
Alphabets in Generi
 Programming

Juha K�arkk�ainen

Department of Computer S
ien
e, P.O.Box 68 (Gustaf H�allstr�omin katu 2 B)

FI-00014, University of Helsinki, Finland

e-mail: Juha.Karkkainen�
s.helsinki.fi

Abstra
t. We initiate the design of a software library of algorithms and data

stru
tures on strings. The design is based on generi
 programming, whi
h aims

for a single implementation of an abstra
t algorithm that works in every situa-

tion, parti
ularly with any kind of string or sequen
e, without any disadvantage

to a more spe
i�
 implementation. The design requires a deep understanding of

both di�erent algorithms and various types of strings. In this paper, we address

one aspe
t of strings, the alphabet. The main
ontribution is a novel de�nition

of the
on
ept of an alphabet in a program. The key feature is the re
ognition

of two levels, the level of abstra
t algorithms and the level of
on
rete programs,

and the establishment of a
onne
tion between the levels. Based on the de�ni-

tion, we provide a sket
h of a design for alphabet traits, a
ru
ial abstra
tion

layer between algorithms and strings.

1 Introdu
tion

Algorithms and data stru
tures on strings [5, 12℄ are often pra
ti
al: implementable

with a reasonable e�ort and usable for real world problems. Indeed, many basi

algorithms have been implemented several times in appli
ations or for experimental

evaluation, and pra
ti
al aspe
ts have been an important area of resear
h (see, for

example, [11℄). However, existing implementations are usually hard to �nd, of low

quality (even in
orre
t), or diÆ
ult to modify for new purposes. Thus, someone

needing an implementation fa
es a lot of work whether implementing from s
rat
h or

starting from an existing implementation.

A good software library
an signi�
antly ease the task of an implementer as it

provides a single sour
e of high quality, well-tested and
exible implementations of

algorithms and data stru
tures. There are su

essful libraries in several areas of

algorithmi
s in
luding fundamental algorithms and data stru
tures (STL [3℄), graph

algorithms (LEDA [10℄), and
omputational geometry (CGAL [8℄). Stringology has

been identi�ed as another area that is ripe for a software library and a proposal has

been made [7℄, but nothing
omparable to STL, LEDA or CGAL exists, yet.

The purpose of this paper is to initiate the design for a software library of algo-

rithms and data stru
tures on strings. The library design is based on the generi
 pro-

gramming paradigm [3℄, whi
h was established by STL and is also the basis of CGAL.

Generi
 programming strives for simultaneous
exibility and eÆ
ien
y through imple-

mentations that work with as many data types as possible without a loss of eÆ
ien
y.

Ideally, one
an use a single generi
 implementation of an abstra
t algorithm in ev-

ery situation without any disadvantage to a spe
ialized implementation. In the
ase

163

Pro
eedings of the Prague Stringology Conferen
e '05

of stringology, generi
 programming means that the library algorithms should work

eÆ
iently with almost any kind of a string or a sequen
e.

Generi
 programming a
hieves its goal of generi
ity by the means of an abstra
tion

layer between algorithms and the data they operate on, in this
ase strings. Designing

this layer is the
ru
ial step in designing an algorithm library. The layer needs to

operate with a large number of di�erent algorithms and a wide variety of string types,

and a good design must be based on a deep understanding of both. Full analysis is

far beyond the s
ope of this paper but we will start with one fundamental aspe
t.

A string
an be de�ned as a sequen
e of
hara
ters, whi
h reveals the two largely

orthogonal aspe
ts of strings: the sequen
e aspe
t and the aspe
t of individual
har-

a
ter, whi
h we will
all the alphabet aspe
t. Sequen
es are
entral to STL, and there,

a deep analysis of sequen
es and algorithms on sequen
es has led to the
on
ept of

iterators. A good introdu
tion to iterators
an be found in [3℄. For understanding

this paper, it is enough to think iterators as pointers to an array, with a sequen
e

represented by a pair of iterators indi
ating the beginning and the end of the sequen
e.

We will
on
entrate on the alphabet aspe
t. We start with a motivating example

of a simple algorithm illustrating the problem of alphabets in generi
 programming.

