Efficient Algorithms for the)-Approximate String
Matching Problem in Musical Sequences

Domenico Cantone, Salvatore Cristofaro and Simone Faro
Dipartimento di Matematica e Informatica, Universita di Catania, [taly

e-mail: {cantone, cristofaro, faro}@dmi.unict.it

Abstract. The J-approximate string matching problem, recently introduced in
connection with applications to music retrieval, is a generalization of the exact
string matching problem for alphabets of integer numbers. In the J-approximate
variant, (exact) matching between any pair of symbols/integers a and b is re-
placed by the notion of é-matching =s, where a =5 b if and only if |[a — b] < 0
for a given value of the approximation bound §.

After surveying the state-of-the-art, we describe some new effective algorithms
for the §-matching problem, obtained by adapting existing string matching algo-
rithms. The algorithms discussed in the paper are then compared with respect
to a large set of experimental tests. From these, in particular it turns out that
two of our newly proposed algorithms often achieve the best performances, es-
pecially in the case of large alphabets and short patterns, which typically occurs
in practical situations in music retrieval.

Keywords: String algorithms, approximate string matching, musical informa-
tion retrieval.

1 Introduction

Given a text T and a pattern P over some alphabet ¥, the string matching prob-
lem consists in finding all occurrences of the pattern P in the text T. It is a very
extensively studied problem in computer science, mainly due to its direct applica-
tions to such diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, computational biology and chemistry, etc.

In the last few years also the approximate pattern matching problem has received
much attention and algorithms which find all approximate repetitions of a given
pattern in a sequence have been proposed, based on notions of approximation par-
ticularly useful in specific fields such as molecular biology [KMGLS&8, MJ93], musical
applications [CIR98], or image processing [KPRO00].

In this paper we focus on a variant of the approximate string matching problem
which naturally arises in music information retrieval, namely the d-approximate string
matching problem.

Musical sequences can be schematically viewed as sequences of integer numbers,
representing either the notes in the chromatic or diatonic notation (absolute pitch
encoding), or the intervals, in number of semitones, between consecutive notes (pitch

33

Proceedings of the Prague Stringology Conference "04

A (C-minor) A (B-sus4)
y e /-
{(r~C T {(r~C ¥
A\S 5 A\8V -
s) v
ape 60 63 67 72 ape 59 064 66 71
ip.e. 3 4 5 ip.e. 5 2 5

Figure 1: Representation of the C-minor and B-sus4 chords in the absolute pitch
encoding (a.p.e.) and in the pitch interval encoding (i.p.e.)

interval encoding); see the examples in Figure 1. The second representation is gener-
ally of greater interest for applications in tonal music, since absolute pitch encoding
disregards tonal qualities of pitches. Note durations and note accents can also be
encoded in a numeric form, giving rise to more meaningful alphabets whose symbols
can be really regarded as sets of parameters. This is the reason why alphabets used
for music representation are generally quite large.

d-approximate string matching algorithms are very effective to search for all similar
but not necessarily identical occurrences of given (short) melodies in musical scores.
We recall that in the J-approximate matching problem two numeric strings of the same
length match if corresponding integers differ by at most a fixed bound ¢. For instance,
the chords C-minor and B-sus4 match if a tolerance of § = 1 is allowed in the ab-
solute pitch encoding (where C-minor= (60, 63,67,72) and B-susd= (59, 64, 66, 71)),
whereas if we use the pitch interval encoding, a tolerance of § = 2 is needed to get a
match (in this case we have C-minor= (3,4,5) and B-susd= (5,2,5)); see Figure 1.
Notice that when 0 = 0, the d-approximate string matching problem reduces to the
exact string matching problem.

A stronger restriction can be introduced to d-approximate matching by imposing
a limit ~ to the sum of the absolute differences between corresponding integers. This
further restriction is generally referred to as (6, y)-approximate matching. However,
in this paper we consider only the general case in which v = 4-00.

A significant amount of research has been devoted to adapt solutions for ex-
act string matching to d-approximate matching (see for instance [CCIT99, CILPOI,
CIL*02]). In this respect, Boyer-Moore-type algorithms are of particular interest,
since they are very fast. We recall that they are based on variations of the well-
known ideas introduced in the Boyer-Moore algorithm [BM77], namely right-to-left
scanning, bad-character and good-suffix heuristics. For instance, the Fast-Search and
the Forward-Fast-Search algorithms [CF03a, CF03b] require that the bad-character
heuristics is used only if the mismatching character is the last character of the pat-
tern, otherwise the good-suffix heuristics is to be used.

The main results of this paper are adaptations of the Fast-Search and Forward-Fast-
Search algorithms to d-approximate matching. In addition, we propose adaptations of
the Quick-Search and the Berry-Ravindran algorithms [Sun90, BR99], which are among
the most efficient algorithms for exact string matching.

The paper is organized as follows. In Section 2 we introduce the basic notions
and give a formal definition of the d-approximate matching problem. In Section 3 we

34

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

survey some of the most efficient algorithms for computing d-approximate repetitions
in musical sequences. Then in Sections 4 and 5 we present new efficient variants, by
suitably adapting known exact string matching algorithms. Experimental data ob-
tained by running under various conditions the most efficient reviewed algorithms are
presented and compared in Section 6. Finally, we draw our conclusions in Section 7.

