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Abstrat. We design a suint full-text index based on the idea of Hu�man-

ompressing the text and then applying the Burrows-Wheeler transform over

it. The resulting struture an be searhed as an FM-index, with the bene�t

of removing the sharp dependene on the alphabet size, �, present in that

struture. On a text of length n with zero-order entropy H

0

, our index needs

O(n(H

0

+ 1)) bits of spae, without any dependene on �. The average searh

time for a pattern of length m is O(m(H

0

+1)), under reasonable assumptions.

Eah position of a text ourrene an be reported in worst ase time O((H

0

+

1) log n), while any text substring of length L an be retrieved in O((H

0

+1)L)

average time in addition to the previous worst ase time. Our index provides

a relevant spae/time tradeo� between existing suint data strutures, with

the additional interest of being easy to implement. Our experimental results

show that, although not among the most suint, our index is faster than the

others in many aspets, even letting them use signi�atively more spae.

1 Introdution

A full-text index is a data struture that enables to determine the o ourrenes

of a short pattern P = p

1

p

2

: : : p

m

in a large text T = t

1

t

2

: : : t

n

without a need of

sanning over the whole text T . Text and pattern are sequenes of haraters over

an alphabet � of size �. In pratie one wants to know not only the value o, i.e.,

how many times the pattern appears in the text (ounting query) but also the text

positions of those o ourrenes (reporting query), and usually also a text ontext

around them (display query).

A lassi example of a full-text index is the suÆx tree [20℄ reahing O(m + o)

time omplexity for ounting and reporting queries. Unfortunately, it takes O(n logn)

bits,

1

and also the onstant fator is large. A smaller spae omplexity fator is

ahieved by the suÆx array [13℄, reahing O(m logn + o) or O(m + logn + o) in

�
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time (depending on a variant), but still the spae usage may rule out this struture

from some appliations, e.g. in omputational biology.

The large spae requirement of traditional full-text indexes has raised a natural

interest in suint full-text indexes that ahieve good tradeo�s between searh time

and spae omplexity [12, 3, 10, 19, 8, 15, 18, 16, 9℄. A truly exiting perspetive

has been originated in the work of Ferragina and Manzini [3℄; they showed a full-text

index may disard the original text, as it ontains enough information to reover the

text. We denote a struture with suh a property with the term self-index.

The FM-index of Ferragina and Manzini [3℄ was the �rst self-index with spae

omplexity expressed in terms of kth order (empirial) entropy and pattern searh

time linear only in the pattern length. Its spae omplexity, however, ontains an

exponential dependene on the alphabet size; a weakness eliminated in a pratial

implementation [4℄ for the prie of not ahieving the optimal searh time anymore.

Therefore, it has been interesting both from the point of theory and pratie to

onstrut an index with nie bounds both in spae and time omplexities, preferably

with no (or mild) dependene on the alphabet size.

In this paper we onentrate on improving the FM-index, in partiular its large

alphabet dependene. This dependene shows up not only in the spae usage, but

also in the time to show an ourrene position and display text substrings. The

FM-index needs up to 5H

k

n + O

�

(� log � + log logn)

n

log n

+ n



�

�+1

�

bits of spae,

where 0 <  < 1. The time to searh for a pattern and obtain the number of its

ourrenes in the text is the optimal O(m). The text position of eah ourrene

an be found in O

�

� log

1+"

n

�

time, for some " > 0 that appears in the sublinear

terms of the spae omplexity. Finally, the time to display a text substring of length

L is O

�

� (L + log

1+"

n)

�

. The last operation is important not only to show a text

ontext around eah ourrene, but also beause a self-index replaes the text and

hene it must provide the funtionality of retrieving any desired text substring.

The ompressed suÆx array (CSA) of Sadakane [19℄ an be seen as a tradeo�

with larger searh time but muh milder dependene on the alphabet size. The CSA

needs (H

0

=" + O(log log�))n bits of spae. Its searh time (�nding the number of

ourrenes of a pattern) is O(m logn). Eah ourrene an be reported in O (log

"

n)

time, and a text substring of length L an be displayed in O (L + log

"

n) time.

In this paper we present a simple struture based on the FM-index onept. We

Hu�man-ompress the text and then apply the Burrows-Wheeler transform over it,

as in the FM-index. The obtained struture an be regarded as an FM-index built

over a binary sequene. As a result, we remove any dependene on the alphabet size.

We show that our index an operate using n(2H

0

+3+")(1+o(1)) bits, for any " > 0.

No alphabet dependene is hidden in the sublinear terms.

