
A Fully Compressed Pattern Matching Algorithm

for Simple Collage Systems

Shunsuke Inenaga1, Ayumi Shinohara2,3 and Masayuki Takeda2,3

1 Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23) FIN-00014
University of Helsinki, Finland

e-mail: inenaga@cs.helsinki.fi

2 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

3 SORST, Japan Science and Technology Agency (JST)
e-mail: {ayumi, takeda}@i.kyushu-u.ac.jp

Abstract. We study the fully compressed pattern matching problem (FCPM

problem): Given T and P which are descriptions of text T and pattern P

respectively, find the occurrences of P in T without decompressing T or P.
This problem is rather challenging since patterns are also given in a compressed
form. In this paper we present an FCPM algorithm for simple collage systems.
Collage systems are a general framework that can represent various kinds of
dictionary-based compressions, and simple collage systems are a subclass that
includes LZW and LZ78 compressions. Collage systems are of the form 〈D,S〉,
where D is a dictionary and S is a sequence of variables from D. Our FCPM
algorithm performs in O(‖D‖2 + mn log |S|) time, where n = |T | = ‖D‖ + |S|
and m = |P|. This is faster than the previous best result of O(m2n2) time.

Keywords: string processing, text compression, fully compressed pattern
matching, collage systems, algorithm

1 Introduction

The pattern matching problem, which is the most fundamental problem in Stringology,
is the following: Given text T and pattern P , find the occurrences of P in T . The
compressed pattern matching problem (CPM problem) [1] is a more challenging version
of the above problem, where text T is given in a compressed form T , and the aim
is to find the pattern occurrences without decompressing T . This problem has been
intensively studied for a variety of text compression schemes, e.g. [2, 4, 3, 17].

Classically, effectiveness of compression schemes was measured by only compres-
sion ratio and (de)compression speeds. As regards recent increasing demands for fast
CPM, CPM speed has become another measurement. Shibata et al. [21] proposed a
CPM algorithm for byte-pair encoding (BPE) [5] which is even faster than pattern
matching in uncompressed texts. Though BPE is less effective in compression speed
and ratio, BPE has gathered much attention due to its potential for fast CPM. An-
other good example is Manber’s text compression designed to achieve fast CPM [15].

98

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

An ultimate extension of the CPM problem is the fully compressed pattern match-
ing problem (FCPM problem) [9] where both text T and pattern P are given in a
compressed form. We formalize this problem as follows: Given T and P that are
descriptions of text T and pattern P respectively, find the occurrences of P in T
without decompressing T or P. Miyazaki et al. [18] presented an algorithm to solve
the FCPM problem for straight line programs, in O(m2n2) time using O(mn) space,
where m = |P| and n = |T |. We refer to [20] for more details of the FCPM problem.

Collage systems [10] are a general framework that enables us to capture the essence
of CPM for various dictionary-based compressions. Dictionary-based compression
generates a dictionary of repeating segments of a given string and in this way a
compressed representation of the string is obtained. A collage system is a pair 〈D,S〉
where D is a dictionary and S is a sequence of variables from D. Collage systems
cover dictionary-based compressions such as LZ family [24, 22, 25, 23] and run-length
encoding, as well as grammar-based compressions such as BPE [5], RE-PAIR [14],
SEQUITUR [19], grammar transform [11, 13, 12], and straight line programs [9].

In this paper, we treat simple collage systems which are a subclass of collage
systems. Simple collage systems include LZ78 [25] and LZW [23] compressions. Al-
though simple collage systems in general give weaker compression, CPM on simple
collage systems can be accelerated and thus they are still quite attractive [16].

We reveal another yet potential benefit of simple collage systems by proposing an
efficient FCPM algorithm. The proposed algorithm runs in O(‖D‖2+mn log |S|) time
using O(‖D‖2 + mn) space. Although our algorithm requires more space than the
algorithm of [18], ours is faster than that. It should also be mentioned that Ga̧sieniec
and Rytter [7] addressed an FCPM algorithm running in O((m+n) log(m+n)) time
for LZW compression, but actually their algorithm explicitly decompresses part of T
or P when the decompressed size does not exceed n. Hence their algorithm does
not suit the FCPM problem setting where pattern matching without decompressing
is required. On the other hand, the algorithm proposed in this paper permits us to
solve the FCPM problem without any explicit decompression.

2 Preliminary

Let N be the set of natural numbers, and N+ be the set of positive integers. Let Σ
be a finite alphabet. An element of Σ∗ is called a string. The length of a string T is
denoted by |T |. The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |,
and the substring of a string T that begins at position i and ends at position j is
denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. A period of a string T is an integer p
(1 ≤ p ≤ |T |) such that T [i] = T [i + p] for any i = 1, 2, . . . , |T | − p.