2 Basic definitions and properties

Before entering into details, we need a bit of notations and terminology. A string P
is represented as a finite array P[0..m — 1], with m > 0. In such a case we say that
P has length m and write length(P) = m. In particular, for m = 0 we obtain the
empty string, also denoted by . By P[i] we denote the (i + 1)-st character of P,
for 0 < i < length(P). Likewise, by P[i..j] we denote the substring of P contained
between the (i + 1)-st and the (j + 1)-st characters of P, for 0 < i < j < length(P).
Moreover, for any i, j € Z, we put

plig={ ¢ ifi>
s Plmax(i,0), min(7, length(P) — 1)] otherwise.

For any two strings P and @), we write () 2 P to indicate that () is a suffix of P, i.e.,
Q) = Pli..length(P) — 1], for some 0 < ¢ < length(P). Similarly, we write Q C P to
indicate that @ is a prefix of P, i.e., @ = P[0..i — 1], for some 0 < i < length(P).
In addition, we write P.QQ to denote the concatenation of P and @ and P* to denote
the concatenation of k copies of P. A prefix Q of P is a period of P if P is a prefix
of QF, for a sufficiently large k. The shortest period of P is called the period of P.

Let X be an alphabet of integer numbers and let § > 0 be an integer. T'wo symbols
a and b of ¥ are said to be d-approzimate (or that a and b §-match), in which case
we write a =5 b, if |a — b] < §. Two strings P and @ over the alphabet X are said to

be d-approximate (or that P and) §-match), in which case we write P 2 Q, if

length(P) = length(Q), and P[i| =5 Q[i], for i =0, ...,length(P) — 1.

5
Moreover, we write () 1 P, and say that @ is a d-suffiz of P, if 2 P[i..length(P)—
1], for some 0 < i < length(P). The following elementary property can be verified
immediately.

Property 2.1 Let P, Q), and R be strings over an alphabet 32 of integer numbers and
5 20
let 6 > 0 be a given integer number. If P 2 Q and R 3 Q, then R 1 P.

Let T be a text of length n and let P be a pattern of length m (over a given
alphabet of integers). When the symbol P[0] is aligned with the symbol T'[s] of the
text, so that the symbol P[i] is aligned with the symbol T[s+i|, fori =0,...,m—1,
we say that the pattern P has shift s in T'. In this case, the substring T'[s.. s +m — 1]

is called the current window of the text. If T'[s .. s+m —1] 2 P, we say that the shift
s is d-valid. Then the problem of J-approximate pattern matching consists in finding
all 9-valid shifts of text T" for a given pattern P.

35

Proceedings of the Prague Stringology Conference "04

3 Fast)-Approximate Pattern Matching

The problem of d-approximate matching in musical sequences has been formally de-
fined in [CCI*99], where an algorithm based on the bitwise technique, the Shift-And
algorithm, has been presented. The Shift-And algorithm uses a constant time state
computation, for each character in the text, so that the overall time complexity of
the searching phase is O(n).

Two years later, a number of efficient algorithms for the exact string matching
problem have been adapted in [CILPO1] to the d-approximate matching problem,
obtaining three algorithms based on occurrence heuristics (J-Tuned-Boyer-Moore, §-
Skip-Search, and d-Maximal-Shift) which are faster than the Shift-And algorithm.

Still later, other adaptations of exact string matching algorithms to the o-
approximate matching problem have been proposed in [CILT02]. The resulting algo-
rithms, based on the substring heuristics, are -BM1, -BM2, and 9-BM3.

Finally, a bit-parallel algorithm, 6-BNDM, which outperforms previous algorithms,
has been recently presented in [CIPNO03].

Next, we briefly review the most efficient algorithms for J-approximate matching
mentioned above.

3.1 /-Boyer-Moore Algorithms

The Boyer-Moore algorithm [BM77] for exact pattern matching is the progenitor of
several algorithmic variants which aim at computing efficiently shift increments which
are close to optimal. Specifically, the Boyer-Moore algorithm checks whether a shift
s of a text T is valid by scanning the pattern P from right to left. At the end of
the matching phase, the Boyer-Moore algorithm computes the shift increment as the
maximum value suggested by the good-suffiz rule and the bad-character rule.

The Boyer-Moore bad-character rule can be easily adapted to §-approximate match-
ing. Suppose that the first d-mismatch occurs at position i of the pattern, i.e.
Pli+1,...m —1] 2 Tls+i+1,..,s+m—1] and T[s + i] #s Pli]. Then the
d-bad-character rule suggests the shift increment d-bcp(T'[s + i]) +i — m + 1, where

d-bep(c) =p; min({0 <k <m|Pm—1—k| =5 c}U{m}) ,

for c € 3.

The 6-Tuned-Boyer-Moore [CILP01] is an adaptation of Tuned-Boyer-Moore [HS91],
which in turn is a very efficient simplification of the original Boyer-Moore algorithm
although it runs in time O(nm) in the worst case. Specifically, each of its iterations
can be divided into two phases: last character localization and d-matching phase. The
first phase searches for a J-match of the character P[m — 1], by applying until needed
rounds of three consecutive shifts based on the J-bad-character rule, where the check
d-bep(T[s+m —1]) = 0 is performed only at the end of each round. The subsequent
matching phase then tries to d-match the rest of the pattern P[0..m — 2] with the
corresponding characters of the text, proceeding from right to left. At the end of the
matching phase, the d-Tuned-Boyer-Moore algorithm computes the shift advancement
in such a way that character T'[s +m — 1] is aligned with the rightmost position i on
P[0..m — 2] such that P[m — 1] =55 P[i], if present. If such position is not present,
the shift is incremented by m.