At searh time, our index �nds the number of ourrenes of the pattern in

O(m(H

0

+ 1)) average time. The text position of eah ourrene an be reported in

worst ase time O

�

1

"

(H

0

+ 1) logn

�

. Any text substring of length L an be displayed

in O ((H

0

+ 1) L) average time, in addition to the mentioned worst ase time to �nd

a text position. In the worst ase all the H

0

beome logn.

This index was �rst presented in a poster [5℄, where we only gave its rough idea.

Now we present it in full detail and explore its empirial e�etiveness in ounting,

reporting and displaying, for a broad sope of real-world data (English text, DNA

and proteins). We also inlude a k-ary Hu�man variant. We show that our index,
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Algorithm FM Searh(P ,T

bwt

)

(1) i = m;

(2) sp = 1; ep = n;

(3) while ((sp � ep) and (i � 1)) do

(4)  = P [i℄;

(5) sp = C[℄ +O(T

bwt

; ; sp� 1)+1;

(6) ep = C[℄ +O(T

bwt

; ; ep);

(7) i = i� 1;

(8) if (ep < sp) then return \not found" else return \found (ep� sp+ 1) os".

Figure 1: Algorithm for ounting the number of ourrenes of P [1 : : :m℄ in T [1 : : : n℄.

albeit not among the most suint indexes, is faster than the others in many ases,

even if we give the other indexes muh more spae to work.

2 The FM-index Struture

The FM-index [3℄ is based on the Burrows-Wheeler transform (BWT) [1℄, whih

produes a permutation of the original text, denoted by T

bwt

= bwt(T ). String T

bwt

is the result of the following forward transformation: (1) Append to the end of T

a speial end marker $, whih is lexiographially smaller than any other harater;

(2) form a oneptual matrix M whose rows are the yli shifts of the string T$,

sorted in lexiographi order; (3) onstrut the transformed text L by taking the last

olumn of M. The �rst olumn is denoted by F .

The suÆx array (SA) A of text T$ is essentially the matrix M: A[i℄ = j i� the

ith row of M ontains string t

j

t

j+1

� � � t

n

$t

1

� � � t

j�1

. The ourrenes of any pattern

P = p

1

p

2

� � � p

m

form an interval [sp; ep℄ in A, suh that suÆxes t

A[i℄

t

A[i℄+1

� � � t

n

,

sp � i � ep, ontain the pattern as a pre�x. This interval an be searhed for by

using two binary searhes in time O(m logn).

The suÆx array of text T is represented impliitly by T

bwt

. The novel idea of

the FM-index is to store T

bwt

in ompressed form, and to simulate the searh in the

suÆx array. To desribe the searh algorithm, we need to introdue the bakward

BWT that produes T given T

bwt

: (i) Compute the array C[1 : : : �℄ storing in C[℄

the number of ourrenes of haraters f$; 1; : : : ;  � 1g in the text T . Notie that

C[℄ + 1 is the position of the �rst ourrene of  in F (if any). (ii) De�ne the LF-

mapping LF [1 : : : n+ 1℄ as LF [i℄ = C[L[i℄℄ +O(L; L[i℄; i), where O(X; ; i) equals

the number of ourrenes of harater  in the pre�x X[1; i℄. (iii) Reonstrut T

bakwards as follows: set s = 1 and T [n℄ = L[1℄ (beause M[1℄ = $T ); then, for eah

n� 1; : : : ; 1 do s LF [s℄ and T [i℄ L[s℄.

We are now ready to desribe the searh algorithm given in [3℄ (Fig. 1). It �nds

the interval of A ontaining the ourrenes of the pattern P . It uses the array C and

funtion O(X; ; i) de�ned above. Using the properties of the bakward BWT, it is

easy to see that the algorithm maintains the following invariant [3℄: At the ith phase,

with i from m to 1, the variable sp points to the �rst row of M pre�xed by P [i;m℄

and the variable ep points to the last row of M pre�xed by P [i;m℄. The orretness

of the algorithm follows from this observation.
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Ferragina and Manzini [3℄ desribe an implementation of O(T

bwt

; ; i) that uses

a ompressed form of T

bwt

. They show how to ompute O(T

bwt

; ; i) for any  and i

in onstant time. However, to ahieve this they need exponential spae (in the size of

the alphabet). In a pratial implementation [4℄ this was avoided, but the onstant

time guarantee for answering O(T

bwt

; ; i) was no longer valid.

The FM-index an also show the text positions where P ours, and display any

text substring. The details are deferred to Setion 4.

3 First Hu�man, then Burrows-Wheeler

We fous now on our index representation. Imagine that we ompress our text T$

using Hu�man. The resulting bit stream will be of length n

0

< (H

0

+ 1)n, sine

(binary) Hu�man poses a maximum representation overhead of 1 bit per symbol

2

.