Collage systems [10] are a general framework that enables us to capture the struc-
ture of different types of dictionary-based compressions. A collage system is a pair
〈D,S〉 such that D is a sequence of assignments

X1 = expr1, X2 = expr2, . . . , Xh = exprh,

99

Proceedings of the Prague Stringology Conference ’04

where Xk are variables and exprk are expressions of any of the form

a where a ∈ (Σ ∪ ε), (primitive assignment)
XiXj where i, j < k, (concatenation)
[j]Xi where i < k and j ∈ N+, (prefix truncation)

X
[j]
i where i < k and j ∈ N+, (suffix truncation)

(Xi)
j where i < k and j ∈ N+, (repetition)

and S is a sequence of variables Xi1 , Xi2, . . . , Xis obtained from D. The size of D is
h and is denoted by ‖D‖, and the size of S is s and is denoted by |S|. The total size
of the collage system 〈D,S〉 is n = ‖D‖ + |S| = h + s.

LZW [23] and LZ78 [25] compressions can be represented by the following collage
systems:

LZW. S = Xi1, Xi2 , . . . , Xis and D is the following:

X1 = a1; X2 = a2; . . . ; Xq = aq;
Xq+1 = Xi1Xσ(i2); Xq+2 = Xi2Xσ(i3); . . . ; Xq+s−1 = Xis−1

Xσ(is),

where the alphabet is Σ = {a1, a2, . . . , aq}, 1 ≤ i1 ≤ q, and σ(j) denotes the integer
k (1 ≤ k ≤ q) such that ak is the first symbol of Xj .

LZ78. S = X1, X2, . . . , Xs and D is the following:

X0 = ε; X1 = Xi1b1; X2 = Xi2b2; . . . ; Xs = Xisbs;

where bj is a symbol in Σ.
We remark that LZW is a simplification of LZ78.

Definition 1 A collage system is said to be regular if it contains primitive assign-
ments and concatenations only. A regular collage system is said to be simple if, for
any variable X = XℓXr, |Xℓ| = 1 or |Xr| = 1.

Simple collage systems were first introduced by Matsumoto et al. [16]. LZW and
LZ78 compressions are a simple collage system.

In this paper, we study the fully compressed pattern matching problem for simple
collage systems: Given two simple collage systems that are the descriptions of text T
and pattern P , find all occurrences of P in T . Namely, we compute the following set:

Occ(T, P) = {i | T [i : i + |P | − 1] = P}.

We emphasize that our goal is to solve this problem without decompressing either of
the two simple collage systems. Our result is the following:

Theorem 1 Given two simple collage systems 〈D,S〉 and 〈D′,S ′〉 that are the de-
scription of T and P respectively, Occ(T, P) can be computed in O(‖D‖2+mn log |S|)
time using O(‖D‖2 + mn) space, where n = ‖D‖ + |S| and m = ‖D′‖ + |S ′|.

100

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

3 Overview of algorithm

3.1 Translation to straight line programs

Consider a regular collage system 〈D,S〉. Note that S = Xi1 , Xi2, . . . , Xis can be
translated in linear time to a sequence of assignments of size s. For instance, S =
X1, X2, X3, X4 can be rewritten to X5 = X1X2; X6 = X5X3; X7 = X6X4, and
S = X7. Therefore, a regular collage system, which represents string T ∈ Σ∗, can be
seen as a context free grammar of the Chomsky normal form that generates only T .
This means that regular collage systems correspond to straight line programs (SLPs)
introduced in [9]. In the sequel, for string T ∈ Σ∗, let T denote the SLP representing
T . The size of T is denoted by ‖T ‖, and ‖T ‖ = ‖D‖ + |S| = h + s = n.

Now we introduce simple straight line programs (SSLP) that correspond to simple
collage systems.

Definition 2 An SSLP T is a sequence of assignments such that

X1 = expr1; X2 = expr2; . . . ; Xn = exprn,

where Xi are variables and expri are expressions of any of the form

a where a ∈ Σ (primitive),
XℓX

′ where ℓ < i and X ′ = a (right simple),
X ′Xr where r < i and X ′ = a (left simple),
XℓXr where ℓ, r < i (complex),

and T = Xn. Moreover, each type of variable satisfies the following properties:

- For any right simple variable Xi = XℓX
′, Xℓ is either simple or primitive.

- For any left simple variable Xi = X ′Xr, Xr is either simple or primitive.

- For any complex variable Xi = XℓXr, Xr is either simple or primitive.

An example of an SSLP T for string T = abaabababb is as follows:

X1 = a, X2 = b, X3 = X1X2, X4 = X1X3, X5 = X3X1, X6 = X2X2,
X7 = X3X4, X8 = X7X5, X9 = X8X6,

and T = X9. See also Figure 1 that illustrates the derivation tree of T . X1 and X2

are primitive variables, X3, X4, X5 and X6 are simple variables, and X7, X8 and X9

are complex variables.
For any simple collage system 〈D,S〉, let T be its corresponding SSLP. Let ‖D‖ =

h and |S| = s. Then the total number of primitive and simple variables in T is h,
and the number of complex variables in T is s.

