1

Historically, approximate pattern matching grappled with the challenge of coping with
errors in the data. The traditional Hamming distance problem assumes that some
elements in the pattern are erroneous, and one seeks the text locations where this
number of errors is small enough [17, 14, 4], or efficiently calculating the Hamming
distance at every text location [1, 16, 4]. The edit distance problem adds to the
assumption that some elements of the text are deleted, or that noise is added at some
text locations [18, 11]. Indexing and dictionary matching under these errors has also

Asynchronous Pattern Matching — Metrics
(Extended Abstract)*

Amihood Amir

Bar-Tlan University and Georgia Tech
Department of Computer Science
52900 Ramat-Gan
ISRAEL

e-mail: amir@cs.biu.ac.il

Abstract. Traditional Approximate Pattern Matching (e.g. Hamming distance
errors, edit distance errors) assumes that various types of errors may occur to
the data, but an implicit assumption is that the order of the data remains
unchanged.

Over the years, some applications identified types of “errors” were the data re-
mains correct but its order is compromised. The earliest example is the “swap”
error motivated by a common typing error. Other widely known examples such
as transpositions, reversals and interchanges are motivated by biology.

We propose that it is time to formally split the concept of “errors in data” and
“errors in address” since they present different algorithmic challenges solved by
different techniques. The “errors in address” model, which we call asynchronous
pattern matching, since the data does not arrive in a synchronous sequential
manner, is rich in problems not addresses hitherto.

We will consider some reasonable metrics for asynchronous pattern matching,
such as the number of inversions, or the number of generalized swaps, and
show some efficient algorithms for these problems. As expected, the techniques
needed to solve the problems are not taken from the standard pattern matching
“toolkit”.

Motivation

been considered [15, 12, 21, 10].

Implicit in all these problems is the assumption that there may indeed be errors
in the content of the data, but the order of the data is inviolate. Data may be

*Partially supported by NSF grant CCR-01-04494 and ISF grant 82/01.

31

Proceedings of the Prague Stringology Conference 05

lost or noise may appear, but the relative position of the symbols is unchanged. Data
does not move around. Even when don’t cares were added [13], when non-standard
models were considered[6, 20, 2] the order of the data was assumed to be ironclad.

Nevertheless, some non-conforming problems have been gnawing at the walls of
this assumption. The swap error, motivated by the common typing error where two
adjacent symbols are exchanged [19, 3], does not assume error in the content of the
data, but rather, in the order. The data content is, in fact, assumed to be correct.
Recently, the advent of computational biology has added more problems of order
error to our repertoire. In evolution, one envisions a whole piece of genome to “de-
tach” and “reconnect” in a different location, or two pieces of genome to “exchange”
places. These phenomena, of course, are assumed to take place simultaneously with
traditional data content errors, however, their nature is rearrangement of the data,
rather than corruption of its contents.

It turns out that the overall problem of adding these new rearrangement operators
to the content changing operators is extremely difficult. Thus more simplified prob-
lems were considered in the literature. The rearrangement operators were isolated
and handled separately. Reversals [7], transpositions [5], and block interchanges [9]
were explored. The edit distance problem under these new operations is still too
difficult, therefore the sorting permutation version of these problems was researched.

This research direction led to interesting paths. First, the tools and techniques
used were different from the traditional pattern matching tools. The results also
seem more varied. The sorting by reversal problem is N'P-hard [8]. It is still open
whether the sorting by transposition problem can be efficiently solved determinis-
tically. Christie [9] gives an O(n?) algorithm for the sorting by block interchange
problem.

In this paper, for the first time, we explicitely identify and formalize this different
pattern matching paradigm, that of errors in the order rather than error in the
content, of the data. The advantages in formalizing this paradigm are:

1. Identifying the types of problems and techniques required, rather than than
re-inventing ad-hoc solutions.

2. Understanding the theoretical underpinnings of the problem.

3. Generalizing to other possible rearrangements and possibly providing more gen-
eral solutions.

One of the immediate understandings from a formal model definition of errors
in order, is that one needs to consider appropriate distance measures. The error in
content measures are not necessarily meaningful in these circumstances. We consider
some generic error distances, such as minimum L; and L, distance on the address
of the data. We also illustrate the fact that more specific distance measures are
necessary for specific applications.

