = abaab

alphabet. More generally, we may de�ne a valid suÆx array of x (VSA(x)) to be

any reordering of LSA(x) that an be obtained by reordering the subtrees of T

x

, then

reading o� the terminal nodes (exept the sentinel suÆx) in a preorder traversal. For

our example string x = abaab, there are atually 16 VSAs of x:

34152; 34125; 31452; 31425

41352; 41325; 14352; 14325

52341; 25341; 52314; 25314

52413; 25413; 52143; 25143

Observe that of ourse for a string x = x[1::n℄ of length n, there are altogether n!

permutations of LSA(x); in our example 16 out of the 5! = 120 permutations are

atually VSAs. Note that if all the letters of x are distint, then there will be n!

distint VSAs of x.

Finally we de�ne a onsistent suÆx array of x (CSA(x)) to be a VSA that

is determined by an ordering (reordering) of the alphabet. In our example, there are

just two CSAs of x:

34152 (for $ < a < b) and 52413 (for $ < b < a):

In this paper we present algorithms to ompute the CSA(x) determined by a spei�ed

ordering of the alphabet, given the LSA. As explained below, we think of this researh

as an initial step in gaining an understanding of how to ompute a CSA or a VSA

diretly, without intermediate steps that depend on the LSA or the suÆx tree.

SuÆx arrays (LSAs) were introdued in 1990 [MM90, MM93℄ as a more spae-

eÆient alternative to suÆx trees; at the same time an O(n logn) algorithm was

desribed for their onstrution. In 1997 a linear-time suÆx tree onstrution algo-

rithm was proposed [F97℄, e�etive in the normal ase that the alphabet is indexed

| that is, essentially, a �nite integer alphabet. In 2003, based on [F97℄, three di�er-

ent groups of researhers independently disovered linear-time reursive algorithms to

ompute the LSA [KA03, KS03, KSPP03℄, also on an indexed alphabet. It turns out,

however, that, largely as a onsequene of their reursive nature, these algorithms are

generally slower in pratie [PST05℄ than two other lasses of LSA onstrution algo-

rithms whose worst-ase behaviour is supralinear: diret omparison algorithms
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and pre�x doubling algorithms. Diret omparison algorithms make use of a pointer

opying method introdued in [BW94℄ to eÆiently sort suÆxes one letter at a time

[IT99, S00, MF04℄; although their worst-ase time requirement an therefore be as

muh as �(n

2

logn), they generally have low spae requirements and exeute very fast

in pratie. On the other hand, pre�x doubling algorithms make use of a tehnique

introdued in [KMR72℄ to roughly double the length of the suÆxes sorted at eah

step [MM93, LS99, BK03℄; their worst-ase time bound is thus only O(n logn) and

they also tend to exeute quikly in pratie. Of the algorithms tested in [PST05℄,

that of Manzini & Ferragina [MF04℄ appears to hold an advantage, both in the use

of spae and time, over that of Burkhardt & K�arkk�ainen [BK03℄ in seond plae, but

algorithms more reently desribed [SS05, M05℄ may be still more eÆient.

The urious (to us, at least) fat is that to date the most eÆient known way to

ompute any VSA is to �rst ompute the LSA(x). In [FSXH03℄ we have desribed

algorithms that essentially ompute VSAs, but these algorithms are not as fast as the

best LSA onstrution algorithms, even though LSA onstrution in general requires

fewer onditions to be satis�ed. It seems to us that VSA onstrution should be in

some sense easier than LSA onstrution, but as things stand the opposite is true.

In this paper we will suppose that LSA(x) has been omputed for x = x[1::n℄

based on an ordering (A; <) of the alphabet A. Then we show how to onstrut

CSA(x) = LSA

0

(x)

determined by a reordering (A; <

0

) of A. In Setion 2 we desribe two �(n)-time

algorithms to handle a speial ase that arose in a reent paper [FS05℄: reverse

lexorder, where for any letters �; � 2 A,

� < �() � <

0

�: (3)

Setion 3 presents an eÆient algorithm for the general ase: an arbitrary permutation

of the order of the alphabet. Finally, Setion 3 presents onlusions and outlines future

work.

