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Abstra
t. We initiate the design of a software library of algorithms and data

stru
tures on strings. The design is based on generi
 programming, whi
h aims

for a single implementation of an abstra
t algorithm that works in every situa-

tion, parti
ularly with any kind of string or sequen
e, without any disadvantage

to a more spe
i�
 implementation. The design requires a deep understanding of

both di�erent algorithms and various types of strings. In this paper, we address

one aspe
t of strings, the alphabet. The main 
ontribution is a novel de�nition

of the 
on
ept of an alphabet in a program. The key feature is the re
ognition

of two levels, the level of abstra
t algorithms and the level of 
on
rete programs,

and the establishment of a 
onne
tion between the levels. Based on the de�ni-

tion, we provide a sket
h of a design for alphabet traits, a 
ru
ial abstra
tion

layer between algorithms and strings.

1 Introdu
tion

Algorithms and data stru
tures on strings [5, 12℄ are often pra
ti
al: implementable

with a reasonable e�ort and usable for real world problems. Indeed, many basi


algorithms have been implemented several times in appli
ations or for experimental

evaluation, and pra
ti
al aspe
ts have been an important area of resear
h (see, for

example, [11℄). However, existing implementations are usually hard to �nd, of low

quality (even in
orre
t), or diÆ
ult to modify for new purposes. Thus, someone

needing an implementation fa
es a lot of work whether implementing from s
rat
h or

starting from an existing implementation.

A good software library 
an signi�
antly ease the task of an implementer as it

provides a single sour
e of high quality, well-tested and 
exible implementations of

algorithms and data stru
tures. There are su

essful libraries in several areas of

algorithmi
s in
luding fundamental algorithms and data stru
tures (STL [3℄), graph

algorithms (LEDA [10℄), and 
omputational geometry (CGAL [8℄). Stringology has

been identi�ed as another area that is ripe for a software library and a proposal has

been made [7℄, but nothing 
omparable to STL, LEDA or CGAL exists, yet.

The purpose of this paper is to initiate the design for a software library of algo-

rithms and data stru
tures on strings. The library design is based on the generi
 pro-

gramming paradigm [3℄, whi
h was established by STL and is also the basis of CGAL.

Generi
 programming strives for simultaneous 
exibility and eÆ
ien
y through imple-

mentations that work with as many data types as possible without a loss of eÆ
ien
y.

Ideally, one 
an use a single generi
 implementation of an abstra
t algorithm in ev-

ery situation without any disadvantage to a spe
ialized implementation. In the 
ase
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of stringology, generi
 programming means that the library algorithms should work

eÆ
iently with almost any kind of a string or a sequen
e.

Generi
 programming a
hieves its goal of generi
ity by the means of an abstra
tion

layer between algorithms and the data they operate on, in this 
ase strings. Designing

this layer is the 
ru
ial step in designing an algorithm library. The layer needs to

operate with a large number of di�erent algorithms and a wide variety of string types,

and a good design must be based on a deep understanding of both. Full analysis is

far beyond the s
ope of this paper but we will start with one fundamental aspe
t.

A string 
an be de�ned as a sequen
e of 
hara
ters, whi
h reveals the two largely

orthogonal aspe
ts of strings: the sequen
e aspe
t and the aspe
t of individual 
har-

a
ter, whi
h we will 
all the alphabet aspe
t. Sequen
es are 
entral to STL, and there,

a deep analysis of sequen
es and algorithms on sequen
es has led to the 
on
ept of

iterators. A good introdu
tion to iterators 
an be found in [3℄. For understanding

this paper, it is enough to think iterators as pointers to an array, with a sequen
e

represented by a pair of iterators indi
ating the beginning and the end of the sequen
e.

We will 
on
entrate on the alphabet aspe
t. We start with a motivating example

of a simple algorithm illustrating the problem of alphabets in generi
 programming.