The main contributions of this research are: We give a formal framework of rear-
rangement operators and the distance measure they define. We also provide efficient
algorithms for several natural operators and distance measures. It is exciting to point
out that some techniques we use are totally new to pattern matching. This reinforces
the realization that this new model is needed, as well as gives hopes to new research
directions and paths in the field of pattern matching.

32

Asynchronous Pattern Matching — Metrics (Extended Abstract)

2 The New Model

We begin by an illustration of different applications requiring different rearrangement
operators.

An Example. At the Formula-one races, cars and their designated drivers queue
behind the start line at a precise, predetermined order. Suppose that the cars arrive
at random order, and then have to rearrange into order. There is only a single passing
lane, so that at any given time only one pair of cars can swap locations. What is the
minimal number of swaps necessary in order to complete the rearrangement? Suppose
that instead of reshuffling cars, the cars stay in place, and the drivers exchange cars.
To do so, the drivers meet mid way and swap keys. In this case, multiple swaps can
occur in parallel. What is the minimal number of parallel steps necessary in order to
get all the drivers in order? Customarily, race cars and drivers are divided into groups.
Suppose that the initial queuing order determines the ordering by group, not by
specific car and driver. What is the minimum number of steps for the rearrangement
in this case (sequential and parallel)?
Our new model considers how to efficiently answer these and similar questions.

Rearrangement Systems and Distances. Consider a set A and let x and y
be two n-tuples over A. We wish to formally define the process of converting x to
y through a sequence of rearrangement operations. A rearrangement operator 7 is a
function 7 : [1..n] — [1..n], with the intuitive meaning being that for each i, 7 moves
the element currently at location i to location (7). Let IT be a set of rearrangement
operators, and let w : IT — R be a cost function, associating a non-negative cost with
each operator. We call the pair (I, w) a rearrangement system. Consider two vectors
x,y € A" and a rearrangement system R = (II, w), we define the distance from z to y
under R. Let s = (my,mo,...,m) be a sequence of rearrangement operators from II,
and let 7y = m om0+ om, be the composition of the m;’s. We say that s converts
x into y if for any i € [1.n], 2; = yr,). That is, y is obtained from 2 by moving
elements according to the designated sequence of rearrangement operations. The cost
of the sequence s is the sum of costs of the different operatorsin s, w(s) = 25:1 w(my).
The distance from z to y under R is defined as:

dr(z,y) = min{w(s)|s converts = to y }

If there is no sequence that converts x to y then the distance is oc.

We extend the definition to tuples of different lengths. In this case, we define the
distance between the two vectors to be the minimum distance between the shorter of
the two and the closest contiguous subsequence of the longer.

We consider several natural rearrangement systems and the resulting distances.
For these systems we provide efficient algorithms to compute the distances.

The Swaps Distance. We first consider the set of rearrangement operators were
in each operation the location of exactly two entries can be swapped (as in the car
rearrangement, example above). The cost of each swap is 1. We call the resulting
distance the swaps distance. We prove:

33

Proceedings of the Prague Stringology Conference '05

Theorem 1. For tuples x and y of sizes m and n respectively (m < n) where all
entries of x are distinct the swaps distance can be computed in time O(m(n—m+1)).

The Parallel-Swaps Distance. Next we consider the case were in each rear-
rangement operation multiple pairs can be swapped, but any element can participate
in at most one swap per operation (as in the drivers swap example above). Formally,
this corresponds to the set of all permutation with cycles of length at most 2. The
cost of each such permutation is 1. We call the resulting distance the parallel swaps
distance, denoted by dp-swap(-,-). We prove:

Theorem 2. For any two tuples x and y, either dp-swap(x,y) = 00 or dp-swap(w,y) <
2.