We all T

0

this sequene, and de�ne a seond bit array Th, of the same length of T

0

,

suh that Th[i℄ = 1 i� i is the starting position of a Hu�man odeword in T

0

. Th is

also of length n

0

. (We will not represent T

0

nor Th in our index.)

The idea is to searh the binary text T

0

instead of the original text T . Let us

apply the Burrows-Wheeler transform over text T

0

, so as to obtain B = (T

0

)

bwt

. In

order to have a binary alphabet, T

0

will not have its own speial terminator harater

\$" (yet that of T is enoded in binary at the end of T

0

).

More preisely, let A

0

[1 : : : n

0

℄ be the suÆx array for text T

0

, that is, a permutation

of the set 1 : : : n

0

suh that T

0

[A

0

[i℄ : : : n

0

℄ < T

0

[A

0

[i + 1℄ : : : n

0

℄ in lexiographi order,

for all 1 � i < n

0

. In a lexiographi omparison, if a string x is a pre�x of y, assume

x < y. SuÆx array A

0

will not be expliitly represented. Rather, we represent bit

array B[1 : : : n

0

℄, suh that B[i℄ = T

0

[A

0

[i℄� 1℄ (exept that B[i℄ = T [n

0

℄ if A

0

[i℄ = 1).

We also represent another bit array Bh[1 : : : n

0

℄, suh that Bh[i℄ = Th[A

0

[i℄℄. This

tells whether position i in A

0

points to the beginning of a odeword.

Our goal is to searh B exatly like the FM-index. For this sake we need array C

and funtion O. Sine the alphabet is binary, however, O an be easily omputed:

O(B; 1; i) = rank(B; i) and O(B; 0; i) = i � rank(B; i), where rank(B; i) is the

number of 1's in B[1 : : : i℄, rank(B; 0) = 0. This funtion an be omputed in onstant

time using only o(n) extra bits [11, 14, 2℄. The solution, as well as its more pratial

implementation variants, are desribed in [7℄.

Also, array C is so simple for the binary text that we an do without it: C[0℄ = 0

and C[1℄ = n

0

� rank(B; n

0

), that is, the number of zeros in B (of ourse value

n

0

� rank(B; n

0

) is preomputed). Therefore, C[℄ + O(T

bwt

; ; i) is replaed in our

index by i� rank(B; i) if  = 0 and n

0

� rank(B; n

0

) + rank(B; i) if  = 1.

There is a small twist, however, due to the fat that we are not putting a termina-

tor to our binary sequene T

0

and hene no terminator appears in B. Let us all \#"

the terminator of the binary sequene so that it is not onfused with the terminator

\$" of T$. In the position p

#

suh that A

0

[p

#

℄ = 1, we should have B[p

#

℄ = #.

Instead, we are setting B[p

#

℄ to the last bit of T

0

. This is the last bit of the Hu�man

odeword assigned to the terminator \$" of T$. Sine we an freely swith left and

right siblings in the Hu�man ode, we will ensure that this last bit is zero. Hene the

2

Note that these n and H

0

refer to T$, not T . However, the di�erene between both is only

O(log n), and will be absorbed by the o(n) terms that will appear later.
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Algorithm Hu�-FM Searh(P

0

,B,Bh)

(1) i = m

0

;

(2) sp = 1; ep = n

0

;

(3) while ((sp � ep) and (i � 1)) do

(4) if P

0

[i℄ = 0 then

sp = (sp� 1)� rank(B; sp� 1) + 1 + [sp� 1 < p

#

℄;

ep = ep� rank(B; ep) + [ep < p

#

℄;

else sp = n

0

� rank(B; n

0

) + rank(B; sp� 1) + 1;

ep = n

0

� rank(B; n

0

) + rank(B; ep);

(7) i = i� 1;

(8) if ep < sp then o = 0 else o = rank(Bh; ep)� rank(Bh; sp� 1);

(9) if o = 0 then return \not found" else return \found (o) os".

Figure 2: Algorithm for ounting the number of ourrenes of P

0

[1 : : :m

0

℄ in

T

0

[1 : : : n

0

℄.

orret B sequene would be of length n

0

+ 1, starting with 0 (whih orresponds to

T

0

[n

0

℄, the harater preeding the ourrene of \#", sine # < 0 < 1), and it would

have B[p

#

℄ = #. To obtain the right mapping to our binary B, we must orret

C[0℄ + O(B; 0; i) = i � rank(B; i) + [i < p

#

℄, that is, add 1 to the original value

when i < p

#

. The omputation of C[1℄ + O(B; 1; i) remains unhanged.