In the sequel, we consider computing Occ(T, P) for given SSLPs T and P. We use
X and Xi for variables of T , and Y and Yj for variables of P. When not confusing,
Xi (Yj, respectively) also denotes the string derived from Xi (Yj, respectively). Let
‖T ‖ = n and ‖P‖ = m.

Proposition 1 For any simple variable X, |X| = ‖X‖, where ‖X‖ denotes the
number of variables in X.

101

Proceedings of the Prague Stringology Conference ’04

X1

a

X1

a

X2

b

X3

X2

b

X2

b

X6X8

X1

a

X2

b

X3 X4

X1

a

X1

a

X2

b

X3

X5X7

X9

Figure 1: Derivation tree of SSLP for string abaabababb.

3.2 Basic idea of algorithm

In this section, we show a basis of our algorithm that outputs a compact representation
of Occ(T, P) for given SSLPs T ,P.

For strings X, Y ∈ Σ∗ and integer k ∈ N , we define the set of all occurrences of
Y that cover or touch the position k in X by

Occ↑(X, Y, k) = {i ∈ Occ(X, Y) | k − |Y | ≤ i ≤ k}.

In the following, [i, j] denotes the set {i, i + 1, . . . , j} of consecutive integers. For
a set U of integers and an integer k, we denote U ⊕ k = {i + k | i ∈ U} and
U ⊖ k = {i − k | i ∈ U}.

Observation 1 ([8]) For any strings X, Y ∈ Σ∗ and integer k ∈ N ,

Occ↑(X, Y, k) = Occ(X, Y) ∩ [k − |Y |, k].

Lemma 1 ([8]) For any strings X, Y ∈ Σ∗ and integer k ∈ N , Occ↑(X, Y, k) forms
a single arithmetic progression.

For positive integers p, d ∈ N+ and non-negative integer t ∈ N , we define
〈p, d, t〉 = {p + (i − 1)d | i ∈ [1, t]}. Note that t denotes the cardinality of the
set 〈p, d, t〉. By Lemma 1, Occ↑(X, Y, k) can be represented as the triple 〈p, d, t〉 with
the minimum element p, the common difference d, and the length t of the progres-
sion. By ‘computing Occ↑(X, Y, k)’, we mean to calculate the triple 〈p, d, t〉 such that
〈p, d, t〉 = Occ↑(X, Y, k).

Observation 2 Assume each of sets A1 and A2 of integers forms a single arithmetic
progression, and is represented by a triple 〈p, d, t〉. Then, the union A1 ∪ A2 can be
computed in constant time.

Lemma 2 ([8]) For strings X, Y ∈Σ∗ and integer k∈N , let 〈p, d, t〉 = Occ↑(X, Y, k).
If t ≥ 1, then d is the shortest period of X[p : q + |Y | − 1] where q = p + (t − 1)d.

102

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

X

Xl Xr

Y

k2

Y

k1

Y

k3

Figure 2: k1, k2, k3 ∈ Occ(X, Y), where k1 ∈ Occ(Xℓ, Y), k2 ∈ Occ△(X, Y) and
k3 ∈ Occ(Xr, Y).

Lemma 3 ([8]) For any strings X, Y1, Y2 ∈ Σ∗ and integers k1, k2 ∈ N , the intersec-
tion Occ↑(X, Y1, k1)∩ (Occ↑(X, Y2, k2)⊖|Y1|) can be computed in O(1) time, provided
that Occ↑(X, Y1, k1) and Occ↑(X, Y2, k2) are already computed.

For variables X = XℓXr and Y , we denote Occ△(X, Y) = Occ↑(X, Y, |Xℓ| + 1).
The following observation is explained in Figure 2.

Observation 3 ([18]) For any variables X = XℓXr and Y ,

Occ(X, Y) = Occ(Xℓ, Y) ∪ Occ△(X, Y) ∪ (Occ(Xr, Y) ⊕ |Xℓ|).

Observation 3 implies that Occ(Xn, Y) can be represented by a combination of

{Occ△(Xi, Y)}n
i=1 = Occ△(X1, Y),Occ△(X2, Y), . . . ,Occ△(Xn, Y).

Thus, the desired output Occ(T, P) = Occ(Xn, Ym) can be expressed as a combination
of {Occ△(Xi, Ym)}n

i=1 that requires O(n) space. Hereby, computing Occ(T, P) is
reduced to computing Occ△(Xi, Ym) for every i = 1, 2, . . . , n. In computing each
Occ△(Xi, Yj) recursively, the same set Occ△(Xi′, Yj′) might repeatedly be referred
to, for i′ < i and j′ < j. Therefore we take the dynamic programming strategy.
We use an m × n table App where each entry App[i, j] at row i and column j stores
the triple for Occ△(Xi, Yi). We compute each App[i, j] in a bottom-up manner, for
i = 1, . . . , n and j = 1, . . . , m. In the following sections, we will show that the whole
table App can be computed in O(h2 + mn log s) time using O(h2 + mn) space, where
h is the number of simple variables in T and s is the number of complex variables in
T . This leads to the result of Theorem 1.