We will then go on to analyze and de�ne the 
on
ept of an alphabet. The 
entral

feature is the re
ognition of two levels, the level of abstra
t algorithm design and

analysis, and the level of 
on
rete implementations and programs. We establish a

formal 
onne
tion between the levels enabling one to see an alphabet at both levels

simultaneously. Finally, we sket
h the design of alphabet traits that forms a part of

the abstra
tion layer between algorithms and strings.

C++ is the language of LEDA, STL and CGAL, and has the best support for

generi
 programming (out of widely used languages, at least). It is thus the obvious


hoi
e of language. The fast development of template metaprogramming te
hniques

in re
ent years [1, 2, 6, 13℄ has brought us 
loser to a
hieving the ideals of generi
 pro-

gramming. Understanding this paper does not require knowledge of these te
hniques,

though some knowledge of C++ may be helpful.

2 Example Algorithm

Consider the following simple algorithm that 
omputes the number of distin
t 
har-

a
ters in a string.


ount distin
t(string S)

1 seen := ;

2 for ea
h 
hara
ter 
 of S do

3 seen := seen [ f
g

4 return jseenj

Two points in this algorithm are problemati
 for a generi
 implementation. One

is the set seen, and the other is the iteration over the 
hara
ters of S. The latter is

involved with the sequen
e aspe
t of the string and is the kind of thing that iterators

were designed for. The former is involved with the alphabet aspe
t and 
ould be

handled using the generi
 set data stru
ture in STL. This would lead to the following
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typi
al STL-style fun
tion:

1

template <typename Iterator>

int 
ount_distin
t(Iterator begin, Iterator end) {

typedef iterator_traits<Iterator>::value_type 
hartype;

set<
hartype> seen;

for (Iterator i = begin; i != end; ++i)

seen.insert(*i);

return seen.size();

}

This is a quite generi
 implementation, but it is slower than ne
essary in many


ases sin
e the set is implemented with a balan
ed sear
h tree. In parti
ular, in the

most 
ommon 
ase of the 
hara
ters being of type 
har, the following fun
tion is

signi�
antly faster for a long string.

template <typename Iterator>

int 
ount_distin
t(Iterator begin, Iterator end) {

ve
tor<bool> seen(256,false);

for (Iterator i = begin; i != end; ++i)

seen[*i℄=true;

return 
ount(seen.begin(), seen.end(), true);

}

Using standard te
hniques, we 
ould use the latter implementation, when the


hara
ters are of type 
har and the former otherwise. However, 
hoosing the optimal

data stru
ture for the set is not that simple:

� If the alphabet is a small range of integers, we should use a ve
tor, whatever

the 
hara
ter type.

� If the alphabet is a small set of integers from a large range, a hash table might

be the 
hoi
e.

� Even balan
ed tree is not quite as generi
 as is possible. It requires order


omparisons, whi
h not all C++ types have, and whi
h, even when available,

might do the wrong thing (see below). In su
h 
ases, we 
ould still implement

the set as an unordered list.

Further 
omplexity 
an be 
reated by an unusual 
on
ept of 
hara
ter equality. Con-

sider the following examples:

� With a 
ase insensitive alphabet, an upper 
ase and a lower 
ase letter are


onsidered to be the same 
hara
ter, and are 
ounted as one.

1

We have simpli�ed the C++ 
ode in this paper by ignoring some quirks of C++: omitted

typename at pla
es, used ve
tor<bool> though it's not the best 
hoi
e, assumed 
har is unsigned,

et
.
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� A 
hara
ter in a protein sequen
e might 
ontain information about se
ondary

or tertiary stru
ture in addition to the amino a
id. If we want to 
ount distin
t

amino a
ids, however, the extra information should be ignored when 
omparing


hara
ters.

� Two 
oating point values might be 
onsidered the same if they round to the

same integer.

All the examples 
ould be handled by 
reating �rst a new string using an appropriate


hara
ter 
onversion, but at the 
ost of a time and spa
e overhead. In 
hara
ter


ounting, the overhead is probably small, but in other 
ases it 
ould be signi�
ant.