36

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

The §-Maximal-Shift algorithm, presented in [CILPO1], is a modification of
the Maximal-Shift algorithm [Sun90]. Rather than scanning the pattern from right
to left, the 6-Maximal-Shift algorithm scans the pattern according to an ordering
which guarantees larger shifts advancements. This is better formalized by means of
a permutation 7 : {0,1,...,m} — {0, 1,...,m} and a function é-maz : {0,1,...,m} —
{0,1,...,m} such that, for 0 <i < m,

d-max(m(i)) = min{l| P[r(j) —1] =25 Plm(j)] and P[r(i)—1] #5 P[r(i)], for 1<j<i}
and, for 0 <i<m —1,
o-maz(m(i)) < 6-maz(mw(i+ 1)),

where P is a given pattern of length m. Furthermore, one sets w(m) = m and
d-mazx(m) equal to the length of the period of P.

During the matching phase, characters are scanned in the pattern following the
ordering 7(0),7(1),...,m(m — 1). Moreover, if the first é-mismatch occurs while
comparing characters P[r(i)] and T[s 4 7 ()], then the current shift s is incremented
by max{d-max(n(i)), 6-bc(T[s+m])}. It turns out that the /-Maximal-Shift algorithm
has O(nm) time complexity.

3.2 o-Reverse-Factor and ¢-Alpha-Skip-Search Algorithms

Unlike the Boyer-Moore algorithm, the Reverse-Factor algorithm [CCGT94] and the
Alpha-Skip-Search algorithm [CLP98] compute shifts which match prefixes of the pat-
tern, rather than suffixes. These algorithms have a quadratic worst-case time com-
plexity, but are very fast in practice (cf. [Lec00]). Moreover, it has been shown that
on the average the Reverse-Factor algorithm inspects O(n log(m)/m) text characters,
reaching the best bound shown by Yao in 1979 (cf. [YaoT79]).

Adaptations of Reverse-Factor and Alpha-Skip-Search algorithms are presented in
[CIL*02] under the names 0-BM2 and 0-BM1, respectively.

The 0-BM1 algorithm, or d-Alpha-Skip-Search algorithm, preliminary computes a
d-suffix trie 7, of all the factors of length ¢ = [log|s; m| occurring in the pattern
P, where ¥ is the alphabet. The leaves of the d-suffix trie 7, represent all strings y

such that y 2 x, for some factor x of P of length /. For each leaf of 7., a bucket
is maintained which stores all positions at which the factor associated to the leaf
occurs in P. The searching phase of the §-Alpha-Skip-Search algorithm consists then
in looking for each shift position s into the bucket of the factor T'[s..s + ¢ — 1], if any,
and in checking naively the corresponding windows of the text. A shift advancement
of size m — ¢ + 1 then takes place.

The 6-BM2 algorithm, or d-Reverse-Factor algorithm, computes the smallest -
suffix automaton of the reverse of the pattern P by simply minimizing the J-suffix
trie 7,. In this way one obtains a deterministic finite automaton whose accepted

language is the set of strings y such that y 2 x, for some factor x of P of length
Llogm m/|. Then, much the same strategy of the Reverse-Factor algorithm can be
applied to the case of d-approximate matching.

37

Proceedings of the Prague Stringology Conference "04

3.3 o¢-Hashing Algorithms

To describe the 6-BM3 algorithm, we need some further notation. Let P be a pattern
over an alphabet ¥ of integer numbers, let & < length(P) be a fixed integer, and
let & > 0 be a given approximation bound. We denote by sub(P, k) the set of all
substrings of P of length k£ and we define the following intervals:

Z = [k-min¥. k-maxY]

7, = [max{hash(z)— ko, k- minX} .. min{hash(x) + kd, k - max ¥}],
for © € sub(P, k) and where hash(z) denotes the sum of the symbols of z. It can be
easily shown that Z, C 7, for each = € sub(P, k).

The §-BM3 algorithm [CILT02] begins by constructing the following hash table
‘H, indexed by the interval Z. For each ¢ € Z, the i-th bucket of the table H collects
the positions of all subwords = € sub(P, k) such that i € Z,. Then, given a text T, for
each shift position s the searching phase of the)-BM3 algorithm consists in examining
the subword y = T[s+m—Fk .. s+m—1]. For each element j in the bucket at position
hash(y), the algorithm checks naively whether P occurs at position s +m — k — j
in 7. It turns out that the choice of k£ influences the running-time of the algorithm.
Generally, a value of £ = 2 constitutes a good choice.

The §-Skip-Search algorithm [CILPO1] is an adaptation of the Skip-Search algo-
rithm [CLP98]| to d-approximate matching. However, it can also be seen as a variant
of the 0-BM3 algorithm, with k = 1.

Both 0-Skip-Search and §-BM3 algorithms are fast in practice although their worst-
case time complexity is O(nm).

3.4 The -BNDM Algorithm

The Backward Nondeterministic DAWG Matching algorithm (BNDM for short) for
exact string matching has been presented in [NR9I8| as a combination of the bit-
parallel algorithm Shift-Or [BYG89] and the BDM algorithm [CCG'94] based on
suffix automata. The aim of the BNDM algorithm is to combine the property of skip-
ping characters (as in the BDM algorithm) with that of simulating nondeterministic
automata (as the Shift-Or algorithm). It turns out that the BNDM algorithm obtains
better results in terms of running time than the Shift-Or and the BDM algorithms.
Its complexity is O(nm) in the worst case.

