Alphabets in Generic Programming

Juha Karkkainen

Department of Computer Science, P.O.Box 68 (Gustaf Héllstromin katu 2 B)
FI-00014, University of Helsinki, Finland

e-mail: Juha.Karkkainen®@cs.helsinki.fi

Abstract. We initiate the design of a software library of algorithms and data
structures on strings. The design is based on generic programming, which aims
for a single implementation of an abstract algorithm that works in every situa-
tion, particularly with any kind of string or sequence, without any disadvantage
to a more specific implementation. The design requires a deep understanding of
both different algorithms and various types of strings. In this paper, we address
one aspect of strings, the alphabet. The main contribution is a novel definition
of the concept of an alphabet in a program. The key feature is the recognition
of two levels, the level of abstract algorithms and the level of concrete programs,
and the establishment of a connection between the levels. Based on the defini-
tion, we provide a sketch of a design for alphabet traits, a crucial abstraction
layer between algorithms and strings.

1 Introduction

Algorithms and data structures on strings [5, 12] are often practical: implementable
with a reasonable effort and usable for real world problems. Indeed, many basic
algorithms have been implemented several times in applications or for experimental
evaluation, and practical aspects have been an important area of research (see, for
example, [11]). However, existing implementations are usually hard to find, of low
quality (even incorrect), or difficult to modify for new purposes. Thus, someone
needing an implementation faces a lot of work whether implementing from scratch or
starting from an existing implementation.

A good software library can significantly ease the task of an implementer as it
provides a single source of high quality, well-tested and flexible implementations of
algorithms and data structures. There are successful libraries in several areas of
algorithmics including fundamental algorithms and data structures (STL [3]), graph
algorithms (LEDA [10]), and computational geometry (CGAL [8]). Stringology has
been identified as another area that is ripe for a software library and a proposal has
been made [7], but nothing comparable to STL, LEDA or CGAL exists, yet.

The purpose of this paper is to initiate the design for a software library of algo-
rithms and data structures on strings. The library design is based on the generic pro-
gramming paradigm [3], which was established by STL and is also the basis of CGAL.
Generic programming strives for simultaneous flexibility and efficiency through imple-
mentations that work with as many data types as possible without a loss of efficiency.
Ideally, one can use a single generic implementation of an abstract algorithm in ev-
ery situation without any disadvantage to a specialized implementation. In the case

163

Proceedings of the Prague Stringology Conference 05

of stringology, generic programming means that the library algorithms should work
efficiently with almost any kind of a string or a sequence.

Generic programming achieves its goal of genericity by the means of an abstraction
layer between algorithms and the data they operate on, in this case strings. Designing
this layer is the crucial step in designing an algorithm library. The layer needs to
operate with a large number of different algorithms and a wide variety of string types,
and a good design must be based on a deep understanding of both. Full analysis is
far beyond the scope of this paper but we will start with one fundamental aspect.

A string can be defined as a sequence of characters, which reveals the two largely
orthogonal aspects of strings: the sequence aspect and the aspect of individual char-
acter, which we will call the alphabet aspect. Sequences are central to STL, and there,
a deep analysis of sequences and algorithms on sequences has led to the concept of
iterators. A good introduction to iterators can be found in [3]. For understanding
this paper, it is enough to think iterators as pointers to an array, with a sequence
represented by a pair of iterators indicating the beginning and the end of the sequence.

We will concentrate on the alphabet aspect. We start with a motivating example
of a simple algorithm illustrating the problem of alphabets in generic programming.
We will then go on to analyze and define the concept of an alphabet. The central
feature is the recognition of two levels, the level of abstract algorithm design and
analysis, and the level of concrete implementations and programs. We establish a
formal connection between the levels enabling one to see an alphabet at both levels
simultaneously. Finally, we sketch the design of alphabet traits that forms a part of
the abstraction layer between algorithms and strings.

C++ is the language of LEDA, STL and CGAL, and has the best support for
generic programming (out of widely used languages, at least). It is thus the obvious
choice of language. The fast development of template metaprogramming techniques
in recent years [1, 2, 6, 13] has brought us closer to achieving the ideals of generic pro-
gramming. Understanding this paper does not require knowledge of these techniques,
though some knowledge of C++ may be helpful.