2 Reversing the Order of the Alphabet

As disussed in the Introdution, we assume that (3) holds, and we use LSA[1::n℄

to denote the suÆx array orresponding to (A; <), LSA

0

[1::n℄ for the suÆx array

orresponding to (A; <

0

). Reall that a border of a string x is any proper pre�x of x

that is also a suÆx. We de�ne the right border array � = �[1::n℄ of x as follows:

for every i 2 1::n, �[i℄ = j () j is the length of the longest border of x[i::n℄. � an

be omputed in �(n) time and onstant spae using a straightforward variant of the

standard (left) border array algorithm [S03, ex. 1.3.10℄. Observe that �[i℄ is the lp

not only of u = x[n�[i℄+1::n℄ and v = x[i::n℄, but also of every suÆx w of x that

lies between u and v in lexorder.

For tehnial reasons to simplify the presentation of the following lemmas and

algorithms, we modify slightly the array �: �[i℄ 6= 0 is not the length of the longest

border of x[i::n℄, but the index of the suÆx of x that is the longest border, i.e.

�[i℄ = j 6= 0 if and only if x[j::n℄ is the longest border of x[i::n℄ (see Figure 2).

The algorithms for reverse lexorder are then a onsequene of the following lem-

mas:
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�[1℄ 0;

for i 1 to n�1 do

if �[n�i+1℄ = 0 then

 0

else

 n+1��[n�i+1℄

while  > 0 and x[n�i℄ 6= x[n�℄

if �[n�+1℄ = 0 then

 0

else

 n+1��[n�+1℄

if x[n�i℄ = x[n�℄ then

�[n�i℄ n�

else

�[n�i℄ 0

Figure 2: Computing �[1::n℄ for input string x[1..n℄

Lemma 1. Let j = LSA[i℄ for some i 2 1::n.

(a) If �[j℄ > 0, then x

�

�[j℄::n

�

<

0

x[j::n℄;

(b) otherwise, if �[j℄ = 0, then

x[j::n℄ <

0

min

1�h<i

x

�

LSA[h℄::n

�

: (4)

Proof If �[j℄ > 0, then x

�

�[j℄::n

�

is a proper pre�x of x[j::n℄, so that x

�

�[j℄::n

�

<

0

x[j::n℄. If �[j℄ = 0, then for every h 2 1::i1, there exists a least nonnegative integer

q

h

� minfnj+1; nLSA[h℄+1g suh that x

�

LSA[h℄+q

h

�

6= x[j+q

h

℄. Thus by the

de�nition of LSA, x

�

LSA[h℄+q

h

�

< x[j+q

h

℄, and so, by the de�nition of <

0

, x[j+q

h

℄ <

0

x

�

LSA[h℄+q

h

�

. Hene (4) holds. 2

Observe that every border of every suÆx is represented by an entry in � and

so will be overed by Lemma 1. Observe further that the quantities q

h

introdued

in the proof for �[j℄ = 0 are atually lp values for eah pair of suÆxes x[j::n℄ and

x

�

LSA[h℄::n

�

.

Lemma 2. Let j

1

= LSA[i

1

℄, j

2

= LSA[i

2

℄, 1 � i

1

< i

2

� n. If �[j

1

℄ = �[j

2

℄ > 0,

then

x[j

2

::n℄ <

0

x[j

1

::n℄:

Proof Sine i

1

< i

2

, x[j

1

::n℄ < x[j

2

::n℄; sine neither of these strings an be a pre�x

of the other, the result follows. 2

Figure 3 shows the simplest algorithm that omputes LSA

0

. The algorithm illus-

trates the fundamental idea of the proess in a lear and simple way. We suppose

that the array � was omputed in preproessing, while the array NEXT[1::n℄ emu-

lates a singly-linked list equivalent to LSA

0

that is onstruted as the input LSA is

sanned from left to right (in inreasing lexorder): we will onsistently use the word
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start LSA[1℄;

for i 2 to n do

j  LSA[i℄

if �[j℄ = 0 then

| by Lemma 1 (b) j goes to start of list

NEXT[j℄ start; start j

else

| by Lemmas 1 (a) & 2, insert j next to �[j℄

j

0

 �[j℄; temp NEXT[j

0

℄

NEXT[j

0

℄ j; NEXT[j℄ temp

Figure 3: Algorithm 1 | Computing LSA

0

for Reversed Alphabet

transform to refer to the omputation of NEXT from LSA (and vie versa). We

omit the straightforward for loop that transforms NEXT into LSA

0

.