4 Details of algorithm

In this section, we show how to compute each Occ△(Xi, Yj) efficiently. Our result is
as follows:

Lemma 4 For any variables Xi of T and Yj of P, Occ△(Xi, Yj) can be computed in
O(log s) time, with extra O(h2 + mn) work time and space.

103

Proceedings of the Prague Stringology Conference ’04

The key to prove this lemma is, given integer k, to pre-compute Occ↑(Xi′, Yj′, k) for
any 1 ≤ i′ < i and 1 ≤ j′ < j. In case that X is simple, we have the following lemma:

Lemma 5 Let X be any simple variable of T and Y be any variable of P. Given
integer k ∈ N , Occ↑(X, Y, k) can be computed in O(1) time, with extra O(h2 + mh)
work time and space.

Proof. Let b = k − |Y | and e = k + |Y | − 1. Let Xb denote any descendant of X for
which the beginning position of Xb in X is b. Similarly, let Xe denote any descendant
of X for which the ending position of Xe in X is e. That is, X[b : b + |Xb| − 1] = Xb

and X[e − |Xe| + 1 : e] = Xe.

(1) when |Xb| ≥ |Xe|. In this case we have

Occ↑(X, Y, k) = Occ↑(X, Y, b + |Y |)

= Occ↑(Xb, Y, |Y | + 1) ⊕ (b − 1).

(2) when |Xb| < |Xe|. In this case we have

Occ↑(X, Y, k) = Occ↑(X, Y, e − |Y | + 1)

= Occ↑(Xe, Y, |Y | + |Xe| + 1) ⊕ (e − |Xe|).

Let us now consider how to compute Occ↑(Xb, Y, |Y |+1) in case (1). Occ↑(Xe, Y, |Y |+
|Xe| + 1) in case (2) can be computed similarly. Let Xb = XℓXr. Depending on the
type of Xb, we have the two following cases:

(i) when Xb is right simple (see Figure 3, left).
Let 〈p, d, t〉 = Occ↑(Xℓ, Y, |Y | + 1).

Occ↑(Xb, Y, |Y | + 1)

=

{

〈p, d′, t + 1〉 if |Xb| − |Y | + 1 ∈ Occ△(Xb, Y) and |Xb| ≤ 2|Y |,

〈p, d, t〉 otherwise,

where d′ =











0 if t = 0,

p − 1 if t = 1,

d if t > 1.

(ii) when Xb is left simple (see Figure 3, right).
Let 〈p, d, t〉 = Occ↑(Xr, Y, |Y | + 1).

- when t = 0.

Occ↑(Xb, Y, |Y | + 1) =

{

〈1, 0, 1〉 if 1 ∈ Occ△(Xb, Y),

∅ otherwise.

104

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

Xb

Xr

Xl

Y

|Y|+1

Xb

Xl

Xr

Y

|Y|+1

|Y|+1

Figure 3: Two cases for Occ↑(Xb, Y, |Y | + 1), where Xb = XℓXr. To the left is the
case where |Xr| = 1, and to the right is the case where |Xℓ| = 1.

- when t ≥ 1. Let q = p + (t − 1)d.

Occ↑(Xb, Y, |Y | + 1)

=



















〈p + 1, d, t〉 if q < |Y | + 1 and 1 /∈ Occ△(Xb, Y),

〈1, d′, t + 1〉 if q < |Y | + 1 and 1 ∈ Occ△(Xb, Y),

〈p + 1, d, t− 1〉 if q = |Y | + 1 and 1 /∈ Occ△(Xb, Y),

〈1, d′, t〉 if q = |Y | + 1 and 1 ∈ Occ△(Xb, Y),

where d′ =

{

p if t = 1,

d if t > 1.

Checking whether |Y |+ 1 ∈ Occ△(Xb, Y) and whether 1 ∈ Occ△(Xb, Y) can be done
in O(1) time since Occ△(Xb, Y) forms a single arithmetic progression by Lemma 1. We
here take the dynamic programming strategy. We use an h×m matrix R where each
entry R[i, j] at row i and column j stores the triple representing Occ↑(Xi, Yj, |Yj|+1).
We compute each R[i, j] in a bottom-up manner, for i = 1, . . . , h and j = 1, . . . , m.
Each R[i, j] can be computed in O(1) time as shown above. Also, each R[i, j] requires
O(1) space by Lemma 1. Hence we can construct the whole table R in O(mh) time
and space.

Now we show that it is possible to find Xb in constant time after an O(h2) time
preprocessing. We use an h×h matrix Beg in which each row i corresponds to simple
variable Xi, and each column j corresponds to each position j in Xi. Each entry of
the matrix stores the following information:

Beg[i : j] =

{

Xj if Xi[j : j + |Xj | − 1] = Xj for some Xj,

nil otherwise.