2 Example Algorithm

Consider the following simple algorithm that computes the number of distinct char-
acters in a string.

count_distinct(string S)

1 seen:=1()

2 for each character c of S do
3 seen = seen U {c}

4 return |seen|

Two points in this algorithm are problematic for a generic implementation. One
is the set seen, and the other is the iteration over the characters of S. The latter is
involved with the sequence aspect of the string and is the kind of thing that iterators
were designed for. The former is involved with the alphabet aspect and could be
handled using the generic set data structure in STL. This would lead to the following

164

Alphabets in Generic Programming

typical STL-style function:!

template <typename Iterator>
int count_distinct(Iterator begin, Iterator end) {
typedef iterator_traits<Iterator>::value_type chartype;
set<chartype> seen;
for (Iterator i = begin; i != end; ++i)
seen.insert (*i) ;
return seen.size();

}

This is a quite generic implementation, but it is slower than necessary in many
cases since the set is implemented with a balanced search tree. In particular, in the
most common case of the characters being of type char, the following function is
significantly faster for a long string.

template <typename Iterator>
int count_distinct(Iterator begin, Iterator end) <{
vector<bool> seen(256,false);
for (Iterator i = begin; i != end; ++i)
seen[*i]=true;
return count(seen.begin(), seen.end(), true);

¥

Using standard techniques, we could use the latter implementation, when the
characters are of type char and the former otherwise. However, choosing the optimal
data structure for the set is not that simple:

e [f the alphabet is a small range of integers, we should use a vector, whatever
the character type.

e If the alphabet is a small set of integers from a large range, a hash table might
be the choice.

e Even balanced tree is not quite as generic as is possible. It requires order
comparisons, which not all C++ types have, and which, even when available,
might do the wrong thing (see below). In such cases, we could still implement
the set as an unordered list.

Further complexity can be created by an unusual concept of character equality. Con-
sider the following examples:

e With a case insensitive alphabet, an upper case and a lower case letter are
considered to be the same character, and are counted as one.

'"We have simplified the C++ code in this paper by ignoring some quirks of C++4: omitted
typename at places, used vector<bool> though it’s not the best choice, assumed char is unsigned,
etc.

165

Proceedings of the Prague Stringology Conference '05

e A character in a protein sequence might contain information about secondary
or tertiary structure in addition to the amino acid. If we want to count distinct
amino acids, however, the extra information should be ignored when comparing
characters.

e Two floating point values might be considered the same if they round to the
same integer.

All the examples could be handled by creating first a new string using an appropriate
character conversion, but at the cost of a time and space overhead. In character
counting, the overhead is probably small, but in other cases it could be significant.
For example, the Boyer—Moore algorithm [4] usually accesses only a small fraction of
characters and converting all of them could be costly.

The above discussion shows that we cannot expect the C++ type of characters
to carry all relevant information about the alphabet. A separate entity (a type or
an object) is needed for that purpose. In generic programming, such entities are
known as traits (see iterator_traits above). The C++ standard library does, in
fact, include something called character traits, but they are more of a relic from time
before generic programming. We will call our traits alphabet traits.

Let us finally see what an implementation of our counting function using alpha-
bet traits might look like. (A full implementation with a usage example is in the
Appendix.)

template <typename Iterator, typename Alphabet>
int count_distinct(Iterator begin, Iterator end, Alphabet A) {
typedef generate_set<Alphabet>::type charset;
charset seen(A);
for (Iterator i = begin; i != end; ++i)
seen.insert (x1i);
return seen.size();

3

Here Alphabet is an alphabet traits {ype and A an alphabet traits object. The meta-
function generate_set chooses the appropriate implementation for the set.

Despite its simplicity, the above algorithm captures a lot of the difficulties with
alphabets in generic programming. For example, the problem of implementing a node
in a trie or an automaton is closely related to the problem of implementing the set
seen.

3 Alphabet

Alphabet traits describe the properties of an alphabet, which itself is a more abstract
entity. Before designing alphabet traits, we need to define more clearly what an
alphabet is. That is the purpose of this section and, indeed, the main purpose of this
paper.