| transform LSA into NEXT

start LSA[1℄

for i 1 to n�1 do

NEXT[LSA[i℄℄ LSA[i+1℄

NEXT[LSA[n℄℄ 0

ompute � using memory storage of LSA

| reorder NEXT

prev  start; ur NEXT[prev℄

while ur 6= 0 do

if �[ur℄ = 0 then | ur goes to front

NEXT[prev℄ NEXT[ur℄; NEXT[ur℄ start

start ur

else | ur goes next to �[ur℄

if NEXT[�[ur℄℄ = ur then

prev  ur

else

NEXT[prev℄ NEXT[ur℄; i NEXT[�[ur℄℄;

NEXT[�[ur℄℄ ur; NEXT[ur℄ i

| transform NEXT to LSA

0

using memory storage of �

i 1; j  start

for i 1 to n do

LSA[i℄ j; j  NEXT[j℄

Figure 4: Algorithm 2 | Computing LSA

0

for Reversed Alphabet

Algorithm 1 has the disadvantage of using 2jxj words of working memory (the

arrays � and NEXT) for the input string x. Algorithm 2 (see Figure 4) is a bit more

elaborate; however, it is based on the same priniples as Algorithm 1 and uses only

jxj words of working memory (for NEXT).

Thus
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Theorem 1. Given LSA(x) for a string x = x[1::n℄, Algorithm 2 omputes LSA

0

(x)

for a reversed alphabet in �(n) time using n words of working memory.

Proof By indution. Clearly for i = 1 the entries in NEXT are in <

0

order. Suppose

that for arbitrary i 2 1::n1, the entries are in <

0

order. By Lemmas 1 and 2, the

entries must still be in <

0

order after LSA[i+1℄ has been proessed. 2

We note that essentially the same algorithm applies to a morphism � : A ! B

from one ordered alphabet to another provided that for every distint �; � 2 A,

� < �() �(�) <

0

�(�).

3 Permuting the Order of the Alphabet

In this setion we desribe an algorithm to ompute LSA

0

(x) in the ase of an arbitrary

reordering (A; <

0

) of the alphabetA. Alternatively, we may think of this reordering as

a permutation � : A ! A where for every distint �; � 2 A, � < �() �(�) <

0

�(�).

Essentially, our algorithm uses LSA(x) (in fat, as we shall see, any VSA(x) will

do) to simulate a reordering of the subtrees of the suÆx tree T

x

that is determined by

the reordering of the alphabet. In the simple example of Figure 1, the only possible

reordering (sine jAj = 2, neessarily a reversal) would result from interhanging two

paths in the subtree represented by a and b as well as in the subtree represented by

aab$ and ab, yielding LSA

0

(x) = 52413.

It is instrutive to onsider the relationship between reversal and arbitrary re-

ordering. In Lemma 1, if we suppose that �[j℄ > 0, it is true also in the general ase

that x

�

�[j℄::n

�

<

0

x[j::n℄; however, Lemmas 1 (b) and 2 no longer hold, sine it is

no longer possible to infer the order of x[j

1

::n℄ and x[j

2

::n℄ from the order in whih

they our in LSA(x). In other words, the set of suÆxes that have the same LCP

x

�

�[j℄::n

�

annot simply be plaed to the right of x

�

�[j℄::n

�

| they must now be

sorted in <

0

order based on positions �[j℄+1; �[j℄+2; : : : in eah suÆx.

Similarly, in the ase that �[j℄ = 0, (4) no longer holds: we must reloate suÆxes

by sorting in <

0

order the ones that have the same LCP (our in the same subtree

of T

x

).

These omments imply that the array � is no longer useful in the general ase,

whereas the lp array (for example, (2)) beomes ritial. Fortunately, like �, the lp

array lp[1::n℄ an be omputed in linear time, either from the LSA [KLAAP01℄ or as

a byprodut of LSA onstrution: thus we assume throughout this setion that it is

available. In fat, as noted above, sine in the general ase the LSA ordering provides

no information about the LSA

0

ordering, the algorithm desribed in this setion will

work just as well using any VSA(x) together with its orresponding (permuted) lp

array.

Our algorithm reorders the suÆxes of x beginning with those that share the

greatest lp values, thus equivalent to a traversal of the suÆx tree T

x

upwards from

the deepest lp nodes. We �rst outline the ontrol struture that our algorithm uses

to aomplish this traversal, then go on to desribe the details of its implementation.