For our purpose, Xj can be any simple variable satisfying the condition. To be specific,
however, we use the smallest possible variable as Xj. By Proposition 1, for any simple
variable Xi we have |Xi| = ‖Xi‖. Thus finding the smallest variable corresponding to
each position in Xi is feasible in O(‖Xi‖) time in total. Therefore, matrix Beg can

105

Proceedings of the Prague Stringology Conference ’04

Xl

Y

X

|Y||Y|

Xr

Xl

Y

X

|Y|

Xr

Figure 4: Two cases for Occ↑(X, Y, |X| − |Y | + 1). To the left is the case where
|Xr| ≤ |Y |, and to the right is the case where |Xr| > |Y |.

be computed in O(h2) time and space. Once having these Beg computed, for any
position b with respect to X, we can retrieve Xb in constant time.

In total, the extra time and space requirement is O(h2 +mh). This completes the
proof. �

As a counterpart to Lemma 5 with respect to simple variables, in case that X is
complex we have the following lemma:

Lemma 6 Let X be any complex variable of T and Y be any variable of P. Given
integer k ∈ N , Occ↑(X, Y, k) can be computed in O(log s) time with extra O(ms)
work time and space.

To prove Lemma 6 above, we need to establish Lemma 7 and Lemma 8 below.

Lemma 7 Let X = XℓXr be any complex variable of T and let Y be any variable of
P. Assume Occ↑(Xℓ, Y, |Xℓ| − |Y |+ 1) and Occ△(X, Y) are already computed. Then
Occ↑(X, Y, |X|−|Y |+1) can be computed in O(1) time, with extra O(ms) work space.

Proof. Let A = Occ↑(X, Y, |X|−|Y |+1). Depending on the length of Xr with respect
to the length of Y , we have the following cases:

(1) when |Xr| ≤ |Y | (Figure 4, left).
In this case, it stands that:

A = (Occ↑(Xℓ, Y, |Xℓ|− |Y |+1)∩ [|X|−2|Y |+1, |X|− |Y |+1])∪Occ△(X, Y).

(2) when |Xr| > |Y | (Figure 4, right).
In this case, it stands that:

A = (Occ△(X, Y) ∩ [|X| − 2|Y | + 1, |Xℓ| + 1]) ∪ Occ↑(Xr, Y, |Xr| − |Y | + 1).

106

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

Due to Lemma 5, Occ↑(Xr, Y, |Xr|− |Y |+1) of case (2) can be computed in constant
time since Xr is simple. By Lemma 1 and Observation 2 the union operations can be
done in O(1) time.

What remains is how to compute Occ↑(Xℓ, Y, |Xℓ| − |Y | + 1) in case (1). We
construct an s × m matrix where each entry at row i and column j stores the triple
representing Occ↑(Xi, Yj, |Xi| − |Yj| + 1) where Xi is a complex variable. Using this
matrix, Occ↑(Xℓ, Y, |Xℓ| − |Y | + 1) of case (1) can be referred to in constant time.
Each entry takes O(1) space by Lemma 1, and thus the whole matrix requires O(ms)
space. This matrix can be constructed in O(ms) time. �

For any complex variable X = XℓXr, let range(X) denote the range [r1, r2] such
that T [r1, r2] = Xr. It is clear that for each complex variable its range is uniquely
determined, since each complex variable appears in T exactly once.

Lemma 8 Given integer k ∈ N , we can retrieve in O(log s) time the complex variable
X such that range(X) = [r1, r2] and r1 ≤ k ≤ r2, after a preprocessing taking O(s)
time and space.

Proof. We construct a balanced binary search tree where each node consists of a pair of
a complex variable and its range. The sequence of complex variables Xi1 , Xi2, . . . , Xis

corresponds to range(Xi1), range(Xi2), . . . , range(Xis) = [1, |Xi1|], [|Xi1| + 1, |Xi2|],
. . . [|Xis−1

| + 1, |Xis|]. This means that the ranges are already sorted in decreasing
order. Therefore, we can construct a balanced binary search tree in O(s) time and
space.

Given integer k, at each node of the balanced tree corresponding to some variable
X, we examine whether k ∈ range(X) = [r1, r2]. If r1 ≤ k ≤ r2, X is the desired
variable. If k < r1, we take the left edge of the node. If k > r2, we take the right
edge of the node. This way we can retrieve the desired complex variable in O(log s)
time. �

We are now ready to prove Lemma 6 as follows.

Proof. Let A = Occ↑(X, Y, k). Let Xℓ1 be the complex variable such that k ∈
range(Xℓ1), and let Xℓ1 = Xℓ(ℓ1)Xr(ℓ1). Let Xℓ2 be the complex variable satisfying
k−|Y |∈range(Xℓ2), and let Xℓ2 = Xℓ(ℓ2)Xr(ℓ2). There are the three following cases:

(1) when k − |Y | ≥ |Xℓ(ℓ1)| + 1 and k + |Y | − 1 ≤ |Xℓ1| (Figure 5, left).
In this case, we have A = Occ↑(Xr(ℓ1), Y, k) ⊕ |Xℓ(ℓ1)|.