We will then go on to analyze and de�ne the
on
ept of an alphabet. The
entral

feature is the re
ognition of two levels, the level of abstra
t algorithm design and

analysis, and the level of
on
rete implementations and programs. We establish a

formal
onne
tion between the levels enabling one to see an alphabet at both levels

simultaneously. Finally, we sket
h the design of alphabet traits that forms a part of

the abstra
tion layer between algorithms and strings.

C++ is the language of LEDA, STL and CGAL, and has the best support for

generi
 programming (out of widely used languages, at least). It is thus the obvious

hoi
e of language. The fast development of template metaprogramming te
hniques

in re
ent years [1, 2, 6, 13℄ has brought us
loser to a
hieving the ideals of generi
 pro-

gramming. Understanding this paper does not require knowledge of these te
hniques,

though some knowledge of C++ may be helpful.

2 Example Algorithm

Consider the following simple algorithm that
omputes the number of distin
t
har-

a
ters in a string.

ount distin
t(string S)

1 seen := ;

2 for ea
h
hara
ter
 of S do

3 seen := seen [f
g

4 return jseenj

Two points in this algorithm are problemati
 for a generi
 implementation. One

is the set seen, and the other is the iteration over the
hara
ters of S. The latter is

involved with the sequen
e aspe
t of the string and is the kind of thing that iterators

were designed for. The former is involved with the alphabet aspe
t and
ould be

handled using the generi
 set data stru
ture in STL. This would lead to the following

164

Alphabets in Generi
 Programming

typi
al STL-style fun
tion:

1

template <typename Iterator>

int
ount_distin
t(Iterator begin, Iterator end) {

typedef iterator_traits<Iterator>::value_type
hartype;

set<
hartype> seen;

for (Iterator i = begin; i != end; ++i)

seen.insert(*i);

return seen.size();

}

This is a quite generi
 implementation, but it is slower than ne
essary in many

ases sin
e the set is implemented with a balan
ed sear
h tree. In parti
ular, in the

most
ommon
ase of the
hara
ters being of type
har, the following fun
tion is

signi�
antly faster for a long string.

template <typename Iterator>

int
ount_distin
t(Iterator begin, Iterator end) {

ve
tor<bool> seen(256,false);

for (Iterator i = begin; i != end; ++i)

seen[*i℄=true;

return
ount(seen.begin(), seen.end(), true);

}

Using standard te
hniques, we
ould use the latter implementation, when the

hara
ters are of type
har and the former otherwise. However,
hoosing the optimal

data stru
ture for the set is not that simple:

� If the alphabet is a small range of integers, we should use a ve
tor, whatever

the
hara
ter type.

� If the alphabet is a small set of integers from a large range, a hash table might

be the
hoi
e.

� Even balan
ed tree is not quite as generi
 as is possible. It requires order

omparisons, whi
h not all C++ types have, and whi
h, even when available,

might do the wrong thing (see below). In su
h
ases, we
ould still implement

the set as an unordered list.

Further
omplexity
an be
reated by an unusual
on
ept of
hara
ter equality. Con-

sider the following examples:

� With a
ase insensitive alphabet, an upper
ase and a lower
ase letter are

onsidered to be the same
hara
ter, and are
ounted as one.

1

We have simpli�ed the C++
ode in this paper by ignoring some quirks of C++: omitted

typename at pla
es, used ve
tor<bool> though it's not the best
hoi
e, assumed
har is unsigned,

et
.

165

Pro
eedings of the Prague Stringology Conferen
e '05

� A
hara
ter in a protein sequen
e might
ontain information about se
ondary

or tertiary stru
ture in addition to the amino a
id. If we want to
ount distin
t

amino a
ids, however, the extra information should be ignored when
omparing

hara
ters.

� Two
oating point values might be
onsidered the same if they round to the

same integer.

All the examples
ould be handled by
reating �rst a new string using an appropriate

hara
ter
onversion, but at the
ost of a time and spa
e overhead. In
hara
ter

ounting, the overhead is probably small, but in other
ases it
ould be signi�
ant.

For example, the Boyer{Moore algorithm [4℄ usually a

esses only a small fra
tion of

hara
ters and
onverting all of them
ould be
ostly.

The above dis
ussion shows that we
annot expe
t the C++ type of
hara
ters

to
arry all relevant information about the alphabet. A separate entity (a type or

an obje
t) is needed for that purpose. In generi
 programming, su
h entities are

known as traits (see iterator_traits above). The C++ standard library does, in

fa
t, in
lude something
alled
hara
ter traits, but they are more of a reli
 from time

before generi
 programming. We will
all our traits alphabet traits.