An adaptation of the BNDM algorithm to d-approximate matching, the -BNDM
algorithm, has been presented in [CIPN03]|. The 6-BNDM algorithms is very simple
and efficient, especially in the case of long patterns, and is considered a stronger
choice for the d-approximate matching problem.

4)-Fast-Search algorithms

The Fast-Search [CF03a] and the Forward-Fast-Search [CFO03b] algorithms are very
recent members of the large family of Boyer-Moore type string matching algorithms.
Their searching strategy is based on an efficient mixing of the bad-character and good-
suffix rules, as given in the original Boyer-Moore algorithm. Recent experimental
results [CF03b] conducted over an extensive family of string matching algorithms
show that the Fast-Search algorithms obtain, in most cases, the best results in terms

38

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

of running times and number of text character inspections.
After reviewing the main features of the Fast-Search algorithms, we shall show
how they can be adapted to d-approximate matching problem.

4.1 Fast-Search and Forward-Fast-Search algorithms

The Fast-Search algorithm is a very simple, yet efficient, variant of the Boyer-Moore
algorithm. Again, let P be a pattern of length m and let T be a text of length n
over a finite alphabet . The Fast-Search algorithm computes its shift increments
by applying the bad-character rule if and only if a mismatch occurs during the first
character comparison, namely, while comparing characters Pm — 1] and T'[s+m — 1],
where s is the current shift. Otherwise it uses the good-suffix rule.

Specifically, if the first mismatch occurs at position ¢ < m—1 of the pattern P, the
good-suffix rule suggests to align the substring T'[s+i+1..s+m—1] = P[i+1..m—1]
with its rightmost occurrence in P preceded by a character different from P[i]. If such
an occurrence does not exist, the good-suffix rule suggests a shift increment which
allows to match the longest suffix of T[s +i+ 1..s +m — 1] with a prefix of P.

More formally, if the first mismatch occurs at position ¢ of the pattern P, the
good-suffix rule states that the shift can be safely incremented by gsp(i+1) positions,
where

9sp(j) =pg min{f0 <k <m | Pj—k.m—k—13P
and (k<j—1—Plj-1]#P[j —1-k])} ,

for 7 =0,1,...,m. (The situation in which an occurrence of the pattern P is found
can be regarded as a mismatch at position —1.)

A more effective implementation of the Fast-Search algorithm is obtained along
the same lines of the Tuned-Boyer-Moore algorithm: the bad-character rule can be
iterated until the last character P[m — 1] of the pattern is matched correctly against
the text. At this point it is known that T'[s+m—1] = P[m—1], so that the subsequent
matching phase can start with the (m — 2)-nd character of the pattern. At the end of
the matching phase the algorithm uses the good-suffix rule for shifting. Moreover the
Fast-Search algorithm benefits from the introduction of an external sentinel, which
allows to compute correctly the last shifts with no extra checks.

The Forward-Fast-Search algorithm maintains the same structure of the Fast-Search
algorithm, but it is based upon a modified version of the good-suffix rule, called
forward good-suffiz rule, which uses a look-ahead character to determine larger shift
advancements. Thus, if the first mismatch occurs at position ¢ < m —1 of the pattern
P, the forward good-suffix rule suggests to align the substring T[s 4+ i + 1..s + m)]
with its rightmost occurrence in P preceded by a character different from P[i]. If such
an occurrence does not exist, the forward good-suffix rule proposes a shift increment
which allows to match the longest suffix of T[s + ¢+ 1..s + m] with a prefix of P.
This corresponds to advance the shift s by % p(i + 1,T[s + m]) positions, where

%1:(‘]',0) = s min{0<k<m | Plj—k.m—-k—123P
and (k<j—1—P[j—1]#P[j —1—k])
and Plm — k| =c} U {m+1}) ,

39

Proceedings of the Prague Stringology Conference "04

for j=0,1,...,mand c € X.

The good-suffix rule and the forward good-suffix rule require tables of size m and
m - ||, respectively. These can be constructed in time O(m) and O(m-max(m, |%|)),
respectively.

4.2 Adaptations to)-approximate matching

In this section we show how to adapt the Fast-Search and Forward-Fast-Search algo-
rithms to d-approximate matching.

A modification of the bad-character rule to d-approximate matching has been
already presented in Section 3.1. Now we show how the good-suffix rule and the
forward good-suffix rule can also be adapted to match d-approximate repetitions of
suffixes of the pattern.

Let us suppose that while comparing the pattern P with the window T'[s..s +
m — 1], proceeding from right to left, the first d-mismatch occurs at position ¢, i.e.
Pli] #s T[s +] and Pli + 1..m — 1] L Tls+i+1..s4+m — 1] (if we have a J-
match, then ¢ = 0 and the condition P[i] #5 T'[s + ¢] should not be considered). Let

26
0<k<mbesuchthat s+k+m—1<nand Pli+1—Fk..m—1—k|] A P, where

5
71 is the d-suffix relation defined in Section 2. Then the shift s + £ is not d-valid.
Indeed, if s + k were d-valid, we would have P 2 Tls+k..s+k+m—1], so that

5
Pli+1—k.m—1—k] 3T[s+i+1..s+m—1]. Therefore, by Property 2.1, we would

get Pli+1—Fk..m—1—k] 4 Pli+1..m—1], which yields Pli+1—k..m—1—k] & P, a
contradiction. It is also easy to verify that if an integer k satisfies both 0 < k£ <7 and
P[i] = P[i — k], then again the shift s + & is not d-valid. The above considerations
allow us to state the following d-good-suffix rule: if the first d-mismatch occurs at
position i of the pattern P, then the shift can be safely incremented by d-gsp(i + 1)
positions, where

5-g5p(j) = min{0 <k <m | Plj—k.m—k—12Pj..m—1]
and (k< j—1— Plj—1] # P[j — 1 - k)} ,

for j =0,1,...,m.