(2) when k − |Y | < |Xℓ(ℓ1)| + 1 and k + |Y | − 1 ≤ |Xℓ1| (Figure 5, right).
In this case, we have

A = (Occ△(Xℓ1 , Y) ∩ [k − |Y |, Xℓ(ℓ1) + 1]) ∪ (Occ↑(Xr(ℓ1), Y, k) ⊕ |Xℓ(ℓ1)|).

(3) when k + |Y | − 1 > |Xℓ1| (Figure 6).
In this case, we have

A = (Occ↑(Xℓ(ℓ2), Y, |Xℓ(ℓ2)| − |Y | + 1) ∩ [k − |Y |, |Xℓ(ℓ2)| − |Y | + 1])

∪ (Occ△(Xℓ2, Y) ∩ [|Xℓ(ℓ2)| − |Y | + 1, k]).

107

Proceedings of the Prague Stringology Conference ’04

Xl1

Y

k

X

Xl(l1)

Xr(l1)

Xl1

Y

k

X

Xr(l1)
Xl(l1)

Figure 5: In the left case, all the occurrences are covered by Occ↑(Xr(ℓ1), Y, k)⊕|Xℓ(ℓ1)|.
In the right case, the first and second occurrences are covered by Occ△(Xℓ1 , Y) and
the third and fourth occurrences by Occ↑(Xr(ℓ1), Y, k) ⊕ |Xℓ(ℓ1)|.

Xl(l2)

Y

k

X

Xl2

Xr(l2)

Figure 6: In this case, the first and second occurrences are covered by
Occ↑(Xℓ(ℓ2), Y, |Xℓ(ℓ2)| − |Y |+ 1) and the third and fourth occurrences are covered by
Occ△(Xℓ2 , Y).

Due to Lemma 8, Xℓ1 and Xℓ2 can be found in O(log s) time. Since Xr(ℓ1) is simple,
Occ↑(Xr(ℓ1), Y, k) of cases (1) and (2) can be computed in O(1) time by Lemma 5.
According to Lemma 7, Occ↑(Xℓ(ℓ2), Y, |Xℓ(ℓ2)| − |Y |+1) of case (3) can be computed
in O(1) time. By Observation 2, the union operations can be done in O(1) time.
Thus, in any case A = Occ↑(X, Y, k) can be computed in O(log s) time. By Lemma 7
and Lemma 8, the extra work time and space are O(ms). This completes the proof.
�

Now we have got Lemma 5 and Lemma 6 proved. Using these lemmas, we can
prove Lemma 4 as follows:

Proof. Let Xi = XℓXr and Yj = YℓYr. Then, as seen in Figure 7, we have

Occ△(Xi, Yj) = (Occ△(Xi, Yℓ) ∩ (Occ(Xr, Yr) ⊕ |Xℓ| ⊖ |Yℓ|))

∪ (Occ(Xℓ, Yℓ) ∩ (Occ△(Xi, Yr) ⊖ |Yℓ|)).

Let A = Occ△(Xi, Yℓ) ∩ (Occ(Xr, Yr) ⊕ |Xℓ| ⊖ |Yℓ|) and B = Occ(Xℓ, Yℓ) ∩

108

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

Xi

Xl

Xr

k

Yj

Yl
Yr

Xi

Xl

Xr

k

Yj

Yl
Yr

Figure 7: k ∈ Occ△(X, Y) if and only if either k ∈ Occ△(X, Yℓ) and k + |Yℓ| ∈
Occ(X, Yr) (left case), or k ∈ Occ(X, Yℓ) and k + |Yℓ| ∈ Occ△(X, Yr) (right case).

(Occ△(Xi, Yr) ⊖ |Yℓ|). Since Occ△(Xi, Yj) forms a single arithmetic progression by
Lemma 1, the union operation of A∪B can be done in constant time. Therefore, the
key is how to compute A and B efficiently.

Now we show how to compute set A. Let z = |Xℓ| − |Yℓ|. Let 〈p1, d1, t1〉 =
Occ△(Xi, Yℓ) and q1 = p1 + (t1 − 1)d1. Depending on the value of t1, we have the
following cases:

(1) when t1 = 0.
In this case we have A = ∅.

(2) when t1 = 1.
In this case, Occ△(Xi, Yℓ) = {p1}. It stands that

A = {p1} ∩ (Occ(Xr, Yr) ⊕ z)

= ({p1 − z} ∩ Occ(Xr, Yr)) ⊕ z)

= ({p1 − z} ∩ [p1 − z − |Yr|, p1 − z] ∩ Occ(Xr, Yr)) ⊕ z)

= ({p1 − z} ∩ Occ↑(Xr, Yr, p1 − z)) ⊕ z) (By Observation 1)

=

{

{p1} if p1 − z ∈ Occ↑(Xr, Yr, p1 − z),

∅ otherwise.