Therefore, by preproessing B to solve rank queries, we an searh B exatly as

the FM-index. The extra spae required by the rank struture is o(H

0

n), without

any dependene on the alphabet size. Overall, we have used at most n(2H

0

+ 2)(1 +

o(1)) bits for our representation. This will grow slightly in the next setions due to

additional requirements.

Our searh pattern is not the original P , but its binary oding P

0

using the

Hu�man ode we applied to T . If we assume that the haraters in P have the same

distribution of T , then the length of P

0

is < m(H

0

+ 1). This is the number of steps

to searh B using the FM-index searh algorithm.

The answer to that searh, however, is di�erent from that of the searh of T for

P . The reason is that the searh of T

0

for P

0

returns the number of suÆxes of T

0

that

start with P

0

. Certainly these inlude the suÆxes of T that start with P , but also

other superuous ourrenes may appear. These orrespond to suÆxes of T

0

that

do not start a Hu�man odeword, yet they start with P

0

.

This is why we have marked the suÆxes that start a Hu�man odeword in Bh.

In the range [sp; ep℄ found by the searh for P

0

in B, every bit set in Bh[sp : : : ep℄

represents a true ourrene. Hene the true number of ourrenes an be omputed

as rank(Bh; ep)� rank(Bh; sp� 1). Figure 2 shows the searh algorithm.

Therefore, the searh omplexity is O(m(H

0

+ 1)), assuming that the zero-order

distributions of P and T are similar. Next we show that the worst ase searh ost is

O(m logn). This mathes the worst ase searh ost of the original CSA (while our

average ase is better).

For the worst ase, we must determine whih is the maximum height of a Hu�man

tree with total frequeny n. Consider the longest root-to-leaf path in the Hu�man

tree. The leaf symbol has frequeny at least 1. Let us traverse the path upwards

and onsider the (sum of) frequenies enountered in the other branh at eah node.
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These numbers must be, at least: 1, 1, 2, 3, 5, : : :, that is, the Fibonai sequene

F (i). Hene, a Hu�man tree with depth d needs that the text is of length at least

n � 1 +

P

d

i=1

F (i) = F (d + 2) [21, pp. 397℄. Therefore, the maximum length of a

ode is F

�1

(n)� 2 = log

�

(n)� 2 + o(1), where � = (1 +

p

5)=2.

Therefore, the enoded pattern P

0

annot be longer than O(m logn) and this is

also the worst ase searh ost, as promised. An exeption to the above argument

ours when P ontains a harater not present in T . This is easier, however, as we

immediately know that P does not our in T .

Atually, it is possible to redue the worst-ase searh time to O(m log�), without

altering the average searh time nor the spae usage, by foring the Hu�man tree to

beome balaned after level (1 + x) log�. For details see [6℄.

4 Reporting Ourrenes and Displaying the Text

Up to now we have foused on the searh time, that is, the time to determine the

suÆx array interval ontaining all the ourrenes. In pratie, one needs also the

text positions where they appear, as well as a text ontext. Sine self-indexes replae

the text, in general one needs to extrat any text substring from the index.

Given the suÆx array interval that ontains the o ourrenes found, the FM-

index reports eah suh position in O(� log

1+"

n) time, for any " > 0 (whih appears

in the sublinear spae omponent). The CSA an report eah in O(log

"

n) time, where

" is paid in the nH

0

=" spae. Similarly, a text substring of length L an be displayed

in time O(�(L + log

1+"

n)) by the FM-index and O(L + log

"

n) by the CSA.

In this setion we show that our index an do better than the FM-index, although

not as well as the CSA. Using (1 + ")n additional bits, we an report eah ourrene

position in O(

1

"

(H

0

+1) logn) time and display a text ontext in time O(L log�+logn)

in addition to the time to �nd an ourrene position. On average, assuming that

random text positions are involved, the overall omplexity to display a text interval

beomes O((H

0

+ 1)(L +

1

"

logn)).

4.1 Reporting Ourrenes

A �rst problem is how to extrat, in O(o) time, the o positions of the bits set

in Bh[sp : : : ep℄. This is easy using selet funtion: selet(Bh; j), gives the position

of the j-th bit set in Bh. This is the inverse of funtion rank and it an also be

implemented in onstant time using o(n) additional spae [11, 14, 2, 7℄. Atually we

need a simpler version, seletnext(Bh; j), whih gives the �rst 1 in Bh[j; n℄.

Let r = rank(Bh; sp�1). Then, the positions of the bits set in Bh are selet(Bh; r+

1), selet(Bh; r + 2), : : :, selet(Bh; r + o). We reall that o = rank(Bh; ep) �

rank(Bh; sp�1). This an be expressed using seletnext: The positions pos

1

: : : pos

o

an be found as pos

1

= seletnext(Bh; sp), and pos

i+1

= seletnext(Bh; pos

i

+ 1).