For example, the Boyer{Moore algorithm [4℄ usually a

esses only a small fra
tion of


hara
ters and 
onverting all of them 
ould be 
ostly.

The above dis
ussion shows that we 
annot expe
t the C++ type of 
hara
ters

to 
arry all relevant information about the alphabet. A separate entity (a type or

an obje
t) is needed for that purpose. In generi
 programming, su
h entities are

known as traits (see iterator_traits above). The C++ standard library does, in

fa
t, in
lude something 
alled 
hara
ter traits, but they are more of a reli
 from time

before generi
 programming. We will 
all our traits alphabet traits.

Let us �nally see what an implementation of our 
ounting fun
tion using alpha-

bet traits might look like. (A full implementation with a usage example is in the

Appendix.)

template <typename Iterator, typename Alphabet>

int 
ount_distin
t(Iterator begin, Iterator end, Alphabet A) {

typedef generate_set<Alphabet>::type 
harset;


harset seen(A);

for (Iterator i = begin; i != end; ++i)

seen.insert(*i);

return seen.size();

}

Here Alphabet is an alphabet traits type and A an alphabet traits obje
t. The meta-

fun
tion generate_set 
hooses the appropriate implementation for the set.

Despite its simpli
ity, the above algorithm 
aptures a lot of the diÆ
ulties with

alphabets in generi
 programming. For example, the problem of implementing a node

in a trie or an automaton is 
losely related to the problem of implementing the set

seen.

3 Alphabet

Alphabet traits des
ribe the properties of an alphabet, whi
h itself is a more abstra
t

entity. Before designing alphabet traits, we need to de�ne more 
learly what an

alphabet is. That is the purpose of this se
tion and, indeed, the main purpose of this

paper.

When we talk about an alphabet in a generi
 implementation of an abstra
t al-

gorithm, we are talking about two di�erent things. One is the abtra
t alphabet, the

mathemati
al set appearing in problem de�nitions, abstra
t algorithms and their
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asymptoti
 analysis. The other is the 
on
rete alphabet, whi
h is a spe
i�
 represen-

tation of an alphabet in a program.

3.1 Abstra
t Alphabet

An abstra
t alphabet is the set of all possible 
hara
ters. The following properties of

the set are of interest:

� ordering : Does the alphabet have a linear order?

� size: Is it 
onstant, � (�nite), or in�nite (unknown)?

� integrality : Are the 
hara
ter integers?

One 
ould also spe
ify other properties but these are suÆ
ient for most situations

arising in design and analysis of abstra
t algorithms. Note that we allow in�nite and

unordered alphabets.

Consider the 
hara
ter 
ounting algorithm from Se
tion 2. The best implemen-

tation of the 
hara
ter set and the resulting 
omplexity depend on the properties of

the alphabet. For a string of length n, we have the following 
omplexities for various

kinds on alphabets:

� in�nite: O(n

2

)

� �nite: O(nminfn; �g)

� 
onstant: O(n)

� ordered: O(n logn)

� �nite and ordered: O(n logminfn; �g)

� �nite and integral: O(n+ �) deterministi
, O(n) randomized

3.2 Con
rete Alphabet

A 
on
rete alphabet is a representation of an abstra
t alphabet based on the following

three prin
iples:

� All 
hara
ter representations are values of a single C++ type T.

� Not all values of T need to represent a 
hara
ter.

� Multiple values may represent the same 
hara
ter.

Formally, a 
on
rete alphabet A is a triple (T; C;�), where

� T is a C++ type.

� C is a subset of the possible values of the type T.

� � is an equivalen
e relation on C.
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The 
on
rete alphabet A de�nes an abstra
t alphabet

e

A as the set of equivalen
e


lasses of C under �. We will denote by [a℄ the equivalen
e 
lass 
ontaining a.

