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Abstra
t. Traditional Approximate Pattern Mat
hing (e.g. Hamming distan
e

errors, edit distan
e errors) assumes that various types of errors may o

ur to

the data, but an impli
it assumption is that the order of the data remains

un
hanged.

Over the years, some appli
ations identi�ed types of \errors" were the data re-

mains 
orre
t but its order is 
ompromised. The earliest example is the \swap"

error motivated by a 
ommon typing error. Other widely known examples su
h

as transpositions, reversals and inter
hanges are motivated by biology.

We propose that it is time to formally split the 
on
ept of \errors in data" and

\errors in address" sin
e they present di�erent algorithmi
 
hallenges solved by

di�erent te
hniques. The \errors in address" model, whi
h we 
all asyn
hronous

pattern mat
hing, sin
e the data does not arrive in a syn
hronous sequential

manner, is ri
h in problems not addresses hitherto.

We will 
onsider some reasonable metri
s for asyn
hronous pattern mat
hing,

su
h as the number of inversions, or the number of generalized swaps, and

show some eÆ
ient algorithms for these problems. As expe
ted, the te
hniques

needed to solve the problems are not taken from the standard pattern mat
hing

\toolkit".

1 Motivation

Histori
ally, approximate pattern mat
hing grappled with the 
hallenge of 
oping with

errors in the data. The traditional Hamming distan
e problem assumes that some

elements in the pattern are erroneous, and one seeks the text lo
ations where this

number of errors is small enough [17, 14, 4℄, or eÆ
iently 
al
ulating the Hamming

distan
e at every text lo
ation [1, 16, 4℄. The edit distan
e problem adds to the

assumption that some elements of the text are deleted, or that noise is added at some

text lo
ations [18, 11℄. Indexing and di
tionary mat
hing under these errors has also

been 
onsidered [15, 12, 21, 10℄.

Impli
it in all these problems is the assumption that there may indeed be errors

in the 
ontent of the data, but the order of the data is inviolate. Data may be

�
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lost or noise may appear, but the relative position of the symbols is un
hanged. Data

does not move around. Even when don't 
ares were added [13℄, when non-standard

models were 
onsidered[6, 20, 2℄ the order of the data was assumed to be iron
lad.

Nevertheless, some non-
onforming problems have been gnawing at the walls of

this assumption. The swap error, motivated by the 
ommon typing error where two

adja
ent symbols are ex
hanged [19, 3℄, does not assume error in the 
ontent of the

data, but rather, in the order. The data 
ontent is, in fa
t, assumed to be 
orre
t.

Re
ently, the advent of 
omputational biology has added more problems of order

error to our repertoire. In evolution, one envisions a whole pie
e of genome to \de-

ta
h" and \re
onne
t" in a di�erent lo
ation, or two pie
es of genome to \ex
hange"

pla
es. These phenomena, of 
ourse, are assumed to take pla
e simultaneously with

traditional data 
ontent errors, however, their nature is rearrangement of the data,

rather than 
orruption of its 
ontents.

It turns out that the overall problem of adding these new rearrangement operators

to the 
ontent 
hanging operators is extremely diÆ
ult. Thus more simpli�ed prob-

lems were 
onsidered in the literature. The rearrangement operators were isolated

and handled separately. Reversals [7℄, transpositions [5℄, and blo
k inter
hanges [9℄

were explored. The edit distan
e problem under these new operations is still too

diÆ
ult, therefore the sorting permutation version of these problems was resear
hed.

This resear
h dire
tion led to interesting paths. First, the tools and te
hniques

used were di�erent from the traditional pattern mat
hing tools. The results also

seem more varied. The sorting by reversal problem is NP-hard [8℄. It is still open

whether the sorting by transposition problem 
an be eÆ
iently solved determinis-

ti
ally. Christie [9℄ gives an O(n

2

) algorithm for the sorting by blo
k inter
hange

problem.

In this paper, for the �rst time, we expli
itely identify and formalize this di�erent

pattern mat
hing paradigm, that of errors in the order rather than error in the


ontent of the data. The advantages in formalizing this paradigm are:

1. Identifying the types of problems and te
hniques required, rather than than

re-inventing ad-ho
 solutions.

2. Understanding the theoreti
al underpinnings of the problem.

3. Generalizing to other possible rearrangements and possibly providing more gen-

eral solutions.

One of the immediate understandings from a formal model de�nition of errors

in order, is that one needs to 
onsider appropriate distan
e measures. The error in


ontent measures are not ne
essarily meaningful in these 
ir
umstan
es. We 
onsider

some generi
 error distan
es, su
h as minimum L

1

and L

2

distan
e on the address

of the data. We also illustrate the fa
t that more spe
i�
 distan
e measures are

ne
essary for spe
i�
 appli
ations.

The main 
ontributions of this resear
h are: We give a formal framework of rear-

rangement operators and the distan
e measure they de�ne. We also provide eÆ
ient

algorithms for several natural operators and distan
e measures. It is ex
iting to point

out that some te
hniques we use are totally new to pattern mat
hing. This reinfor
es

the realization that this new model is needed, as well as gives hopes to new resear
h

dire
tions and paths in the �eld of pattern mat
hing.
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2 The New Model

We begin by an illustration of di�erent appli
ations requiring di�erent rearrangement

operators.

An Example. At the Formula-one ra
es, 
ars and their designated drivers queue

behind the start line at a pre
ise, predetermined order. Suppose that the 
ars arrive

at random order, and then have to rearrange into order. There is only a single passing

lane, so that at any given time only one pair of 
ars 
an swap lo
ations. What is the

minimal number of swaps ne
essary in order to 
omplete the rearrangement? Suppose

that instead of reshu�ing 
ars, the 
ars stay in pla
e, and the drivers ex
hange 
ars.