We fous now on how to �nd the text position of a valid ourrene.

We hoose some " > 0 and sample b

"n

2 log n

 positions of T

0

at regular intervals,

with the restrition that only odeword beginnings an be hosen. For this sake, pik

positions in T

0

at regular intervals of length ` = d

2n

0

"n

logne, and for eah suh position

1 + `(i� 1), hoose the beginning of the odeword being represented at 1 + `(i� 1).

Reall from Setion 3 that no Hu�man odeword an be longer than log

�

n�2+o(1)
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bits. Then, the distane between two hosen positions in T

0

, after the adjustment,

annot exeed

`+log

�

n�2+o(1) �

2

"

(H

0

+1) logn+log

�

n�1+o(1) = O

�

1

"

(H

0

+ 1) logn

�

Now, store an array TS with the b

"n

2 log n

 positions of A

0

pointing to the hosen

positions of T

0

, in inreasing text position order. More preisely, TS[i℄ refers to

position 1+`(i�1) in T

0

and hene TS[i℄ = j suh that A

0

[j℄ = selet(Th; rank(Th; 1+

`(i � 1))). Array TS requires

"n

2

(1 + o(1)) bits, sine eah entry needs logn

0

�

log(n log min(n; �)) = logn + O(log log min(n; �)) bits.

The same A

0

positions are now sorted and the orresponding T positions (that

is, rank(Th;A

0

[i℄)) are stored in array ST , for other

"n

2

bits. Finally, we store an

array S of n bits so that S[i℄ = 1 i� A

0

[selet(Bh; i)℄ is in the sampled set. That is,

S[i℄ tells whether the i-th entry of A

0

pointing to beginning of odewords, points to

a sampled text position. S is further proessed for rank queries.

Overall, we spend (1 + ")n(1 + o(1)) bits for these three arrays, raising our �nal

spae requirement to n(2H

0

+ 3 + ")(1 + o(1)).

Let us fous �rst in how to determine the text position orresponding to an entry

A

0

[i℄ for whih Bh[i℄ = 1. Use bit array S[rank(Bh; i)℄ to determine whether A

0

[i℄

points or not to a odeword beginning in T

0

that has been sampled. If it does, then �nd

the orresponding T position in ST [rank(S; rank(Bh; i))℄ and we are done. Other-

wise, just as with the FM-index, determine position i

0

whose value is A

0

[i

0

℄ = A

0

[i℄�1.

Repeat this proess, whih orresponds to moving bakward bit by bit in T

0

, until a

new odeword beginning is found, that is, Bh[i

0

℄ = 1. Now determine again whether

i

0

orresponds to a sampled harater in T : Use S[rank(Bh; i

0

)℄ to determine whether

A

0

[i

0

℄ is present in ST . If it is, report text position 1 +ST [rank(S; rank(Bh; i

0

))℄ and

�nish. Otherwise, ontinue with i

00

trying to report 2 + ST [rank(S; rank(Bh; i

00

))℄,

and so on. The proess must �nish after O

�

1

"

(H

0

+ 1) logn

�

bakward steps in T

0

beause we are onsidering onseutive positions of T

0

and that is the maximum

distane among onseutive samples.

We have to speify how we determine i

0

from i. In the FM-index, this is done

via the LF-mapping, i

0

= C[T

bwt

[i℄℄ + O(T

bwt

; T

bwt

[i℄; i). In our index, the LF-

mapping over A

0

is implemented as i

0

= i � rank(B; i) if B[i℄ = 0 and i

0

= n

0

�

rank(B; n

0

)+rank(B; i) if B[i℄ = 1. This LF-mapping moves us from position T

0

[A

0

[i℄℄

to T

0

[A

0

[i℄� 1℄.

Overall, an ourrene an be reported in worst ase time O(

1

"

(H

0

+ 1) logn).

Figure 3 gives the pseudoode.