Much in the same way, one can verify the correctness of the following J-forward
good-suffix rule: if the first -mismatch occurs at position ¢ of the pattern P, then
the shift can be safely incremented by 5—% p(i+ 1,T[s + m]) positions, where

5-Gop(js¢) =y min({0 <k <m | Plj—k.m—k—13P[..m—1]
and (k<j—1—P[j—1]# Plj—1—k])
and Plm — k| =5 ¢} U {m+1}) ,

for j=0,1,...,mand c € 3.

The #-good-suffix rule and the d-forward good-suffix rule require tables of size
m and (m - |X]), respectively. These can be easily constructed in time O(m) and
O(d - m - max(m, [X|)), respectively.

The o-Fast-Search and d-Forward-Fast-Search algorithms can be implemented
much along the same lines of the §-Tuned-Boyer-Moore algorithm.

40

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

d-Fast-Search (P, T) 0-Forward-Fast-Search (P, T)
n = length(T) n = length(T)
m = length(P) m = length(P)
T’ = T.Plm — 1]+ T’ = T.Pm — 1]+
d-bc = precompute-d-bad-character(P) 0-bc = precompute--bad-character(P)
d-gs = precompute-J-good-suffix(P) 5—;9 = precompute-d-forward-good-suffix(P)
s=0 s=10
while §-be[T'[s +m — 1]] > 0 do while §-bc[T’[s + m — 1]] > 0 do
s=s46-bc[T'[s +m —1]] s =584 06-be[T'[s +m — 1]]
while s <n —m do while s <n —m do
j=m—2 j=m—2
while j > 0 and P[j] =5 T'[s + j] while j > 0 and P[j| =5 T'[s + j]
do j=j—1 do j=j—1
if j < 0 then if j < 0 then
print(s) print(s)
s=s+0d-gs[j+1] s=s+06-gs[j+1,T[s +m]]
while §-be[T'[s +m — 1]] > 0 do while §-bc[T'[s + m — 1]] > 0 do
s =8+ 6-be[T'[s +m — 1]] s =84 6-be[T’'[s + m — 1]]

Figure 2: §-Fast-Search and /-Forward-Fast-Search algorithms

Each iteration of both algorithms can be divided into two phases. In the first
phase, called character localization phase, the d-bad-character rule is iterated until
the last character P[m — 1] of the pattern is J-matched correctly against the text.
More precisely, starting from a shift position s, if we denote by j; the total shift
advancement after the i-th iteration of the d-bad-character rule, then we have the
following recurrence:

Ji =Ji1+ 5—bCp<T[S + i1 +m — 1]) .

Therefore, the §-bad-character rule is applied k times in a row, where & = min{i | T'[s+
Ji +m — 1] =5 P[m — 1]}, with an overall shift advancement of jj.

At this point we have that T'[s + jx +m — 1] =5 P[m — 1], so that the subsequent
d-matching phase can test for a d-occurrence of the pattern by comparing only the
remaining (m — 1) characters of the pattern. At the end of the J-matching phase,
the d-good-suffix or the d-forward-good-suffix rule is applied for computing the next
shift.

In order to compute correctly the last shift with no extra checks, it is convenient to
add m+1 copies of the character P[m —1] at the end of the text T, obtaining the new
text T" = T.P[m—1]™"1. Plainly, all the §-valid shifts of P in T are exactly the d-valid
shifts s of P in T” such that s < n —m, where, as usual, n and m denote respectively
the lengths of 7" and P. The codes of the d-Fast-Search and J-Forward-Fast-Search
algorithms are presented in Figure 2.

5 Other interesting efficient variants

In this section we present adaptations to d-approximate matching of two efficient
exact string matching algorithms based on the bad-character rule, i.e. the Quick-
Search algorithm and the Berry-Ravindran algorithm.

41

Proceedings of the Prague Stringology Conference "04

The Quick-Search algorithm, presented in [Sun90], uses a simple modification of
the original heuristics of the Boyer-Moore algorithm. Specifically, it is based on the
following observation: when a mismatch character is encountered, the pattern is
always shifted to the right by at least one character, but never by more than m
characters. Thus, the character T'[s + m| is always involved in testing for the next
alignment. So, one can apply the bad-character rule to T'[s + m], rather than to
the mismatching character, obtaining larger shift advancements. Moreover the good-
suffix rule of the original Boyer-Moore algorithm is not used at all.

Extending this idea to d-approximate matching we obtain the §-Quick-Search al-
gorithm which, after each d-matching phase, advances the shift by 0-gbcp(T[s + m])
positions, where

d-qbcp(c) =p; min({0 < k <m | Plm — k| =5 c;U{m+1}) .

The function d-gbcp can be precomputed in O(m - § + |X|)-time and O(|3])-space
complexity.