Since Xr is simple, Occ↑(Xr, Yr, p1 − z) can be computed in constant time by
Lemma 5. Checking whether p1 − z ∈ Occ↑(Xr, Yr, p1 − z) or not can be done
in constant time since Occ↑(Xr, Yr, p1−z) forms a single arithmetic progression
by Lemma 1.

(3) when t1 > 1.

There are two sub-cases depending on the length of Yr with respect to q1−p1 =
(t1 − 1)d1 ≥ d1, as follows.

- when |Yr| ≥ q1 −p1 (see the left of Figure 8). By this assumption, we have

109

Proceedings of the Prague Stringology Conference ’04

a1 b1 a1+|Yl| b1+|Yl||Xl|+1

Yl Yr

X
a1 b1 a1+|Yl| b1+|Yl||Xl|+1

Yl
Yr

X

Figure 8: Long case (left) and short case (right).

q1 − |Yr| ≤ p1, which implies [p1, q1] ⊆ [q1 − |Yr|, q1]. Thus

A = 〈p1, d1, t1〉 ∩ (Occ(Xr, Yr) ⊕ z)

= (〈p1, d1, t1〉 ∩ [p1, q1]) ∩ (Occ(Xr, Yr) ⊕ z)

= (〈p1, d1, t1〉 ∩ [q1 − |Yr|, q1]) ∩ (Occ(Xr, Yr) ⊕ z)

= 〈p1, d1, t1〉 ∩ ([q1 − |Yr|, q1] ∩ (Occ(Xr, Yr) ⊕ z))

= 〈p1, d1, t1〉 ∩ (([q1 − |Yr| − z , q1 − z] ∩ Occ(Xr, Yr)) ⊕ z)

= 〈p1, d1, t1〉 ∩ (Occ↑(Xr, Yr, q1 − z) ⊕ z),

where the last equality is due to Observation 1. Since Xr is simple, due to
Lemma 5, Occ↑(Xr, Yr, q1−z) can be computed in O(1) time. By Lemma 3,
〈p1, d1, t1〉∩ (Occ↑(Xr, Yr, q1−z)⊖|Yℓ|) can be computed in constant time.

- when |Yr| < q1 − p1 (see the right of Figure 8). The basic idea is the same
as the previous case, but computing Occ↑(Xr, Yr, q1 − z) is not enough,
since |Yr| is ‘too short’. However, we can fill up the gap as follows.

A = 〈p1, d1, t1〉 ∩ (Occ(Xr, Yr) ⊕ z)

= (〈p1, d1, t1〉 ∩ [p1, q1]) ∩ (Occ(Xr, Yr) ⊕ z)

= (〈p1, d1, t1〉 ∩ ([p1, q1 − |Yr| −1] ∪ [q1 − |Yr|, q1])) ∩ (Occ(Xr, Yr) ⊕ z)

= 〈p1, d1, t1〉 ∩ (S ∪ Occ↑(Xr, Yr, q1 − z)) ⊕ z),

where S = [p1 − z , q1 − z − |Yr| − 1] ∩ Occ(Xr, Yr).

By Lemma 2, d1 is the shortest period of Xi[p1 : q1 + |Yℓ| − 1]. For this
string, we have

Xi[p1 : q1 + |Yℓ| − 1]

= Xℓ[p1 : |Xℓ|]Xr[1 : q1 + |Yℓ| − 1 − |Xℓ|]

= Xℓ[p1 : |Xℓ|]Xr[1 : q1 − z − 1]

= Xℓ[p1 : |Xℓ|]Xr[1 : p1 − z − 1]Xr[p1 − z : q1 − z − 1]

= Xi[p1 : p1 + |Yℓ| − 1]Xr[p1 − z : q1 − z − 1].

Therefore, Xr[p1 − z : q1 − z − 1] = ut1 where u is the suffix of Yℓ of length
d1. Thus,

S =

{

〈p1 − z , d1, t
′〉 if p1 − z ∈ Occ(Xr, Yr),

∅ otherwise,

110

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

where t′ is the maximum integer satisfying p1−z +(t′−1)d1 ≤ q1−z−|Yr|−
1. According to Observation 2, the union operation of S∪Occ↑(Xr, Yr, q1−
z) can be done in constant time in both cases. By Observation 1, checking
whether p1− z ∈ Occ(Xr, Yr) or not can be reduced to checking if p1− z ∈
Occ↑(Xr, Yr, p1 − z). Since Xr is simple, it can be done in O(1) time by
Lemma 1 and Lemma 5. Finally, the intersection operation can be done
in constant time by Lemma 3.

Therefore, in any case we can compute A in constant time.
Now we consider computing B=Occ(Xℓ, Yℓ)∩(Occ△(Xi, Yr)⊖|Yℓ|). Let 〈p2, d2, t2〉

= Occ△(Xi, Yr). We now have to consider how to compute Occ↑(Xℓ, Yℓ, p2 − |Yℓ|)
efficiently. When Xℓ is simple, we can use the same strategy as computing A. In
case where Xℓ is complex, Occ↑(Xℓ, Yℓ, p2 − |Yℓ|) can be computed in O(log s) time
by Lemma 6.