Let us �nally see what an implementation of our
ounting fun
tion using alpha-

bet traits might look like. (A full implementation with a usage example is in the

Appendix.)

template <typename Iterator, typename Alphabet>

int
ount_distin
t(Iterator begin, Iterator end, Alphabet A) {

typedef generate_set<Alphabet>::type
harset;

harset seen(A);

for (Iterator i = begin; i != end; ++i)

seen.insert(*i);

return seen.size();

}

Here Alphabet is an alphabet traits type and A an alphabet traits obje
t. The meta-

fun
tion generate_set
hooses the appropriate implementation for the set.

Despite its simpli
ity, the above algorithm
aptures a lot of the diÆ
ulties with

alphabets in generi
 programming. For example, the problem of implementing a node

in a trie or an automaton is
losely related to the problem of implementing the set

seen.

3 Alphabet

Alphabet traits des
ribe the properties of an alphabet, whi
h itself is a more abstra
t

entity. Before designing alphabet traits, we need to de�ne more
learly what an

alphabet is. That is the purpose of this se
tion and, indeed, the main purpose of this

paper.

When we talk about an alphabet in a generi
 implementation of an abstra
t al-

gorithm, we are talking about two di�erent things. One is the abtra
t alphabet, the

mathemati
al set appearing in problem de�nitions, abstra
t algorithms and their

166

Alphabets in Generi
 Programming

asymptoti
 analysis. The other is the
on
rete alphabet, whi
h is a spe
i�
 represen-

tation of an alphabet in a program.

3.1 Abstra
t Alphabet

An abstra
t alphabet is the set of all possible
hara
ters. The following properties of

the set are of interest:

� ordering : Does the alphabet have a linear order?

� size: Is it
onstant, � (�nite), or in�nite (unknown)?

� integrality : Are the
hara
ter integers?

One
ould also spe
ify other properties but these are suÆ
ient for most situations

arising in design and analysis of abstra
t algorithms. Note that we allow in�nite and

unordered alphabets.

Consider the
hara
ter
ounting algorithm from Se
tion 2. The best implemen-

tation of the
hara
ter set and the resulting
omplexity depend on the properties of

the alphabet. For a string of length n, we have the following
omplexities for various

kinds on alphabets:

� in�nite: O(n

2

)

� �nite: O(nminfn; �g)

�
onstant: O(n)

� ordered: O(n logn)

� �nite and ordered: O(n logminfn; �g)

� �nite and integral: O(n+ �) deterministi
, O(n) randomized

3.2 Con
rete Alphabet

A
on
rete alphabet is a representation of an abstra
t alphabet based on the following

three prin
iples:

� All
hara
ter representations are values of a single C++ type T.

� Not all values of T need to represent a
hara
ter.

� Multiple values may represent the same
hara
ter.

Formally, a
on
rete alphabet A is a triple (T; C;�), where

� T is a C++ type.

� C is a subset of the possible values of the type T.

� � is an equivalen
e relation on C.

167

Pro
eedings of the Prague Stringology Conferen
e '05

The
on
rete alphabet A de�nes an abstra
t alphabet

e

A as the set of equivalen
e

lasses of C under �. We will denote by [a℄ the equivalen
e
lass
ontaining a.

Two distin
t but equivalent
hara
ter values are di�erent representations of the

same abstra
t
hara
ter. The two representations should behave identi
ally in all

algorithms. For example, a don't-
are
hara
ter that mat
hes all other
hara
ters is

distin
t from other
hara
ters and forms its own equivalen
e
lass. Its spe
ial mat
h-

ing properties are not part of the alphabet but a separate entity
alled a mat
hing

relation.

3.3 Conversions

The restri
tion to a single type applies to
on
rete alphabets but not abstra
t al-

phabets as multiple
on
rete alphabets
an represent the same abstra
t alphabet.

Conversions between
on
rete alphabets are the me
hanism to deal with this.