The ¢-Berry-Ravindran algorithm is a modification of the Berry-Ravindran algo-
rithm [BR99]. It extends the §-Quick-Search algorithm in that its bad-character rule
uses the two characters T'[s +m] and T'[s +m + 1] rather than just the last character
T'[s + m] of the window. Thus, at the end of each matching phase with shift s, the
0-Berry-Ravindran algorithm advances the pattern in such a way that the substring of
the text T'[s +m..s + m + 1] is aligned with the rightmost d-occurrence in P of a

substring cicy such that T[s +m...s +m + 1] 2 C1Co.

The precomputation of the table used by this version of J-bad-character rule
requires O(m - 6% + |£|?)-time and O(]X|?)-space complexity.

Experimental results confirm the good practical behavior of the Quick-Search and
Berry-Ravindran algorithms even in the case of their J-variants (see next section).

6 Experimental Results

In this section we report experimental data related to the most efficient d-approximate
string matching algorithms described above, namely J-Tuned-Boyer-Moore (§-TBM),
9-Quick-Search (0-QS), d-Berry-Ravindran (6-BR), 6-BNDM (6-BNDM), d-Fast-Search
(0-FS), and é-Forward-Fast-Search (§-FFS).

We have chosen to compare them in terms of their running time. All algorithms
have been implemented in the C programming language and were used to search
for the same patterns in large fixed text sequences on a PC with a Pentium IV
processor at 2.6GHz. In particular, they have been tested on three Rando prob-
lems, for ¢ = 30,60,120, and on a real music sequence with patterns of length
m = 2,4,6,8,10, 15, 20, 25, and 30.

Each Rando problem consists in searching a set of 300 random patterns of a given
length in a 20Mb random text sequence over a common alphabet of size o.

The tests on the real music text buffer have been performed on a 9.3Mb file ob-
tained by combining a set of classical pieces, in MIDI format, by J.S. Bach. The
resulting text buffer has been translated in the pitch interval encoding with an al-
phabet of 55 symbols. For each pattern length m, we have randomly selected 200
substrings of length m in the file which subsequently have been searched for in the
same file.

42

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

For both Rando problems and real music problems, the value of the bound § has
been set to 1, 2, and 4.

In the following tables running times have been expressed in milliseconds and, for
each length of the pattern, the best results have been bold-faced.

From the experimental results, it turns out that the -BNDM algorithm is a very
good choice for the d-approximate matching problem, especially when the pattern is
long or the size of the alphabet is small.

However, the -Fast-Search algorithms compares well with the -BNDM algorithm
and outperforms it in the case of quite short patterns and large alphabets, which
occurs most frequently in real musical information retrieval problems.

Observe also that the d-Tuned-Boyer-Moore algorithm and the §-Quick-Search al-
gorithm obtain good results in most cases and, additionally, the d-Quick-Search algo-
rithm reaches competitive results in the case of long patterns and large alphabets.

0c=230,6=1 2 4 6 8 10 15 20 25 30
0-QS 93.08 68.88 59.19 5448 51.71 49.12 48.23 48.16 47.85
0-TBM 75.83 5544 49.84 47.82 4742 46.63 46.02 45.57 46.02
0-BR 140.67 102.82 84.48 7338 6599 55.33 51.11 48.68 47.44
0-FFS 74.67 54.84 4945 47.42 46.57 45.85 45.39 4573 45.10
0-FS 74.35 54.11 49.21 47.63 46.92 46.00 45.56 45.54 45.64
0-BNDM 125.89 90.41 73.61 62.92 5580 48.03 46.10 45.29 44.46

Rand30 problem with § = 1

c=230,6=2 2 4 6 8 10 15 20 25 30
0-QS 11891 87.03 73.50 67.25 63.04 5890 57.20 56.82 56.26
0-TBM 94.59 69.52 59.58 56.80 54.40 53.07 5249 52.40 52.00
0-BR 171.74 125.04 102.18 87.26 78.73 6521 57.87 53.57 5179
0-FFS 93.44 67.40 58.26 54.41 52.21 49.68 48.36 48.10 47.92
0-FS 93.80 68.19 58.54 55.76 5295 51.40 51.29 50.05 49.91
0-BNDM 158.89 107.54 80.57 66.42 58.79 50.21 47.57 46.78 45.26

Rand30 problem with § = 2

oc=230,0=4 2 4 6 8 10 15 20 25 30
0-QS 166.00 132.47 112.36 105.59 101.12 98.74 9791 98.79 9791
0-TBM 124.15 103.95 9290 91.22 88.08 88.79 87.16 87.17 86.58
0-BR 229.80 178.12 145.58 126.55 114.72 96.98 88.09 83.17 79.27
0-FFS 127.36 101.16 85.88 80.17 7531 70.70 67.14 65.06 63.38
0-FS 131.92 105.31 9244 8890 84.92 84.04 80.76 80.22 78.55
0-BNDM 215.78 13442 98.63 82.78 72.84 58.07 51.43 48.19 47.18

Rand30 problem with § =4

c=160,0=1 2 4 6 8 10 15 20 25 30
0-QS 7492 5749 51.07 4874 4746 46.02 4545 4535 45.27
0-TBM 62.48 49.22 46.21 4596 46.53 4554 4485 4495 44.49
0-BR 12215 89.97 7442 65.24 58.70 50.39 48.54 46.46 46.25
0-FFS 62.63 49.08 46.71 45.39 45.16 45.14 44.14 44.71 44.17
0-FS 62.01 48.71 45.60 45.17 4540 44.99 4449 44.35 44.10
0-BNDM 102.68 72.16 62.16 56.48 52.32 47.60 45.79 44.60 44.22