The input LSA(x) (VSA(x)) and its orresponding input lp array LCP1 are being

traversed from left to right in order to identify families. In simple terms, a family

is a set of nodes in the lis NEXTthat orresponds to a set of links to nodes that are
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immediate hildren of an internal node of the orresponding suÆx tree. These links

an be permuted provided that the links in all subtrees have been already sorted. If

the internal node that is the root of the subtree orresponds to lp `, we all the family

an `-family. A stak STACK for traking families is maintained by the algorithm;

if a value ` is on top of the stak, then an LCP[NEXT[`℄℄-family starts at position

NEXT[`℄ (for tehnial reason we do not store the beginning of the family on the

stak, but rather the previous node).

| input: x - string

| input: LSA- its suÆx array

| input: LCP1- lp array for LSA

| input: permutation p of the alphabet

NEXT[ ℄ | auxiliary array

STACK | stak for keeping trak of families

Transform LSA to NEXT

Transform LCP1 to LCP using memory of LSA for LCP

use memory of LCP1 as memory for TAIL and initialize it

Initialize STACK and variables

while multipop()

Identify and Extrat a family (using STACK)

Sort the family (using p)

Flatten the family

Vertialize the family

Sort the �nal 0-family

Flatten the �nal 0-family

Transform NEXT to LSA

Transform LCP to LCP1

| output: LSA sorted aording to p

| output: LCP1 lp of LSA

Figure 5: Outline of Algorithm 3 | General Reordering

The families are identi�ed simply during the san: as long as the values of LCP

inrease, they are pushed on the stak as they represent beginnings of families. A

dereasing value indiates the end of the innermost family (i.e. the one on the top of

the stak). After the family is sorted, it is \vertialized", so it is now represented as a

single node in the family it is nested in and the san an ontinue. One would expet

to pop the stak one the innermost family is proessed. However, the situation is a bit

more omplex, and thus multipop() is employed to deide whether or not the stak

should be popped. The ontrol stuture of the algorithm is shown in Figure 5. The

individual steps are desribed in detail below, making use of the following standard

routines: Push(s) pushes s on top of STACK, Pop() pops STACK, Top() obtains the

value on the top of the stak STACK without popping it, Top

1

() obtains the value

next to the top of STACK without popping it.

The data strutures and variables

As shown in Figure 5, three arrays are used in addition to x, two of them input, only

one auxiliary. NEXT[1::n℄ emulates a singly-linked list of nodes, where eah node
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stores an integer value k representing the suÆx x[k::n℄. A variable start marks the

beginning of NEXT[ ℄. For instane,

5 23 14

2 0 1 3 4
1 2 3 4 5

NEXTstart = 5    and represent

The array TAIL[n℄ represents the \vertialized" part of the list of nodes. For instane,

5

6

9

10

23

11

8

14

7

2 0 1 3 4
1 2 3 4 5

NEXT

start = 5    and

represent

6 7 8 9 10 11
9 0 11 10 0 0

0 0 8 7 6TAIL 10 7 11 0 0 0

The end of eah \vertial" tail is reahable in two steps: TAIL[TAIL[k℄℄ is the very

last member of the \vertial" tail starting at the node k. Other auxiliary variables

used are: ur for a \pointer" to the urrent node in NEXT[ ℄, prev for a \pointer" to

the previous node (if prev = 0, it means that ur = start). LE (left end) represents

the node to whih the head of a family is attahed (LE = 0 means that the head of

the family is start), RE (right end) represents the node to whih the last member of

a family will point to (RE = 0 means that the last member of a family is the last

member of the NEXT list). Finally a variable type desribes the type of family we

are proessing, i.e. the lp of all memebers of the family.

Transform input LSA to NEXT

Traverse LSA and �ll in the entries in NEXT:

start LSA[1℄;

for i 1 to n�1 do

NEXT[LSA[i℄℄ LSA[i+1℄

NEXT[n℄ 0

Transform input LCP1 to LCP

Normally, LCP[i℄ represents the lp of two neighbouring suÆxes, x[LSA[i�1::n℄℄ and

x[LSA[i℄::n℄℄. But sine during the sorting the mutual positions of suÆxes an hange,

we modify the usual meaning to: LCP[i℄ represents the lp of x[LSA[i℄::n℄℄ and its

right neighbour. Thus, we traverse LCP1 and \shift" the values one position to the

left. Sine LSA is no longer needed, we use its memory for LCP:
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LCP[start℄ LCP1[1℄;

for i 1 to n�1 do

LCP[LSA[i℄℄ LCP1[i+1℄

LCP[n℄ 0

Initialize TAIL

Sine LCP1 is no longer needed, we use its memory for TAIL. Sine at the beginning

we have no \vertial" tails, all entries must be initialized to 0:

for i 1 to n do

TAIL[i℄ 0

Initialize STACK and variables

Start the traversal of NEXT and LCP. Keep traversing as long as LCP has value 0.