Two distin
t but equivalent 
hara
ter values are di�erent representations of the

same abstra
t 
hara
ter. The two representations should behave identi
ally in all

algorithms. For example, a don't-
are 
hara
ter that mat
hes all other 
hara
ters is

distin
t from other 
hara
ters and forms its own equivalen
e 
lass. Its spe
ial mat
h-

ing properties are not part of the alphabet but a separate entity 
alled a mat
hing

relation.

3.3 Conversions

The restri
tion to a single type applies to 
on
rete alphabets but not abstra
t al-

phabets as multiple 
on
rete alphabets 
an represent the same abstra
t alphabet.

Conversions between 
on
rete alphabets are the me
hanism to deal with this.

Let A and B be two 
on
rete alphabets. A 
onversion from A to B is a mapping

f : C

A

! C

B

that is homomorphi
 w.r.t. �, i.e., a � a

0

) f(a) � f(a

0

) for all

a; a

0

2 A. Then, we 
an de�ne

e

f :

e

A!

e

B by

e

f([a℄) = [f(a)℄. The following properties

of

e

f are of interest:

�

e

f is an embedding if it is inje
tive (one-to-one), i.e., [a℄ 6= [a

0

℄)

e

f([a℄) 6=

e

f([a

0

℄).

�

e

f is an isomorphism if it is a surje
tive embedding, i.e., an embedding satisfying

e

f(

e

A) =

e

B.

If there is an isomorphism

e

f :

e

A!

e

B, we 
an say thatA and B are two representations

of the same abstra
t alphabet. Similarly, an embedding implies a subset relation.

The mapping

e

f being an embedding or an isomorphism does not imply that the


onversion f is inje
tive or surje
tive. The following lemmas 
hara
terize embeddings

and isomorphisms in terms of 
onversions.

Lemma 1.

e

f is an embedding i� a 6� b) f(a) 6� f(b).

Lemma 2.

e

f :

e

A !

e

B is an isomorphism and eg :

e

B !

e

A is its inverse i�

e

f and eg

are embeddings and g(f(a)) � a for all a 2 A.

Embedding 
onversions in parti
ular play a 
entral role in the library as we will see

later. Isomorphi
 
onversions 
ome into play when inverse 
onversions are involved.

3.4 Ordered alphabets

A 
on
rete ordered alphabet A is a quadruple (T; C;�; <), where T, C and � are as

before and < is a stri
t order on C satisfying: For all a; b 2 C, exa
tly one of a < b,

a � b and b < a is true. (We also de�ne . in the usual way.) The 
orresponding

abstra
t ordered alphabet

e

A has an order � de�ned by [a℄ � [b℄ if a � b or a < b.

A mapping

e

f :

e

A !

e

B is order preserving if it is homomorphi
 w.r.t. �.

Lemma 3.

e

f is order-preserving i� f is homomorphi
 w.r.t. ..

e

f is an order-preserving embedding i� f is homomorphi
 w.r.t. <.
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Order preservation is a surprisingly subtle issue. There are 
ommon isomor-

phisms and embeddings that are not order-preserving. The standard 
onversion from

signed 
har to unsigned 
har is an example. Also, order preservation is often not

required even when order 
omparisons are involved. For example, the implementation

of a 
hara
ter set using a balan
ed sear
h tree requires a linear order but what the

order is does not matter. A non-order-preserving 
onversion would not be a prob-

lem then. We will therefore not generally require 
onversions to be order preserving.

However, when the problem de�nition involves an order, for example in the 
ase of

sorting, the 
onversions must be order preserving.

3.5 Integral Alphabets

Many algorithmi
 te
hniques work only or primarily on integral alphabets. These

in
lude using a 
hara
ter as an array index, 
omputing �ngerprints or hash values,

radix sorting, et
. These te
hniques 
an be made available to a wide variety of

alphabets through embeddings to proper integral alphabets.