When we talk about an alphabet in a generic implementation of an abstract al-
gorithm, we are talking about two different things. One is the abtract alphabet, the
mathematical set appearing in problem definitions, abstract algorithms and their

166

Alphabets in Generic Programming

asymptotic analysis. The other is the concrete alphabet, which is a specific represen-
tation of an alphabet in a program.

3.1 Abstract Alphabet

An abstract alphabet is the set of all possible characters. The following properties of
the set are of interest:

e ordering: Does the alphabet have a linear order?
e size: Is it constant, o (finite), or infinite (unknown)?
e integrality: Are the character integers?

One could also specify other properties but these are sufficient for most situations
arising in design and analysis of abstract algorithms. Note that we allow infinite and
unordered alphabets.

Consider the character counting algorithm from Section 2. The best implemen-
tation of the character set and the resulting complexity depend on the properties of
the alphabet. For a string of length n, we have the following complexities for various
kinds on alphabets:

e infinite: O(n?)

finite: O(nmin{n,c})

constant: O(n)

ordered: O(nlogn)

finite and ordered: O(nlogmin{n,o})

finite and integral: O(n + o) deterministic, O(n) randomized

3.2 Concrete Alphabet

A concrete alphabet is a representation of an abstract alphabet based on the following
three principles:

e All character representations are values of a single C++ type T.
e Not all values of T need to represent a character.
e Multiple values may represent the same character.
Formally, a concrete alphabet A is a triple (T, C, ~), where
e Tis a C++ type.
e (' is a subset of the possible values of the type T.

e ~ is an equivalence relation on C.

167

Proceedings of the Prague Stringology Conference '05

The concrete alphabet A defines an abstract alphabet A as the set of equivalence
classes of C' under ~. We will denote by [a] the equivalence class containing a.

Two distinct but equivalent character values are different representations of the
same abstract character. The two representations should behave identically in all
algorithms. For example, a don’t-care character that matches all other characters is
distinct from other characters and forms its own equivalence class. Its special match-
ing properties are not part of the alphabet but a separate entity called a matching
relation.

3.3 Conversions

The restriction to a single type applies to concrete alphabets but not abstract al-
phabets as multiple concrete alphabets can represent the same abstract alphabet.
Conversions between concrete alphabets are the mechanism to deal with this.

Let A and B be two concrete alphabets. A conversion from A to B is a mapping
f: CA — CB that is homomorphic w.r.t. ~, ie, a ~ a = f(a) ~ f(a') for all

a,a’ € A. Then, we can define f: A — B by f([a]) = [f(a)]. The following properties
of f are of interest:

o fisan embedding if it is injective (one-to-one), i.e., [a] # [a'] = f([a]) # f([a]).

° Zigvan isomorphism if it is a surjective embedding, i.e., an embedding satisfying

F(A) = B.

If there is an isomorphism f: A g, we can say that A and B are two representations
of the same abstract alphabet. Similarly, an embedding implies a subset relation.

The mapping f being an embedding or an isomorphism does not imply that the
conversion f is injective or surjective. The following lemmas characterize embeddings
and isomorphisms in terms of conversions.

Lemma 1. f is an embedding iff a b = f(a) % f(b).

Lemma 2. fv: A = B is an isomorphism and q: B — A is its inverse iff fv and g
are embeddings and g(f(a)) ~ a for all a € A.

Embedding conversions in particular play a central role in the library as we will see
later. Isomorphic conversions come into play when inverse conversions are involved.

3.4 Ordered alphabets

A concrete ordered alphabet A is a quadruple (T,C, ~, <), where T, C' and ~ are as
before and < is a strict order on C satisfying: For all a,b € C', exactly one of a < b,
a ~ band b < ais true. (We also define < in the usual way.) The corresponding
abstract ordered alphabet A has an order < defined by [a] < [b] if a ~bora<b.

A mapping f A — Bis order preserving if it is homomorphic w.r.t. <.

Lemma 3. f is order-preserving iff f is homomorphic w.r.t. <
f is an order-preserving embedding iff f is homomorphic w.r.t. <.

168

Alphabets in Generic Programming

Order preservation is a surprisingly subtle issue. There are common isomor-
phisms and embeddings that are not order-preserving. The standard conversion from
signed char to unsigned char is an example. Also, order preservation is often not
required even when order comparisons are involved. For example, the implementation
of a character set using a balanced search tree requires a linear order but what the
order is does not matter. A non-order-preserving conversion would not be a prob-
lem then. We will therefore not generally require conversions to be order preserving.
However, when the problem definition involves an order, for example in the case of
sorting, the conversions must be order preserving.