Push on STACK prev of the �rst non-zero node.

prev  0; ur start

while LCP[i℄ = 0

prev  ur; ur NEXT[ur℄

Push(prev)

type LCP[ur℄

Identify and Extrat a family

Note that we are now inside a loop (see Figure 5), and thus the use of the term

ontinue means to transfer the ow of ontrol to the top of the loop.

if LCP[ur℄ = type then

prev  ur; ur NEXT[ur℄; ontinue

if LCP[ur℄ > type then | a new family starts

Push(prev)

prev  ur; ur NEXT[ur℄; ontinue

if LCP[ur℄ < type then | a family ends

LE  Top(); RE  NEXT[ur℄; NEXT[ur℄ 0

Thus we have just identi�ed an innermost family of type LCP[ur℄ starting at

NEXT[LE℄ and ending at ur. Note that we \severed" the link between ur and

RE (we \extrated" the family from the list NEXT).

Sort the family

Note that sorting the family aording to the letter at position type is the same as

sorting links of an internal node of a suÆx tree. We will disuss the atual sorting

separately. We are assuming that from refers to the head of the family, while to to its

last member. Prior to sorting the family, we must remember the LCP[to℄ value, thus

last LCP[to℄. After the sorting of the family, we must modify the LCP aordingly:

for i from to to

if LCP[i℄ < type then

LCP[i℄ type

LCP[to℄! last
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Flatten the family

As indiated, some nodes in the NEXT list might have \vertial" tails. At this stage

we \atten" the family so there are no \vertial" tails any more. The proess is simple:

if NEXT[a℄ = b, then we make NEXT[a℄ to be the �rst element in the \vertial" tail,

while NEXT[℄ b, where  is the last element in the \vertial" tail. Thus:

for i from to to

if TAIL[i℄ 6= 0 then

b NEXT[i℄; NEXT[i℄ TAIL[i℄

NEXT[TAIL[TAIL[i℄℄℄ b

TAIL[TAIL[i℄℄ 0; TAIL[i℄ 0

Vertialize the family

To prevent resorting or retraversing the family whih just has been attened during

the subsequent sort (of the family this family is nested in), we leave only the head of

the family in the NEXT list, and make the rest of the family into a \vertial" tail of

the head. Thus, in all subsequent sorts only the head will be used and thus further

traversal of the family is prevented.

TAIL[from℄ = NEXT[from℄

NEXT[from℄ 0

TAIL[TAIL[from℄℄ to

multipop()

As a tehniality, in its �rst invoation multipop() returns true . Thus, we an

assume, that we just �nished proessing a family of type type. We have to deide

if we ontinue with the san, pop the stak, or proess another family. The role of

multipop() is to make all these deisions. It returns true if the san is to ontinue,

or false if the san is to terminate.

What situations an happen is best visualized on the suÆx tree | the grey triangle

represents the family of links that was just sorted. There are 7 possible ases that

we denote A1, ..., A4, and B1, ..., B3. Cases A1, ..., A4 onern situations when

only one item is on the stak (representing the family we just sorted), while ases B1,

..., B3 onern situations when more than one item are on the stak. The shemati

depition of the ases follows:

0

n

Case   A1

0

Case   A2

n
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0

n

Case   A3

m

n

Case   A4

k

m

n

Case   B1

k

n

Case   B2

m

represents either an internal node of the suffix tree,

or a leaf.

m

n

Case   B3

k

The variable famend represents the \pointer" to the very last element in the family

just proessed.