To do so, the drivers meet mid way and swap keys. In this 
ase, multiple swaps 
an

o

ur in parallel. What is the minimal number of parallel steps ne
essary in order to

get all the drivers in order? Customarily, ra
e 
ars and drivers are divided into groups.

Suppose that the initial queuing order determines the ordering by group, not by

spe
i�
 
ar and driver. What is the minimum number of steps for the rearrangement

in this 
ase (sequential and parallel)?

Our new model 
onsiders how to eÆ
iently answer these and similar questions.

Rearrangement Systems and Distan
es. Consider a set A and let x and y

be two n-tuples over A. We wish to formally de�ne the pro
ess of 
onverting x to

y through a sequen
e of rearrangement operations. A rearrangement operator � is a

fun
tion � : [1::n℄! [1::n℄, with the intuitive meaning being that for ea
h i, � moves

the element 
urrently at lo
ation i to lo
ation �(i). Let � be a set of rearrangement

operators, and let w : �! R

+

be a 
ost fun
tion, asso
iating a non-negative 
ost with

ea
h operator. We 
all the pair (�; w) a rearrangement system. Consider two ve
tors

x; y 2 A

n

and a rearrangement system R = (�; w), we de�ne the distan
e from x to y

under R. Let s = (�

1

; �

2

; : : : ; �

k

) be a sequen
e of rearrangement operators from �,

and let �

s

= �

1

Æ �

2

Æ � � � Æ �

k

be the 
omposition of the �

j

's. We say that s 
onverts

x into y if for any i 2 [1::n℄, x

i

= y

�

s

(i)

. That is, y is obtained from x by moving

elements a

ording to the designated sequen
e of rearrangement operations. The 
ost

of the sequen
e s is the sum of 
osts of the di�erent operators in s, w(s) =

P

k

j=1

w(�

j

).

The distan
e from x to y under R is de�ned as:

d

R

(x; y) = minfw(s)js 
onverts x to y g

If there is no sequen
e that 
onverts x to y then the distan
e is 1.

We extend the de�nition to tuples of di�erent lengths. In this 
ase, we de�ne the

distan
e between the two ve
tors to be the minimum distan
e between the shorter of

the two and the 
losest 
ontiguous subsequen
e of the longer.

We 
onsider several natural rearrangement systems and the resulting distan
es.

For these systems we provide eÆ
ient algorithms to 
ompute the distan
es.

The Swaps Distan
e. We �rst 
onsider the set of rearrangement operators were

in ea
h operation the lo
ation of exa
tly two entries 
an be swapped (as in the 
ar

rearrangement example above). The 
ost of ea
h swap is 1. We 
all the resulting

distan
e the swaps distan
e. We prove:
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Theorem 1. For tuples x and y of sizes m and n respe
tively (m � n) where all

entries of x are distin
t the swaps distan
e 
an be 
omputed in time O(m(n�m+1)).

The Parallel-Swaps Distan
e. Next we 
onsider the 
ase were in ea
h rear-

rangement operation multiple pairs 
an be swapped, but any element 
an parti
ipate

in at most one swap per operation (as in the drivers swap example above). Formally,

this 
orresponds to the set of all permutation with 
y
les of length at most 2. The


ost of ea
h su
h permutation is 1. We 
all the resulting distan
e the parallel swaps

distan
e, denoted by d

p-swap

(�; �). We prove:

Theorem 2. For any two tuples x and y, either d

p-swap

(x; y) =1 or d

p-swap

(x; y) �

2.

This means that for any two tuples x and y that are identi
al as multi-sets, it is

possible to 
onvert one to the other using only two parallel steps of swap operations!

We also prove:

Theorem 3. For tuples x and y of sizes m and n respe
tively (m � n) with k distin
t

entries in x, the parallel swaps distan
e 
an be 
omputed deterministi
ally in time that

is the minimum of O(k

2

n logm) and O(m(n�m + 1)).

and,

Theorem 4. For tuples x and y of sizes m and n respe
tively (m � n), the parallel

swaps distan
e 
an be 
omputed randomly in expe
ted time that is the minimum of

O(n logm) and O(m(n�m+ 1)).

The L

1

Rearrangement Distan
e. Consider the set of rearrangement operations

where in ea
h operation exa
tly one element is moved. The element 
an be moved

to any other lo
ation, and the 
ost of the operation is the distan
e the element is

moved. We 
all this the L

1

Rearrangement System and the resulting distan
e the L

1

Rearrangement Distan
e. We prove:

Theorem 5. For tuples x and y of sizes m and n respe
tively (m � n), the L

1

Rearrangement Distan
e 
an be 
omputed in time O(m(n � m + 1)). If all entries

of x are distin
t, then the distan
e 
an be 
omputed in time that is the minimum of

O(n log logm) and O(m(n�m + 1))

The L

2

Rearrangement Distan
e. Consider the same set of operations as in

the L

1

Rearrangement System, only that the 
ost of an operation is the square of the

distan
e. We 
all this the the L

2

Rearrangement System, and the resulting distan
e

the L

2

Rearrangement Distan
e. We prove:

Theorem 6. For tuples x and y of sizes m and n respe
tively (m � n), the L

2

Rearrangement Distan
e 
an be 
omputed in time that is the minimum of O(n logm)

and O(m(n�m+ 1))
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