A 
on
rete alphabet (T; C;�; <) is a primary integral alphabet if T is a built-in

integral type (for example 
har or int), C is a range of the form [0; �), � is the

standard operator==, and < is the standard operator<. Requiring the minimum to

be zero simpli�es many of the te
hniques mentioned above.

A 
on
rete alphabet is a se
ondary integral alphabet if there is an embedding


onversion f from it to a primary integral alphabet. An integer range with a minimum

other than zero is a se
ondary integral alphabet, too.

Of additional interest is an isomorphi
 
onversion from a primary integral alpha-

bet. For example, random generation of 
hara
ters 
an be a

omplished using it.

4 Alphabet Traits

The 
hara
ter type T does not, in general, 
ontain full information about the alphabet.

Additional information in a form usable by algorithms is provided by alphabet traits.

We will not des
ribe the full design of alphabet traits but give a glimpse to their use

with examples.

An alphabet traits is partly a C++ 
lass and partly an obje
t of that 
lass. The


lass 
ontains stati
 information about the alphabet, i.e., information that is known

at 
ompile time and 
an be used for 
ompile time optimization. An obje
t of that


lass may 
ontain additional dynami
 information. For example, whether an alphabet

is integral or not is always stati
 information but the size of the integral range might

be dynami
 information.

4.1 Writing Generi
 Algorithms

The example in Se
tion 2 shows the use of alphabet traits in writing generi
 algorithms

at its simplest. Almost all details are hidden inside the metafun
tion generate_set,

whi
h is a part of the basi
 library infrastru
ture.

Obtaining more detailed information is demonstrated in the following example.

Let Alphabet be an alphabet traits 
lass and A an obje
t of the 
lass. If the alphabet

is integral, we 
an obtain the 
onversion to a primary integral alphabet as follows:
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get_
har2int<Alphabet>::type 
har2int = make_
har2int(A);

Then 
har2int(
h) performs the 
onversion for the 
hara
ter 
h. Comparison fun
-

tions, for example, are obtained similarly.

The above statement would not even 
ompile for a non-integral alphabet. How-

ever, there are standard metaprogramming te
hniques for 
onditional 
ompilation

based on 
ompile time predi
ates [1℄. In this 
ase, we 
an determine the integrality,

at 
ompile time, using the metafun
tion

is_integral<Alphabet>::value

As we saw in Se
tion 2, alphabet traits is supplied as an argument to a fun
tion. To

make things simpler for the 
aller of the algorithm, the argument should be optional.

When no argument is supplied, the default alphabet traits for the 
hara
ter type is

used instead. In the 
ase of the 
ount_distin
t fun
tion, this is a

omplished by

providing the following se
ond variant of the fun
tion.

template <typename Iterator>

int 
ount_distin
t(Iterator begin, Iterator end) {

typedef iterator_traits<Iterator>::value_type 
hartype;

typedef default_alphabet<
hartype>::type alphabet;

return 
ount_distin
t(begin, end, alphabet());

}

4.2 Creating Alphabets

As mentioned, algorithms typi
ally assume a default alphabet if no alphabet traits is

provided by the user. If the default is not 
orre
t, the user needs to pass a 
orre
t

one as an argument to the algorithm. The library will provide a number of alphabet

traits for 
ommon situations. If none of these is satisfa
tory, there are metafun
tions

for 
reating 
ustom alphabets.

The following example shows one way for 
reating a 
ase-insensitive alphabet.

stru
t 
aseless_equal {

bool operator() (
har a, 
har b) {

return tolower(a)==tolower(b);

}

};

typedef 
onstru
t_alphabet<
har,

set_equivalen
e<
aseless_equal> >::type


aseless_alphabet;

Now a 
all su
h as 
ount_distin
t(begin, end, 
aseless_alphabet()) would


ount upper and lower 
ase letters as one.