Rand60 problem with § = 1

43

Proceedings of the Prague Stringology Conference "04

=060, =2 2 4 6 8 10 15 20 25 30
0-QS 86.46 64.67 55.84 52.05 50.04 4776 47.03 4648 46.11
0-TBM 71.12 52,55 48.45 46.71 46.81 46.10 4541 45.50 45.56
0-BR 134.57 98.74 81.02 70.64 63.66 53.73 50.15 48.07 46.85
0-FFS 70.06 52.58 4842 46.31 45.85 45.60 4540 44.77 45.03
0-FS 70.21 51.79 47.32 46.36 46.02 45.17 44.97 4491 44.43
0-BNDM 117.93 84.61 70.87 62.07 55.01 47.77 4573 44.98 44.77

Rand60 problem with § = 2

oc=160,0=4 2 4 6 8 10 15 20 25 30
0-QS 112.38 82.29 70.06 62.81 59.55 55.80 54.66 53.67 53.60
40-TBM 89.94 6592 56.49 53.92 52.14 50.57 49.99 50.34 49.69
0-BR 164.51 12044 98.35 84.06 75.90 62.74 56.23 52.55 50.81
0-FFS 88.41 63.94 54.83 52.07 50.56 48.34 47.63 47.05 46.61
0-FS 88.33 64.39 56.29 52.89 51.29 49.69 48.79 4880 4847
0-BNDM 150.64 103.41 78.90 6546 56.91 49.35 46.95 46.40 45.50

Rand60 problem with 6 = 4

oc=120,0=1 2 4 6 8 10 15 20 25 30
0-QS 67.32 5241 48.78 46.86 46.42 4528 4431 44.61 43.92
0-TBM o744 47779 46.17 45.60 4585 45.21 4572 4451 44.28
0-BR 114.24 85.12 70.86 62.88 56.61 49.86 46.96 47.11 46.31
0-FFS 57.62 47.74 45.39 45.16 45.67 44.56 45.06 44.32 43.89
0-FS 57.15 4786 4596 44.82 45.06 44.78 43.20 44.13 43.95
0-BNDM 91.98 62.92 53.25 4997 4840 4589 46.07 44.85 44.68

Rand120 problem with § = 1

o=120, =2 2 4 6 8 10 15 20 25 30
0-QS 72.31 55.66 50.43 48.24 4756 46.54 45.39 43.60 44.89
0-TBM 60.73 48.71 46.57 45.60 45.82 4480 45.39 46.17 44.93
0-BR 119.57 89.09 73.42 6491 58.82 50.80 47.82 46.08 45.98
0-FFS 60.76 48.53 46.17 4557 45.65 4546 44.60 45.71 44.71
0-FS 60.30 48.25 45.89 45.06 44.91 44.69 4486 42.88 43.89
0-BNDM 99.36 69.31 58.94 54.62 51.12 47.22 45.74 46.49 44.49

Rand120 problem with § = 2

o =120, =4 2 4 6 8 10 15 20 25 30
0-QS 82.92 62.78 54.59 5091 49.22 4732 46.66 46.28 46.06
0-TBM 69.13 51.62 48.01 47.07 46.36 45.63 45.76 45.30 45.28
0-BR 132.63 97.17 80.17 69.71 62.69 53.69 49.81 48.12 47.18
0-FFS 67.86 51.45 47.40 46.29 46.53 45.64 45.14 44.88 44.67
0-FS 67.61 50.91 47.32 45.92 45.60 45.43 44.99 4495 44.78
0-BNDM 114.37 82.24 69.07 60.88 5H54.61 47.62 4596 44.79 44.42

Rand120 problem with § = 4

oc=>5560=1 2 4 6 8 10 15 20 25 30
0-QS 11.62 830 754 717 6.66 568 595 559 5.36
0-TBM 940 733 647 582 562 551 529 551 583
0-BR 16.16 12,56 10.10 879 7.64 697 6.11 587 5.44
0-FFS 8.76 6.58 6.44 6.22 561 529 526 519 5.18
0-FS 9.16 6.72 5.79 5.51 5.59 5.06 5.19 5.11 5.26
0-BNDM 15.17 10.33 8.08 6.97 6.54 6.08 547 5.11 5.01

Results on the Real Music problem with § = 1

44

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

oc=255,0=2 2 4 6 8 10 15 20 25 30
0-QS 14.53 1141 979 951 863 803 7.61 7.68 7.20
0-TBM 11.55 939 842 839 7.8 717 728 6.78 6.93
0-BR 20.36 16.21 13.20 12.26 10.68 9.00 839 742 7.14
0-FFS 11.35 8.78 7.21 6.64 6.73 5.34 543 6.10 5.89
0-FS 11.23 897 778 T4 778 688 6.60 6.38 6.34
0-BNDM 1836 1285 9.72 8.06 6.71 6.19 5.09 5.24 5.42

Results on the Real Music problem with 6 = 2

oc=255,0=4 2 4 6 8 10 15 20 25 30
0-QS 17.64 16.70 15.79 1499 14.63 13.69 1290 13.39 12.83
40-TBM 15.18 15.19 14.30 13.80 13.02 12.54 11.76 11.92 11.54
0-BR 26.12 23.17 21.36 19.73 18.33 15.60 14.12 14.22 13.14
0-FFS 14.02 13.28 12.23 11.33 10.32 984 9,57 918 9.26
0-FS 1452 14.20 13.37 1243 1218 11.46 10.42 10.39 9.83
0-BNDM 2192 17.03 14.60 1186 9.80 7.79 6.75 5.85 5.60

Results on the Real Music problem with 6 = 4

7 Conclusion

As reported in [CILT02], typical problems arising in musical analysis and musical
information retrieval generally use representations of musical scores requiring large
alphabets. In such problems the length of the pattern is generally short (10-20 notes):
thus the need of approximate searching algorithms that perform well for small patterns
and large alphabets.