4.2 Displaying Text

In order to display a text substring T [l : : : r℄ of length L = r � l + 1, we start by

binary searhing TS for the smallest sampled text position larger than r. Given

value TS[j℄, we know that S[rank(Bh; TS[j℄)℄ = 1 as it is a sampled A

0

entry, and

the orresponding T position is simply ST [rank(S; rank(Bh; TS[j℄))℄. One we �nd

the �rst sampled text position that follows r, we have its orresponding position

i = TS[j℄ in A

0

. From there on, we perform at most O

�

1

"

(H

0

+ 1) logn

�

steps going

bakward in T

0

(via the LF-mapping over A

0

), position by position, until reahing
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Algorithm Hu�-FM Position(i,B,Bh,ST )

(1) d = 0;

(2) while S[rank(Bh; i)℄ = 0 do

(3) do if B[i℄ = 0 then i = i� rank(B; i) + [i < p

#

℄;

else i = n

0

� rank(B; n

0

) + rank(B; i);

(4) while Bh[i℄ = 0;

(5) d = d+ 1;

(6) return d+ ST [rank(S; rank(Bh; i))℄;

Figure 3: Algorithm for reporting the text position of the ourrene at B[i℄. It is

invoked for eah i = selet(Bh; r + k), 1 � k � o, r = rank(Bh; sp� 1).

Algorithm Hu�-FM Display(l,r,B,Bh,TS)

(1) j = minfk; ST [rank(S; rank(Bh; TS[k℄))℄ > rg; // binary searh

(2) i = TS[j℄;

(3) p = ST [rank(S; rank(Bh; i))℄;

(4) L = h i;

(5) while p � l do

(6) do L = B[i℄ � L;

(7) if B[i℄ = 0 then i = i� rank(B; i) + [i < p

#

℄;

else i = n

0

� rank(B; n

0

) + rank(B; i);

(8) while Bh[i℄ = 0;

(9) p = p� 1;

(10) Hu�man-deode the �rst r � l + 1 haraters from list L;

Figure 4: Algorithm for extrating T [l : : : r℄.

the �rst bit of the odeword for T [r + 1℄. Then, we obtain the L preeding positions

of T , by further traversing T

0

bakwards, olleting all its bits until reahing the �rst

bit of the odeword for T [l℄. The reversed bit stream olleted is Hu�man-deoded

to obtain T [l : : : r℄.

Eah of those L haraters osts us O(H

0

+ 1) on average beause we obtain the

odeword bits one by one. In the worst ase they ost us O(logn). The overall time

omplexity is O((H

0

+ 1)(L+

1

"

logn)) on average and O(L logn+ (H

0

+ 1)

1

"

logn) in

the worst ase. Figure 4 shows the pseudoode.

5 K-ary Hu�man

The purpose of the idea of ompressing the text before onstruting the index is to

remove the sharp dependene of the alphabet size of the FM index. This ompression

is done using a binary alphabet. In general, we an use Hu�man over a oding

alphabet of k > 2 symbols and use dlog ke bits to represent eah symbol. Varying

the value of k yields interesting time/spae tradeo�s. We use only powers of 2 for k

values, so eah symbol an be represented without wasting spae.

The spae usage varies in di�erent aspets. Array B inreases its size sine the

ompression ratio gets worse. B has length n

0

< (H

(k)

0

+ 1)n symbols, where H

(k)

0

is

the zero order entropy of the text omputed using base k logarithm, that is, H

(k)

0

=
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�

P

�

i=1

n

i

n

log

k

�

n

i

n

�

= H

0

= log

2

k. Therefore, the size of B is bounded by n

0

log k =

(H

0

+ log k)n bits. The size of Bh is redued sine it needs one bit per symbol, and

hene its size is n

0

. The total spae used by these strutures is then n

0

(1 + log k) <

n(H

(k)

0

+ 1)(1 + log k), whih is not larger than the spae requirement of the binary

version, 2n(H

0

+ 1), for 1 � log k � H

0

.

The rank strutures also hange their size. The rank strutures for Bh are om-

puted in the same way of the binary version, and therefore they redue their size,

using o(H

(k)

0

n) bits. For B, we an no longer use the rank funtion to simulate

O. Instead, we need to alulate the ourrenes of eah of the k symbols in B.

For this sake, we prealulate sublinear strutures for eah of the symbols, inluding

k tables that ount the ourrenes of eah symbol in a hunk of b = dlog

k

(n)=2e

symbols. Hene, we need o(kH

(k)

0

n) bits for this strutures. In total, we need

n(H

(k)

0

+ 1)(1 + log k) + o(H

(k)

0

n(k + 1)) bits.

Regarding the time omplexities, the pattern has length < m(H

(k)

0

+ 1) symbols,

so this is the searh omplexity, whih is redued as we inrease k. For reporting

queries and displaying text, we need the same additional strutures TS, ST and S

that for the binary version. The k-ary version an report the position of an ourrene

in O

�

1

�

(H

(k)

0

+ 1) logn

�

time, whih is the maximum distane between two sampled

positions. Similarly, the time to display a substring of length L beomes O((H

(k)

0

+

1)(L +

1

�

logn)) on average and O(L logn + (H

(k)

0

+ 1)

1

�

logn) in the worst ase.