Let A and B be two
on
rete alphabets. A
onversion from A to B is a mapping

f : C

A

! C

B

that is homomorphi
 w.r.t. �, i.e., a � a

0

) f(a) � f(a

0

) for all

a; a

0

2 A. Then, we
an de�ne

e

f :

e

A!

e

B by

e

f([a℄) = [f(a)℄. The following properties

of

e

f are of interest:

�

e

f is an embedding if it is inje
tive (one-to-one), i.e., [a℄ 6= [a

0

℄)

e

f([a℄) 6=

e

f([a

0

℄).

�

e

f is an isomorphism if it is a surje
tive embedding, i.e., an embedding satisfying

e

f(

e

A) =

e

B.

If there is an isomorphism

e

f :

e

A!

e

B, we
an say thatA and B are two representations

of the same abstra
t alphabet. Similarly, an embedding implies a subset relation.

The mapping

e

f being an embedding or an isomorphism does not imply that the

onversion f is inje
tive or surje
tive. The following lemmas
hara
terize embeddings

and isomorphisms in terms of
onversions.

Lemma 1.

e

f is an embedding i� a 6� b) f(a) 6� f(b).

Lemma 2.

e

f :

e

A !

e

B is an isomorphism and eg :

e

B !

e

A is its inverse i�

e

f and eg

are embeddings and g(f(a)) � a for all a 2 A.

Embedding
onversions in parti
ular play a
entral role in the library as we will see

later. Isomorphi

onversions
ome into play when inverse
onversions are involved.

3.4 Ordered alphabets

A
on
rete ordered alphabet A is a quadruple (T; C;�; <), where T, C and � are as

before and < is a stri
t order on C satisfying: For all a; b 2 C, exa
tly one of a < b,

a � b and b < a is true. (We also de�ne . in the usual way.) The
orresponding

abstra
t ordered alphabet

e

A has an order � de�ned by [a℄ � [b℄ if a � b or a < b.

A mapping

e

f :

e

A !

e

B is order preserving if it is homomorphi
 w.r.t. �.

Lemma 3.

e

f is order-preserving i� f is homomorphi
 w.r.t. ..

e

f is an order-preserving embedding i� f is homomorphi
 w.r.t. <.

168

Alphabets in Generi
 Programming

Order preservation is a surprisingly subtle issue. There are
ommon isomor-

phisms and embeddings that are not order-preserving. The standard
onversion from

signed
har to unsigned
har is an example. Also, order preservation is often not

required even when order
omparisons are involved. For example, the implementation

of a
hara
ter set using a balan
ed sear
h tree requires a linear order but what the

order is does not matter. A non-order-preserving
onversion would not be a prob-

lem then. We will therefore not generally require
onversions to be order preserving.

However, when the problem de�nition involves an order, for example in the
ase of

sorting, the
onversions must be order preserving.

3.5 Integral Alphabets

Many algorithmi
 te
hniques work only or primarily on integral alphabets. These

in
lude using a
hara
ter as an array index,
omputing �ngerprints or hash values,

radix sorting, et
. These te
hniques
an be made available to a wide variety of

alphabets through embeddings to proper integral alphabets.

A
on
rete alphabet (T; C;�; <) is a primary integral alphabet if T is a built-in

integral type (for example
har or int), C is a range of the form [0; �), � is the

standard operator==, and < is the standard operator<. Requiring the minimum to

be zero simpli�es many of the te
hniques mentioned above.

A
on
rete alphabet is a se
ondary integral alphabet if there is an embedding

onversion f from it to a primary integral alphabet. An integer range with a minimum

other than zero is a se
ondary integral alphabet, too.

Of additional interest is an isomorphi

onversion from a primary integral alpha-

bet. For example, random generation of
hara
ters
an be a

omplished using it.

4 Alphabet Traits

The
hara
ter type T does not, in general,
ontain full information about the alphabet.

Additional information in a form usable by algorithms is provided by alphabet traits.

We will not des
ribe the full design of alphabet traits but give a glimpse to their use

with examples.

An alphabet traits is partly a C++
lass and partly an obje
t of that
lass. The

lass
ontains stati
 information about the alphabet, i.e., information that is known

at
ompile time and
an be used for
ompile time optimization. An obje
t of that

lass may
ontain additional dynami
 information. For example, whether an alphabet

is integral or not is always stati
 information but the size of the integral range might

be dynami
 information.