Cases A1, ..., A3

These are treated alike and reognized alike. The reognition is based on the fat

that the stak has only one item and LCP[famend℄ = 0. The ation is to pop the

stak, forward the san and then the san is ontinued:
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Pop(); prev  ur; ur NEXT[ur℄

if ur=0 then return false

type LCP[ur℄

while type = 0 do

prev  ur; ur NEXT[ur℄; type LCP[ur℄

if type=0 then

prev  ur; return false

Push(prev)

return true

Case A4

The reognition is based on the fat that the stak has only one item and

LCP[famend℄ > 0. The ation is not to pop the stak (as the n-family just proessed

starts at the same position as the m-family to be proessed), the san is forwarder

and then the san is ontinued, but the type is dereased aordingly (to m):

type LCP[famend℄

prev  ur

ur NEXT[ur℄

return true

For ases B1, ..., B3 we have to determine type1, the type of the family that is on the

top of the stak:

if Top

1

() = 0 then

type1 LCP[start℄

else

type1 LCP[NEXT[Top

1

()℄℄

Case B1

The reognition is based on the fat that the stak has more than one item and

LCP[famend℄ > type1. The ation is not to pop the stak (as the n-family just

proessed starts at the same position as the m-family to be proessed), the san is

forwarded and then the san is ontinued, but the type is dereased aordingly (to

m):

type LCP[famend℄

prev  ur

ur NEXT[ur℄

return true

Case B2

The reognition is based on the fat that the stak has more than one item and

LCP[famend℄ = type1. The ation is to pop the stak, derease the type, forward

the san and then the san is ontinued:

Pop()

type type1

prev  ur

ur NEXT[ur℄

if ur = 0 then return false

return true
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Case B3

The reognition is based on the fat that the stak has more than one item and

LCP[famend℄ < type1. The ation is to pop the stak, derease the type, without

moving forward the san and then the san is ontinued:

Pop()

type type1

return true

This onludes the desription of the algorithm. It is rather straighforward to

hek that the algorithm (without the atual sorting of the families) requires O(n)

steps. The additional memory requirements are n words for the array NEXT[ ℄ and

� n words of memory for STACK. Of ourse, some additional memory will be

required for the atual sorting of the families: if the number of distint haraters in

the input string is � n=2, then we need � 3n=2 words of memory for STACK and for

sorting (n for STACK and � n=2 for sorting). If the number of distint haraters

in the input string is > n=2, then we need � 3n=2 words of memory for STACK and

sorting (< n=2 for STACK, and � n for sorting). Thus, the algorithm presented

requires in total � 2:5n words of working memory for the proess and the

sorting.

C ode for Algorithms 1{3 and powerpoint illustration of Algorithms 2{3 are

available at [F05℄.

From the presentation of the algorithm it is lear that sorting the suÆx array

is as omplex as sorting links in the orresponding suÆx tree. Thus, the following

disusion applies to both suÆx trees and suÆx arrays. When we are to sort a family

of size k (or k links of an internal node in the suÆx tree), no matter what permutation

is given, it an be sorted in O(n) time using a buket sort. However, this may lead

to non-linear sorting time for the whole array (or the whole tree). If the alphabet is

�xed, of ourse the sorting will be linear. But also for some \mild" permutations the

sorting will be linear as well. This leads us to investigate an interesting omputational

property of permutations that we all the suborder omplexity of the permutation:

The suborder omplexity � of a permutation p of n, denoted �(p), is de�ned to

be the minimal � suh that for any 2 � k � n, it takes at most �k steps to order

any subset of n of size k. Note that �(p) � logn as any subset of n of size k an be

sorted in � k log k � k logn steps.

It follows that

Theorem 2. For any permutation with suborder omplexity �, the suÆx array of a

string an be re-ordered by Algorithm 3 in O(�n) time, where n is the length of the

input string.

Conlusions and Further Researh

An interesting question that arises is what kind of permutations have small suborder

omplexity. Here are some examples:

� The inversion has suborder omplexity 1.
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� Any rotation has suborder omplexity 1.

� Any permutation with � transpositions has suborder omplexity �.

� Let p be a \mild" permutation, i.e. jp(i) � ij � �. Then p has suborder

omplexity 2�.

� Let p

1

on n

1

have suborder omplexity �

1

and let p

2

on n

2

have suborder om-

plexity �

2

, then p

1

L

p

2

has suborder omplexity max(�

1

; �

2

) (where p = p

1

L

p

2

is de�ned on n

1

+n

2

by p(i) = p

1

(i) for 1 � i � n

1

, and p(i) = n

1

+p

2

(i�n

1

) for

n

1

< i � n

1

+n

2

).

So the lass of permutations with small suborder omplexity seems quite interest-

ing and rih enough to warrant further investigation.
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