In this paper we have focused our attention on d-approximate string matching
algorithms, which are very effective in searching for all similar but not necessarily
identical occurrences of given melodies in musical scores. In particular we have pre-
sented two new efficient algorithms, J-Fast-Search and ¢-Forward-Fast-Search, which
outperform known algorithms in the case of small patterns and large alphabets.

References

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762-772, 1977.

[BR99] T. Berry and S. Ravindran. A fast string matching algorithm and ex-
perimental results. In J. Holub and M. Siméanek, editors, Proceedings of
the Prague Stringology Club Workshop 99, pages 1628, Czech Technical
University, Prague, Czech Republic, 1999. Collaborative Report DC-99—
05.

[BYG89] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
In N. J. Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th

International Conference on Research and Development in Information
Retrieval, pages 168-175, Cambridge, MA, 1989. ACM Press.

45

Proceedings of the Prague Stringology Conference "04

[CCGT94] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,

[CCI+99]

[CF03a]

[CFO3b)]

[CIL*02]

[CILPO1]

[CIPNO3]

[CIR9S]

[CLP9g]

[HS91]

W. Plandowski, and W. Rytter. Speeding up two string matching algo-
rithms. Algorithmica, 12(4/5):247-267, 1994.

E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and
Y. J. Pinzon. Algorithms for computing approximate repetitions in mu-
sical sequences. In R. Raman and J. Simpson, editors, Proceedings of the
10th Australasian Workshop On Combinatorial Algorithms, pages 129—
144, Pert, WA, Australia, 1999.

D. Cantone and S. Faro. Fast-Search: A new efficient variant of the Boyer-
Moore string matching algorithm. In K. Jansen, M. Margraf, M. Mas-
trolli, and J.D.P. Rolim, editors, Proceedings of the 9th Workshop on
Ezperimental Algorithms (WEA 2003), volume 2647 of Lecture Notes in
Computer Science, pages 47-58. Springer-Verlag, Berlin, 2003.

D. Cantone and S. Faro. Forward-Fast-Search: Another fast variant of
the Boyer-Moore string matching algorithm. In M. Simének, editor, Pro-
ceedings of the Prague Stringology Conference '03, pages 10-24, Czech
Technical University, Prague, Czech Republic, 2003.

M. Crochemore, C. S. Iliopoulos, T. Lecroq, W. Plandowski, and W. Ryt-
ter. Three heuristics for §-matching: -BM algorithms. In A. Apostolico
and M. Takeda, editors, Proceedings of the 13th Annual Symposium on
Combinatorial Pattern Matching, number 2373 in Lecture Notes in Com-
puter Science, pages 178-189, Fukuoka, Japan, 2002. Springer-Verlag,
Berlin.

M. Crochemore, C. S. Iliopoulos, T. Lecroq, and Y. J. Pinzon. Approxi-
mate string matching in musical sequences. In M. Balik and M. Simének,
editors, Proceedings of the Prague Stringology Conference ‘01, pages 26—
36, Prague, Czech Republic, 2001. Annual Report DC-2001-06.

M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and G. Navarro. A bit-
parallel suffix automaton approach for (J, v)-matching in music retrieval.
In Edleno S. De Moura and A. L. Oliveira, editors, Proc. of the 10th

International Symposium on String Processing and Information Retrieval
(SPIRE’03), number 2857 in Incs, pages 211-223. Svb, 2003.

T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques
for musical similarity and melodic recognition. Computing in Musicology,
11:71-100, 1998.

C. Charras, T. Lecroq, and J.D. Pehoushek. A very fast string matching
algorithm for small alphabets and long patterns. In M. Farach-Colton,
editor, Proceedings of the 9th Annual Symposium on Combinatorial Pat-
tern Matching, number 1448 in Lecture Notes in Computer Science, pages
55-64. Springer-Verlag, Berlin, 1998.

A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp.,
21(11):1221-1248, 1991.

46

Efficient Algorithms for the §-Approximate String Matching Problem in Musical Sequences

[KMGLS8| S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung. Efficient algorithms

[KPROO]

[Lec00]

[MJ93]

[NR9S]

[Sun90]

[YaoT79]

for molecular sequence analysis. Proceedings of the National Academy of
Science, 85:841-845, 1988.

J. Karhumaki, W. Plandowski, and W. Rytter. Pattern-matching prob-
lems for two-dimensional images described by finite automata. Nordic J.
Comput., 7(1):1-13, 2000.

T. Lecroq. New experimental results on exact string-matching. Rapport
LIFAR 2000.03, Université de Rouen, France, 2000.

A. Milosavljevic and J. Jurka. Discovering simple DNA sequences by
the algorithmic significance method. Comp. Appl. BioSci., 9(4):407-411,
1993.

G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata:
Fast extended string matching. Technical Report TR/DC-98-1, Depart-
ment of Computer Science, University of Chile, 1998.

D. M. Sunday. A very fast substring search algorithm. Commun. ACM,
33(8):132-142, 1990.

A. C. Yao. The complexity of pattern matching for a random string.
SIAM J. Comput., 8(3):368-387, 1979.

47