3.5 Integral Alphabets

Many algorithmic techniques work only or primarily on integral alphabets. These
include using a character as an array index, computing fingerprints or hash values,
radix sorting, etc. These techniques can be made available to a wide variety of
alphabets through embeddings to proper integral alphabets.

A concrete alphabet (T,C,~, <) is a primary integral alphabet if T is a built-in
integral type (for example char or int), C' is a range of the form [0,0), ~ is the
standard operator==, and < is the standard operator<. Requiring the minimum to
be zero simplifies many of the techniques mentioned above.

A concrete alphabet is a secondary integral alphabet if there is an embedding
conversion f from it to a primary integral alphabet. An integer range with a minimum
other than zero is a secondary integral alphabet, too.

Of additional interest is an isomorphic conversion from a primary integral alpha-
bet. For example, random generation of characters can be accomplished using it.

4 Alphabet Traits

The character type T does not, in general, contain full information about the alphabet.
Additional information in a form usable by algorithms is provided by alphabet traits.
We will not describe the full design of alphabet traits but give a glimpse to their use
with examples.

An alphabet traits is partly a C++ class and partly an object of that class. The
class contains static information about the alphabet, i.e., information that is known
at compile time and can be used for compile time optimization. An object of that
class may contain additional dynamic information. For example, whether an alphabet
is integral or not is always static information but the size of the integral range might
be dynamic information.

4.1 Writing Generic Algorithms

The example in Section 2 shows the use of alphabet traits in writing generic algorithms
at its simplest. Almost all details are hidden inside the metafunction generate_set,
which is a part of the basic library infrastructure.

Obtaining more detailed information is demonstrated in the following example.
Let Alphabet be an alphabet traits class and A an object of the class. If the alphabet
is integral, we can obtain the conversion to a primary integral alphabet as follows:

169

Proceedings of the Prague Stringology Conference '05

get_char2int<Alphabet>::type char2int = make_char2int (A);

Then char2int (ch) performs the conversion for the character ch. Comparison func-
tions, for example, are obtained similarly.

The above statement would not even compile for a non-integral alphabet. How-
ever, there are standard metaprogramming techniques for conditional compilation
based on compile time predicates [1]. In this case, we can determine the integrality,
at compile time, using the metafunction

is_integral<Alphabet>::value

As we saw in Section 2, alphabet traits is supplied as an argument to a function. To
make things simpler for the caller of the algorithm, the argument should be optional.
When no argument is supplied, the default alphabet traits for the character type is
used instead. In the case of the count_distinct function, this is accomplished by
providing the following second variant of the function.

template <typename Iterator>

int count_distinct(Iterator begin, Iterator end) {
typedef iterator_traits<Iterator>::value_type chartype;
typedef default_alphabet<chartype>::type alphabet;
return count_distinct(begin, end, alphabet());

}

4.2 Creating Alphabets

As mentioned, algorithms typically assume a default alphabet if no alphabet traits is
provided by the user. If the default is not correct, the user needs to pass a correct
one as an argument to the algorithm. The library will provide a number of alphabet
traits for common situations. If none of these is satisfactory, there are metafunctions
for creating custom alphabets.

The following example shows one way for creating a case-insensitive alphabet.

struct caseless_equal {

bool operator() (char a, char b) {

return tolower(a)==tolower(b);

}
+;
typedef construct_alphabet<char,

set_equivalence<caseless_equal> >::type
caseless_alphabet;

Now a call such as count_distinct(begin, end, caseless_alphabet()) would
count upper and lower case letters as one.

The above alphabet is not ordered or integral as no order comparison or integral
conversion is provided. Therefore, the set in count_distinct would be implemented
as an unordered list. An order comparison and an integral conversion could be pro-
vided as additional arguments to the metafunction, but there is simpler way:

170

Alphabets in Generic Programming

struct tolower_conversion {
char operator() (char c) { return tolower(c); }
};
typedef embedded_alphabet<char, default_alphabet<char>::type,
tolower_conversion >::type
caseless alphabet;

Here we create a new alphabet by embedding it to an existing alphabet. Many
properties including ordering and integrality are automatically inherited. There is a
similar metafunction isomorphic_alphabet that also takes the inverse conversion as
an argument.