4.1 Writing Generi
 Algorithms

The example in Se
tion 2 shows the use of alphabet traits in writing generi
 algorithms

at its simplest. Almost all details are hidden inside the metafun
tion generate_set,

whi
h is a part of the basi
 library infrastru
ture.

Obtaining more detailed information is demonstrated in the following example.

Let Alphabet be an alphabet traits
lass and A an obje
t of the
lass. If the alphabet

is integral, we
an obtain the
onversion to a primary integral alphabet as follows:

169

Pro
eedings of the Prague Stringology Conferen
e '05

get_
har2int<Alphabet>::type
har2int = make_
har2int(A);

Then
har2int(
h) performs the
onversion for the
hara
ter
h. Comparison fun
-

tions, for example, are obtained similarly.

The above statement would not even
ompile for a non-integral alphabet. How-

ever, there are standard metaprogramming te
hniques for
onditional
ompilation

based on
ompile time predi
ates [1℄. In this
ase, we
an determine the integrality,

at
ompile time, using the metafun
tion

is_integral<Alphabet>::value

As we saw in Se
tion 2, alphabet traits is supplied as an argument to a fun
tion. To

make things simpler for the
aller of the algorithm, the argument should be optional.

When no argument is supplied, the default alphabet traits for the
hara
ter type is

used instead. In the
ase of the
ount_distin
t fun
tion, this is a

omplished by

providing the following se
ond variant of the fun
tion.

template <typename Iterator>

int
ount_distin
t(Iterator begin, Iterator end) {

typedef iterator_traits<Iterator>::value_type
hartype;

typedef default_alphabet<
hartype>::type alphabet;

return
ount_distin
t(begin, end, alphabet());

}

4.2 Creating Alphabets

As mentioned, algorithms typi
ally assume a default alphabet if no alphabet traits is

provided by the user. If the default is not
orre
t, the user needs to pass a
orre
t

one as an argument to the algorithm. The library will provide a number of alphabet

traits for
ommon situations. If none of these is satisfa
tory, there are metafun
tions

for
reating
ustom alphabets.

The following example shows one way for
reating a
ase-insensitive alphabet.

stru
t
aseless_equal {

bool operator() (
har a,
har b) {

return tolower(a)==tolower(b);

}

};

typedef
onstru
t_alphabet<
har,

set_equivalen
e<
aseless_equal> >::type

aseless_alphabet;

Now a
all su
h as
ount_distin
t(begin, end,
aseless_alphabet()) would

ount upper and lower
ase letters as one.

The above alphabet is not ordered or integral as no order
omparison or integral

onversion is provided. Therefore, the set in
ount_distin
t would be implemented

as an unordered list. An order
omparison and an integral
onversion
ould be pro-

vided as additional arguments to the metafun
tion, but there is simpler way:

170

Alphabets in Generi
 Programming

stru
t tolower_
onversion {

har operator() (
har
) { return tolower(
); }

};

typedef embedded_alphabet<
har, default_alphabet<
har>::type,

tolower_
onversion >::type

aseless alphabet;

Here we
reate a new alphabet by embedding it to an existing alphabet. Many

properties in
luding ordering and integrality are automati
ally inherited. There is a

similar metafun
tion isomorphi
_alphabet that also takes the inverse
onversion as

an argument.

Integral alphabets are
ommon and useful alphabets and there is a separate meta-

fun
tion for
reating alphabet traits for them. For example,

integral_alphabet<
har, 10, 20>::type

reates an alphabet representing the range [10; 20℄.

All the example alphabet traits here
ontain no dynami
 information. Creating

alphabet traits with dynami
 information is more
ompli
ated and we ignore the

details here.

5 Con
luding Remarks

The purpose of this paper is to iniate the design of a string algorithms library based

on the generi
 programming paradigm. We have addressed only one fundamental

but limited aspe
t of the library, the alphabet. However, we believe that the design

approa
h based on a
areful analysis of
on
rete examples leading to a de�nition of the

on
ept of an alphabet and the programming te
hniques developed for implementing

the design provide a good start for the design of further aspe
ts of the library.

The design of the sequen
e aspe
t has already been provided to an extent, thanks

to the STL iterators and some further work building on them (http://boost.org/

libs/iterator/do
/, http://boost.org/do
/html/string_algo/design.html,

and http://boost.org/libs/range/). There are still issues remaining, though. For

example, in some
ases the alphabet and sequen
e aspe
ts
annot be fully separated

without a loss of eÆ
ien
y [9℄.