6 Experimental Results

In this setion we show experimental results on ounting, reporting and displaying

queries and ompare the eÆieny to existing indexes. The indexes used for the

experiments were the FM-index implemented by Navarro [18℄, Sadakane's CSA [19℄,

the RLFM index [17℄, the SSA index [17℄, and the LZ index [18℄. Other indexes,

like the Compressed Compat SuÆx Array (CCSA) of M�akinen and Navarro [16℄, the

Compat SA of M�akinen [15℄ and the implementation of Ferragina and Manzini of

the FM-index were not inluded beause they are not omparable to the FM Hu�man

index due either to their large spae requirement (Compat SA) or their high searh

times (CCSA and original FM index).

We onsidered three types of text for the experiments: 80 MB of English text

obtained from the TREC-3 olletion

3

(�les WSJ87-89), 60 MB of DNA and 55 MB

of protein sequenes, both obtained from the BLAST database of the NCBI

4

(�les

month.est_others and swissprot respetively).

Our experiments were run on an Intel(R) Xeon(TM) proessor at 3.06 GHz, 2

GB of RAM and 512 KB ahe, running Gentoo Linux 2.6.10. We ompiled the ode

with g 3.4.2 using optimization option -O9.

Now we show the results regarding the spae used by our index and later the

results of the experiments lassi�ed by query type.

3

Text Retrieval Conferene, http://tre.nist.gov

4

National Center for Biotehnology Information, http://www.nbi.nlm.nih.gov
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6.1 Spae results

Table 1 (left) shows the spae that the index takes as a fration of the text for di�erent

values of k and the three types of �les onsidered. These values do not inlude the

spae required to report positions and display text.

We an see that the spae requirements are lowest for k = 4. For higher values

this spae inreases, although staying reasonable until k = 16. With higher values

the spaes are too high for these indexes to be omparable to the rest.

We did not onsider the version of the index with k = 8 in the other experiments

beause we do not expet an improvement in the query time, sine log k is not a power

of 2 and then the omputation of O is slower (reasons omitted for lak of spae).

The version with k = 16 an lead to a redution in query time, but the aess to 4

mahine words for the alulation of O (reasons omitted for lak of spae) ould

negatively a�et it. It is important to say that these values are only relevant for the

English text and proteins, sine it does not make sense to use them for DNA.

It is also interesting to see how the spae requirement of the index is divided

among its di�erent strutures. Table 1 (right) shows the spae used by eah of the

strutures for the index with k = 2 and k = 4 for the three types of texts onsidered.

k Fration of text

English DNA Proteins

2 1,68 0,76 1,45

4 1,52 0,74 1,30

8 1,60 0,91 1,43

16 1,84 | 1,57

32 2,67 | 1,92

64 3,96 | |

FM-Hu�man k = 2 FM-Hu�man k = 4

Struture Spae [MB℄ Spae [MB℄

English DNA Proteins English DNA Proteins

B 48:98 16:59 29:27 49:81 18:17 29:60

Bh 48:98 16:59 29:27 24:91 9:09 14,80

Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20

Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55

Total 134,69 45,61 80,48 121,41 44,30 72,15

Text 80,00 60,00 55,53 80,00 60,00 55,53

Fration 1:68 0:76 1:45 1:52 0:74 1:30

Table 1: On top, spae requirement of our index for di�erent values of k. The value

orresponding to the row k = 8 for DNA atually orresponds to k = 5, sine this is

the total number of symbols to ode in this �le. Similarly, the value of row k = 32

for the protein sequene orresponds to k = 24. On the bottom, detailed omparison

of k = 2 versus k = 4. We omit the the spaes used by the Hu�man table, the

onstant-size tables for Rank, and array C, sine they are negligible.
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For higher values of k the spae used by B will inrease sine the use of more

symbols for the Hu�man odes inreases the resulting spae. On the other hand, the

size of Bh dereases at a rate of log k and so do its rank strutures. However, the

spae of the rank strutures of B inreases rapidly, as we need k strutures for an

array that redues its size at a rate of log k, whih is the reason of the large spae

requirement for high values of k.

6.2 Counting queries

For the three �les, we show the searh time as a funtion of the pattern length, varying

from 10 to 100, with a step of 10. For eah length we used 1000 patterns taken from

random positions of eah text. Eah searh was repeated 1000 times. Figure 5 (left)

shows the time for ounting the ourrenes for eah index and for the three �les

onsidered. As the CSA index needs a parameter to determine its spae for this type

of queries, we adjusted it so that it would use approximately the same spae of the

binary FM-Hu�man index.