Integral alphabets are common and useful alphabets and there is a separate meta-
function for creating alphabet traits for them. For example,

integral_alphabet<char, 10, 20>::type

creates an alphabet representing the range [10, 20].

All the example alphabet traits here contain no dynamic information. Creating
alphabet traits with dynamic information is more complicated and we ignore the
details here.

5 Concluding Remarks

The purpose of this paper is to iniate the design of a string algorithms library based
on the generic programming paradigm. We have addressed only one fundamental
but limited aspect of the library, the alphabet. However, we believe that the design
approach based on a careful analysis of concrete examples leading to a definition of the
concept of an alphabet and the programming techniques developed for implementing
the design provide a good start for the design of further aspects of the library.

The design of the sequence aspect has already been provided to an extent, thanks
to the STL iterators and some further work building on them (http://boost.org/
libs/iterator/doc/, http://boost.org/doc/html/string_algo/design.html,
and http://boost.org/libs/range/). There are still issues remaining, though. For
example, in some cases the alphabet and sequence aspects cannot be fully separated
without a loss of efficiency [9].

Still more aspects are relevant to a string algorithms library. We have already
mentioned one, match relation. Other issues arise, for example, from approximate
string matching and other more complex stringology problems.

References

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison—Wesley, 2004.

[2] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison—Wesley, 2001.

(3] M. H. Austern. Generic Programming and the STL. Addison—Wesley, 1999.

171

Proceedings of the Prague Stringology Conference '05

[4]

[10]
[11]
[12]

[13]

A

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762-772, Oct. 1977.

M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.

K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison—Wesley, 2000.

A. Czumaj, P. Ferragina, L. Gasieniec, S. Muthukrishnan, and J. L. Traff. The
architecture of a software library for string processing. In Proceedings of Work-
shop on Algorithm Engineering, pages 294-305, 1997. Online proceedings at
http://www.dsi.unive.it/"wae97/proceedings/.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schénherr. On the
design of CGAL, the computational geometry algorithms library. Software —
Practice and Experience, 30(11):1167-1202, 2000.

K. Fredriksson. Faster string matching with super-alphabets. In Proc. 9th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE),
volume 2476 of LNCS, pages 44-57. Springer, 2002.

K. Mehlhorn and S. Naher. LEDA — A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge
University Press, 2002.

B. Smyth. Computing Patterns in Strings. Pearson Addison—Wesley, 2003.

D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison—Wesley, 2002.

Full Example

Here is the full implementation of the count_distinct algorithm.

#include"glas/set.hpp"
#include<iterator>

// count the number of distinct characters in a string
// generic form with an alphabet as an argument
template< typename Iterator, typename Alphabet>

int

count_distinct(Iterator begin,

{

Iterator end,
Alphabet A)

typedef typename glas::generate_set<Alphabet>::type charset;
charset seen;
for (Iterator i = begin; i != end; ++i) {

172

Alphabets in Generic Programming

seen.insert (*i) ;
}

return seen.size();

}

// specific form that uses default alphabet
template<typename Iterator>

int
count_distinct (Iterator begin, Iterator end)
{
typedef typename std::iterator_traits<Iterator>::value_type
char_type;
typedef typename glas::default_alphabet<char_type>::type
alphabet;
return count_distinct(begin, end, alphabet());
}

Below is an program that uses the count_distinct function with a case insensitive
alphabet.

#include '"count.hpp"

#include "glas/alphabet_traits.hpp"
#include<string>

#include<iostream>

// case insensitive alphabet
struct tolower_conversion
{
char operator() (char c) const { return tolower(c); }
I
struct caseless_alphabet
: glas::embedded_alphabet<
char,
glas::default_alphabet<char>::type,
tolower_conversion
>::type
{};

int main()
{
std: :string str("ABRACAdabra");
int cnt = count_distinct(str.begin(), str.end(),
caseless_alphabet());
std::cout << cnt << " distinct characters in "
<L MM KL ogtr << T kL "\Il”;
// prints: 5 distinct characters in "ABRACAdabra"

173