The above alphabet is not ordered or integral as no order 
omparison or integral


onversion is provided. Therefore, the set in 
ount_distin
t would be implemented

as an unordered list. An order 
omparison and an integral 
onversion 
ould be pro-

vided as additional arguments to the metafun
tion, but there is simpler way:
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stru
t tolower_
onversion {


har operator() (
har 
) { return tolower(
); }

};

typedef embedded_alphabet<
har, default_alphabet<
har>::type,

tolower_
onversion >::type


aseless alphabet;

Here we 
reate a new alphabet by embedding it to an existing alphabet. Many

properties in
luding ordering and integrality are automati
ally inherited. There is a

similar metafun
tion isomorphi
_alphabet that also takes the inverse 
onversion as

an argument.

Integral alphabets are 
ommon and useful alphabets and there is a separate meta-

fun
tion for 
reating alphabet traits for them. For example,

integral_alphabet<
har, 10, 20>::type


reates an alphabet representing the range [10; 20℄.

All the example alphabet traits here 
ontain no dynami
 information. Creating

alphabet traits with dynami
 information is more 
ompli
ated and we ignore the

details here.

5 Con
luding Remarks

The purpose of this paper is to iniate the design of a string algorithms library based

on the generi
 programming paradigm. We have addressed only one fundamental

but limited aspe
t of the library, the alphabet. However, we believe that the design

approa
h based on a 
areful analysis of 
on
rete examples leading to a de�nition of the


on
ept of an alphabet and the programming te
hniques developed for implementing

the design provide a good start for the design of further aspe
ts of the library.

The design of the sequen
e aspe
t has already been provided to an extent, thanks

to the STL iterators and some further work building on them (http://boost.org/

libs/iterator/do
/, http://boost.org/do
/html/string_algo/design.html,

and http://boost.org/libs/range/). There are still issues remaining, though. For

example, in some 
ases the alphabet and sequen
e aspe
ts 
annot be fully separated

without a loss of eÆ
ien
y [9℄.

Still more aspe
ts are relevant to a string algorithms library. We have already

mentioned one, mat
h relation. Other issues arise, for example, from approximate

string mat
hing and other more 
omplex stringology problems.
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A Full Example

Here is the full implementation of the 
ount_distin
t algorithm.

#in
lude"glas/set.hpp"

#in
lude<iterator>

// 
ount the number of distin
t 
hara
ters in a string

// generi
 form with an alphabet as an argument

template< typename Iterator, typename Alphabet>

int


ount_distin
t(Iterator begin,

Iterator end,

Alphabet A)

{

typedef typename glas::generate_set<Alphabet>::type 
harset;


harset seen;

for (Iterator i = begin; i != end; ++i) {
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seen.insert(*i);

}

return seen.size();

}

// spe
ifi
 form that uses default alphabet

template<typename Iterator>

int


ount_distin
t(Iterator begin, Iterator end)

{

typedef typename std::iterator_traits<Iterator>::value_type


har_type;

typedef typename glas::default_alphabet<
har_type>::type

alphabet;

return 
ount_distin
t(begin, end, alphabet());

}

Below is an program that uses the 
ount_distin
t fun
tion with a 
ase insensitive

alphabet.

#in
lude "
ount.hpp"

#in
lude "glas/alphabet_traits.hpp"

#in
lude<string>

#in
lude<iostream>

// 
ase insensitive alphabet

stru
t tolower_
onversion

{


har operator() (
har 
) 
onst { return tolower(
); }

};

stru
t 
aseless_alphabet

: glas::embedded_alphabet<


har,

glas::default_alphabet<
har>::type,

tolower_
onversion

>::type

{};

int main()

{

std::string str("ABRACAdabra");

int 
nt = 
ount_distin
t(str.begin(), str.end(),


aseless_alphabet());

std::
out << 
nt << " distin
t 
hara
ters in "

<< '"' << str << '"' << "\n";

// prints: 5 distin
t 
hara
ters in "ABRACAdabra"

}
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