This means that for any two tuples z and y that are identical as multi-sets, it is
possible to convert one to the other using only two parallel steps of swap operations!
We also prove:

Theorem 3. For tuples x and y of sizes m and n respectively (m < n) with k distinct
entries in x, the parallel swaps distance can be computed deterministically in time that
is the minimum of O(k*>nlogm) and O(m(n —m + 1)).

and,

Theorem 4. For tuples © and y of sizes m and n respectively (m < n), the parallel
swaps distance can be computed randomly in expected time that is the minimum of
O(nlogm) and O(m(n —m + 1)).

The L, Rearrangement Distance. Consider the set of rearrangement operations
where in each operation exactly one element is moved. The element can be moved
to any other location, and the cost of the operation is the distance the element is
moved. We call this the L; Rearrangement System and the resulting distance the L,
Rearrangement Distance. We prove:

Theorem 5. For tuples x and y of sizes m and n respectively (m < n), the L,
Rearrangement Distance can be computed in time O(m(n —m + 1)). If all entries
of x are distinct, then the distance can be computed in time that is the minimum of
O(nloglogm) and O(m(n —m + 1))

The L, Rearrangement Distance. Consider the same set of operations as in
the L; Rearrangement System, only that the cost of an operation is the square of the
distance. We call this the the Ly Rearrangement System, and the resulting distance
the Ly Rearrangement Distance. We prove:

Theorem 6. For tuples x and y of sizes m and n respectively (m < n), the Lo
Rearrangement Distance can be computed in time that is the minimum of O(nlogm)

and O(m(n —m + 1))

34

Asynchronous Pattern Matching — Metrics (Extended Abstract)

References

1]

2]

9]

[10]

[11]

[12]

[13]

[14]

[15]

K. Abrahamson. Generalized string matching. STAM J. Comp., 16(6):1039-1051,
1987.

A. Amir, A. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching:
Algorithms, applications, and a lower bound. In Proc. 30th ICALP, pages 929—
942, 2003.

A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
Information and Computation, 181(1):57-74, 2003.

A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching
with & mismatches. J. Algorithms, 2004.

V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM J. on Discrete
Mathematics, 11:221-240, 1998.

B. S. Baker. A theory of parameterized pattern matching: algorithms and appli-
cations. In Proc. 25th Annual ACM Symposium on the Theory of Computation,
pages 71-80, 1993.

P. Berman and S. Hannenhalli. Fast sorting by reversal. In D.S. Hirschberg and
E.W. Myers, editors, Proc. 8th Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 1075 of LNCS, pages 168-185. Springer, 1996.

A. Carpara. Sorting by reversals is difficult. In Proc. 1st Annual Intl. Conf. on
Research in Computational Biology (RECOMB), pages 75-83. ACM Press, 1997.

D. A. Christie. Sorting by block-interchanges. Information Processing Letters,
60:165-169, 1996.

R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In Proc. 36th annual ACM Symposium on the Theory of
Computing (STOC), pages 91-100. ACM Press, 2004.

R. Cole and R. Hariharan. Approximate string matching: A faster simpler
algorithm. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 463-472, 1998.

P. Ferragina and R. Grossi. Fast incremental text editing. Proc. 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 531-540, 1995.

M.J. Fischer and M.S. Paterson. String matching and other products. Complezity
of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113-125, 1974.

Z. Galil and R. Giancarlo. Improved string matching with k& mismatches.
SIGACT News, 17(4):52-54, 1986.

M. Gu, M. Farach, and R. Beigel. An efficient algorithm for dynamic text in-
dexing. Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
697-704, 1994.

35

Proceedings of the Prague Stringology Conference '05

[16] H. Karloff. Fast algorithms for approximately counting mismatches. Information
Processing Letters, 48(2):53-60, 1993.

[17] G. M. Landau and U. Vishkin. Efficient string matching with k& mismatches.
Theoretical Computer Science, 43:239-249, 1986.

[18] V. L. Levenshtein. Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl., 10:707-710, 1966.

[19] R. Lowrance and R. A. Wagner. An extension of the string-to-string correction
problem. J. of the ACM, pages 177-183, 1975.

[20] S. Muthukrishnan and H. Ramesh. String matching under a general matching
relation. Information and Computation, 122(1):140-148, 1995.

[21] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. Proc. 37th FOCS, pages 320328, 1996.

36