Still more aspe
ts are relevant to a string algorithms library. We have already

mentioned one, mat
h relation. Other issues arise, for example, from approximate

string mat
hing and other more
omplex stringology problems.

Referen
es

[1℄ D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Con
epts,

Tools, and Te
hniques from Boost and Beyond. Addison{Wesley, 2004.

[2℄ A. Alexandres
u. Modern C++ Design: Generi
 Programming and Design Pat-

terns Applied. Addison{Wesley, 2001.

[3℄ M. H. Austern. Generi
 Programming and the STL. Addison{Wesley, 1999.

171

Pro
eedings of the Prague Stringology Conferen
e '05

[4℄ R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. Commun. ACM,

20(10):762{772, O
t. 1977.

[5℄ M. Cro
hemore and W. Rytter. Jewels of Stringology. World S
ienti�
, 2002.

[6℄ K. Czarne
ki and U. W. Eisene
ker. Generative Programming: Methods, Tools,

and Appli
ations. Addison{Wesley, 2000.

[7℄ A. Czumaj, P. Ferragina, L. Gasienie
, S. Muthukrishnan, and J. L. Tr�a�. The

ar
hite
ture of a software library for string pro
essing. In Pro
eedings of Work-

shop on Algorithm Engineering, pages 294{305, 1997. Online pro
eedings at

http://www.dsi.unive.it/~wae97/pro
eedings/.

[8℄ A. Fabri, G.-J. Giezeman, L. Kettner, S. S
hirra, and S. S
h�onherr. On the

design of CGAL, the
omputational geometry algorithms library. Software |

Pra
ti
e and Experien
e, 30(11):1167{1202, 2000.

[9℄ K. Fredriksson. Faster string mat
hing with super-alphabets. In Pro
. 9th Inter-

national Symposium on String Pro
essing and Information Retrieval (SPIRE),

volume 2476 of LNCS, pages 44{57. Springer, 2002.

[10℄ K. Mehlhorn and S. N�aher. LEDA | A Platform for Combinatorial and Geo-

metri
 Computing. Cambridge University Press, 1999.

[11℄ G. Navarro and M. RaÆnot. Flexible Pattern Mat
hing in Strings. Cambridge

University Press, 2002.

[12℄ B. Smyth. Computing Patterns in Strings. Pearson Addison{Wesley, 2003.

[13℄ D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.

Addison{Wesley, 2002.

A Full Example

Here is the full implementation of the
ount_distin
t algorithm.

#in
lude"glas/set.hpp"

#in
lude<iterator>

//
ount the number of distin
t
hara
ters in a string

// generi
 form with an alphabet as an argument

template< typename Iterator, typename Alphabet>

int

ount_distin
t(Iterator begin,

Iterator end,

Alphabet A)

{

typedef typename glas::generate_set<Alphabet>::type
harset;

harset seen;

for (Iterator i = begin; i != end; ++i) {

172

Alphabets in Generi
 Programming

seen.insert(*i);

}

return seen.size();

}

// spe
ifi
 form that uses default alphabet

template<typename Iterator>

int

ount_distin
t(Iterator begin, Iterator end)

{

typedef typename std::iterator_traits<Iterator>::value_type

har_type;

typedef typename glas::default_alphabet<
har_type>::type

alphabet;

return
ount_distin
t(begin, end, alphabet());

}

Below is an program that uses the
ount_distin
t fun
tion with a
ase insensitive

alphabet.

#in
lude "
ount.hpp"

#in
lude "glas/alphabet_traits.hpp"

#in
lude<string>

#in
lude<iostream>

//
ase insensitive alphabet

stru
t tolower_
onversion

{

har operator() (
har
)
onst { return tolower(
); }

};

stru
t
aseless_alphabet

: glas::embedded_alphabet<

har,

glas::default_alphabet<
har>::type,

tolower_
onversion

>::type

{};

int main()

{

std::string str("ABRACAdabra");

int
nt =
ount_distin
t(str.begin(), str.end(),

aseless_alphabet());

std::
out <<
nt << " distin
t
hara
ters in "

<< '"' << str << '"' << "\n";

// prints: 5 distin
t
hara
ters in "ABRACAdabra"

}

173