We show in Figure 5 (right) the average searh time per harater along with the

minimum spae requirement of eah index to ount ourrenes. Unlike the CSA,

the other indexes do not need a parameter to speify their size for ounting queries.

Therefore, we show a point as the value of the spae used by the index and its searh

time. For the CSA index we show a line to resemble the spae-time tradeo� for

ounting queries.

6.3 Reporting queries

We measured the time that eah index took to searh for a pattern and report the

positions of the ourrenes found. From the English text and the DNA sequene

we took 1000 random patterns of length 10. From the protein sequene we used

patterns of length 5. We measured the time per ourrene reported varying the

spae requirement for every index exept the LZ, whih has a �xed size. For the

CSA we set the two parameters, namely the size of the strutures to report and the

strutures to ount, to the same value, sine this turns out to be optimal. Figure 6

(left) shows the times per ourrene reported for eah index as a funtion of its size.

6.4 Displaying text

We measured the time to display a ontext per harater displayed. That is, we

searhed for the 1000 patterns and displayed 100 haraters around eah of the po-

sitions of the ourrenes found. Figure 6 (right) shows this time along with the

minimum spae required for eah index for the ounting funtionality, sine the dis-

play time per harater does not depend on the size of the index. This is not true for

the CSA index, whose display time does depend on its size. For this index we show

the time measured as a funtion of its size.

6.5 Analysis of Results

We an see that our FM-Hu�man k = 16 index is the fastest for ounting queries

for English and proteins and that the version with k = 4 is, together with the SSA,
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Figure 5: On the left, searh time as a funtion of the pattern length over, English

(80 MB), DNA (60 MB), and a proteins (55 MB). The times of the LZ index do not

appear on the English text plot, as they range from 0:5 to 4:6 ms. In the DNA plot,

the time of the LZ index for m = 10 is 0:26. The reason of this inrease is the large

number of ourrenes of these patterns, whih inuenes the ounting time for this

index. On the right, average searh time per harater as a funtion of the size of the

index.
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Figure 6: On the left, time to report the positions of the ourrenes as a funtion of

the size of the index. On the right, time per harater to display text passages. We

show the results of searhing on 80 MB of English text, 60 MB of DNA and �nally

55 MB of proteins.
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the fastest for DNA. The binary FM-Hu�man index takes the same time that k = 4

version for DNA and it is a little bit slower that the FM-index for the other two

�les. As expeted, the three versions are faster than CSA, RLFM and LZ, the latter

not being ompetitive for ounting queries. Regarding the spae usage, the SSA is

an attrative tradeo� alternative for the three �les, sine it uses less spae than our

index and has low searh times (although not as good as our index exept on DNA).

The same happens with the FM-index, although not for DNA, where it uses more

spae and time than our index.

For reporting queries, our index loses to the FM-index for English and proteins,

mainly beause of its large spae requirement. Also, it only surpasses the RLFM and

CSA, and barely the SSA, for large spae usages. For DNA, however, our index, with

k = 2 and k = 4, is better than the FM-index, although it loses to the SSA for low

spae usage. This redution in spae in our index is due to the low zero-order entropy

of the DNA, whih makes our index ompat and fast.

Regarding display time, our index variants are again the fastest. On English text,

however, the LZ is equally fast and smaller (version k = 16 is the relevant one here).

On DNA, the k = 4 version is faster than any other, requiring also little spae. Those

taking (at best 20%) less spae are about 3 times slower. Finally, on proteins, the

version k = 16 is learly the fastest. The best ompetitor, the FM-index, uses 30%

less spae but it is twie as slow.

The versions of our index with k = 4 improved the spae and time of the binary

version. The version with k = 16 inreased the spae usage, but resulted in the fastest

of the three for ounting and display queries. In general, our index is not the smallest

but it is the fastest among those using the same spae.

7 Conlusions

We have foused in this paper on a pratial data struture inspired by the FM-index

[3℄, whih removes its sharp dependene on the alphabet size �. Our key idea is to

Hu�man-ompress the text before applying the Burrows-Wheeler transform over it.

Over a text of n haraters, our struture needs O(n(H

0

+1)) bits, being H

0

the zero-

order entropy of the text. It an searh for a pattern of length m in O(m(H

0

+ 1))

average time. Our struture has the advantage over the FM-index of not depending at

all on the alphabet size, and of having better omplexities to report text ourrenes

and displaying text substrings. In omparison to the CSA [19℄, it has the advantage

of having better searh time.

Furthermore, our struture is simple and easy to implement. Our experimental

results show that our index is ompetitive in pratie against other implemented

alternatives. In most ases it is not the most suint, but it is the fastest, even if we

let the other strutures use signi�atively more spae.
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