Due to Lemma 5 and Lemma 6, the total extra work time and space are O(h2 +
mh) + O(ms) = O(h2 + m(h + s)) = O(h2 + mn). This completes the proof. �

We have proven that each Occ△(X, Y) can be computed in O(log s) time with
extra O(h2 + mn) work time and space. Thus, the whole time complexity is O(h2 +
mn)+O(mn log s) = O(h2+mn log s), and the whole space complexity is O(h2+mn).
This leads to the result of Theorem 1.

5 Conclusions

Miyazaki et al. [18] presented an algorithm to solve the FCPM problem for straight
line programs in O(m2n2) time and with O(mn) space. Since simple collage systems
can be translated to straight line programs, their algorithm gives us an O(m2n2) time
solution to the FCPM problem for simple collage systems. In this paper we developed
an FCPM algorithm for simple collage systems which runs in O(‖D‖2 + mn log |S|)
time using O(‖D‖2 + mn) space. Since n = ‖D‖ + |S|, the proposed algorithm is
faster than that of [18] which runs in O(m2n2) time.

An interesting extension of this research is to consider the FCPM problem for
composition systems [24]. Composition systems can be seen as collage systems with-
out repetitions. Since it is known that LZ77 compression can be translated into a
composition system of size O(n log n), an efficient FCPM algorithm for composition
systems would lead to a better solution for the FCPM problem with LZ77 compres-
sion. We remark that the only known FCPM algorithm for LZ77 compression takes
O((n + m)5) time [6], which is still very far from desired optimal time complexity.

References

[1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In
Proc. DCC’92, page 279. IEEE Computer Society, 1992.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. J. Computer and System Sciences, 52(6):299–307, 1996.

111

Proceedings of the Prague Stringology Conference ’04

[3] T. Eilam-Tzoreff and U. Vishkin. Matching patterns in strings subject to multi-
linear transformations. Theoretical Computer Science, 60:231–254, 1988.

[4] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998.

[5] P. Gage. A new algorithm for data compression. The C Users Journal, 12(2),
1994.

[6] L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding (extended abstract). In Proc. SWAT’96, volume 1097
of LNCS, pages 392–403. Springer-Verlag, 1996.

[7] L. Ga̧sieniec and W. Rytter. Almost optimal fully LZW-compressed pattern
matching. In Proc. DCC’99, pages 316–325. IEEE Computer Society, 1999.

[8] S. Inenaga, A. Shinohara, and M. Takeda. An efficient pattern matching algo-
rithm for OBDD text compression. Technical Report DOI-TR-CS-222, Depart-
ment of Informatics, Kyushu University, 2003.

[9] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching al-
gorithm for strings with short descriptions. Nord. J. Comput., 4(2):172–186,
1997.

[10] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa.
Collage system: a unifying framework for compressed pattern matching. Theo-
retical Computer Science, 298:253–272, 2003.

[11] J. Kieffer and E. Yang. Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inform. Theory, 46(3):737–754, 2000.

[12] J. Kieffer and E. Yang. Grammar-based codes for universal lossless data com-
pression. Communications in Information and Systems, 2(2):29–52, 2002.

[13] J. Kieffer, E. Yang, G. Nelson, and P. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Trans. Inform. Theory, 46(4):1227–1245,
2000.

[14] J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc.
DCC’99, pages 296–305. IEEE Computer Society, 1999.

[15] U. Manber. A text compression scheme that allows fast searching directly in the
compressed file. ACM Trans. Inf. Syst., 15(2):124–136, 1997.

[16] T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-
parallel approach to approximate string matching in compressed texts. In Proc.
SPIRE’00, pages 221–228, 2000.

[17] S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and S. Arikawa.
Compressed pattern matching for SEQUITUR. In Proc. DCC’01, pages 469–480.
IEEE Computer Society, 2001.

112

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

[18] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching
algorithm for strings in terms of straight line programs. J. Discrete Algorithms,
1(1):187–204, 2000.

[19] C. Nevill-Manning and I. Witten. Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artificial Intelligence Research, 7:67–82, 1997.

[20] W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM’99,
volume 1725 of LNCS, pages 48–65. Springer-Verlag, 1999.

[21] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara,
and S. Arikawa. Speeding up pattern matching by text compression. In Proc.
CIAC’00, volume 1767 of LNCS, pages 306–315. Springer-Verlag, 2000.

[22] J. A. Storer and T. G. Szymanski. Data compression via textural substitution.
J. ACM, 29(4):928–951, 1982.

[23] T. Welch. A technique for high performance data compression. IEEE Comput.
Magazine, 17(6):8–19, 1984.

[24] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, 23:337–343, 1977.

[25] J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. Inform. Theory, 24:530–536, 1978.

113

